
SINGULAR INTEGRAL EQUATIONS OF THE VOLTERRA TYPE*

CLYDE E. LOVE

1. Introduction.    It has been shown by Evans t that the equation

XOO
K(x,t)4>(t)dt

has a unique finite and integrable solution provided that, for all values of

x == a and of < =; ar, (a) the functions f(x) and K(x,t) are bounded and

continuous; (b) the integral

foe
\K(x, t)\dt

exists ; (c) a constant b can be found such that

K(x,t)\dt^ N < 1 (z=t&).
¡:

Equations of the form (1) sometimes arise, t however, for which the con-

ditions of Evans's theorem are not satisfied. Various cases in which this is

true are considered in the present paper. In each instance an attempt is

made not merely to prove the existence of a continuous solution, but also to

determine its behavior for large values of x.

The independent variables ar and t will be restricted to real values. Func-

tions of the single variable x will be considered for values of ar lying either on

the range

7 x == a

or on the range

7ft a Si ar Si b,

* Presented to the Society, September 8, 1914.

tAtti della Reale Accademia dei Lincei, ser. 5, vol. 20 (1911), pp.
656-662.   Cf. also: Ibid., vol. 20 (1911), pp. 7-11.

Î For instance, in the theory of linear differential equations. Cf. Dini, A n n a 1 i di

Matemática, ser. 3, vol. 2 (1899), pp. 297-324; ibid., vol. 3 (1900), pp. 125-183; also
papers by the present writer: Annals of Mathematics, ser. 2, vol. 15 (1914),

pp. 145-156, and American Journal of Mathematics, vol. 36 (1914), pp.
151-166.
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where b is arbitrary; functions of the two variables x, t will be considered for

values of x and t in the domain

T x s a,       í ^ x.

For brevity we shall speak of these three regions as the interval 7, the inter-

val It, and the region T respectively.

The functions/(x) and K(x, t) are assumed throughout to be continuous

in 7 and in T respectively.

2. Theorem 1.    If the integral

f K(x,t)f(t)\dt

converges in I, converges uniformly in lb, and has in I the property that

(2) r\K(x,t)f(t)\dt<d\f(x)\ (0<e<l),
Jx

where 6 is a constant independent of x, then equation (1) has in I a continuous

solution 4>(x) expressible in the form

(3) 0(x)=/(x)p(x),

where p ( x ) is a continuous function such that

\p(x)\<i/(i-e).

The method of iteration,* when applied to the equation (1), leads to con-

sideration of the series
00

(4) <j>(x) =Hun(x),
n=0

where

voix) =/(x),

(00        /-»CO /»CO        /*Q0

••• Kix,t)Kit,ti)
Jt        Jt^. Jt^_,Jtn-S "^'n-ï

• • • Kitn-3, tn-i)Kitn-t, tn-l )f ( tn-l ) dtn-l 0%-i ' " dti dt

K(x,t)Un-i(t)dt (n-1, 2, •••).

We shall first show by mathematical induction that, in I, Un(x) is contin-

uous and satisfies the inequality

(5)_ |nB(x)|<ö"|/(x)| (« = 1, 2, •••).

* Cf., for example, Bôcher, An Introduction to the Study of Integral Equations (1909), p. 14.
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Assume that Un-i (ar) is continuous in 7, and that

\u7r.i(x)\^e--'\f(x)\.

Then Un (ar) is continuous in 7 and satisfies (5).    For, since the integral

f K(x,t)f(t)\dt

converges uniformly in 7¡,, we can find for every value of e > 0 a value of p.

independent of ar, such that

(6) fU \K(x,t)f(t)\dt<e,
Jy.

where p/ has any value greater than p., and x lies in 7&.   Now

I   j     K(x,t)Un-i(t)dt   Si   j       \K(x,t)Un-i(t)\dt
J v. J\

SÍ0"-1 fß \K(x,t)f(t)\dt < e,
J„,

by (5) and (6). But this last relation establishes the uniform convergence

of Un (ar) in 7ft, and hence its continuity at all points in 7, since an interval 7j

can always be found so as to include any preassigned point in 7.   Further,

\un(x)\^f"\K(x,t)un-i(t)\dt Si 0""1 jH 17T ( ar, 0/(*)|dí <0n|/(ar)|,

by (2).
To complete the proof by induction we need only note that our assumption

regarding n„_i ( x ) is justified, by hypothesis, for n = 1.

As a consequence of (5), we have

(7) ]£\Un(x)\<^—\f(x)\,
n=0 1   —   (7

so that the series S"=™ nn(ar) is absolutely convergent in 7, and 0(ar) as

given by (4) is defined in that interval. Further, the same series is uniformly

convergent in Ib, by Weierstrass's test, since

|n„(ar)|< N6n,

where N is the maximum value of |/(ar) | in 7&. The function 0 (ar ) is there-

fore the sum of a uniformly convergent series of continuous functions, and is

itself continuous.

Let us now multiply the series for 0(0 by Tí (ar, 0 and integrate term

by term from ar to ». That this is allowable appears from the following

theorem:*

Bromwich, Infinite Series (1908), p. 453.
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If the series Z)n=ô° fn(x) converges uniformly in any fixed interval a Si x Si b,

where b is arbitrary, and if F (x) is continuous for all finite values of x, then

rF(x)[Zfn(x)]dx = f: CF(x)fn(x)dx,
•Ja n=0 »=0 t/a

provided that the integral

$(x)= f° \F(x)\£.\fn(x)\dx,
i/a n=0

converges.

For, if we take a = x, x = t, F(t) = K(x, t), fn(t) = un(t), it is only

necessary to show that the integral <p(x) converges. But this follows at

once from (7) and (2).

Upon performing the term-by-term integration mentioned above, we obtain

the equation
Jf»00 00

K(x,t)<p(t)dt = Zn„(x) = 0(x)-/(x),
x n=l

which shows that 0 (x) as given by (4) is a solution of (1).

From (7) it appears at once that we may write 0 (x) in the form (3). The

function /(x) cannot vanish in 7, by (2), so that p(x) is continuous. This

completes the proof of the theorem.

That the solution thus obtained is not necessarily the only continuous

solution* appears from the following example. The hypotheses of the theorem

are evidently satisfied by the equation

XOO
e-2t<b(t)dt,

since

£ \K(x, t)f(t)\dt = itpfe-'dt = \e*.

The equation evidently has the infinity of solutions

0(x) = 2e* 4- ce3"2,

where c is an arbitrary constant, the solution given by the theorem being

obtained by taking c = 0.

Similar examples can be constructed for each of the cases still to be treated.

In case the hypotheses of the theorem are not satisfied for all values of

* It may be remarked that in the case treated by Evans (loc. cit.) there may likewise be

more than one continuous solution.   The equation

*(z) = l + &*f™ e-<<p(t)dt,

which evidently satisfies the conditions of Evans's theorem, has the family of continuous

solutions
<p(x) = 2 +ce1*,

where c is an arbitrary constant.
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ar in 7, but only for sufficiently large values, say x s^ a' > a, we ma\ proceed

by "prolongement"* to obtain a continuous solution valid throughout I.

Write the equation (1) in the form

K(x,t)<p(t)dt,

where

/i(ar)=/(ar)+       K(x,t)<p(t)dt.
Ja'

Our theorem may be used to determine 0 (ar) for x is a', after which fi(x)

becomes a known function, and (8) reduces to a regular Volterra equation

whose solution in the interval a Si a; Si a' may be found by the usual methods.

A similar remark will apply to each of the later theorems.

3. Theorem 2. If there exists a continuous positive real function h(x) such

that the integrals

f   \K(x,t)f(t)\dt,        f \K(x,t)\h(t)dt

converge in I, converge uniformly in h, and satisfy in I the inequalities

poo

(9) j    \K(x,t)f(t)\dt<h(x),

Xoo
\K(x,t)\h(t)dt <6h(x) (o<o<l),

where 6 is a constant independent of ar, then equation (1) has in I a continuous

solution 0 ( a; ) expressible in the form

(11) 0(ar)=/(ar)-M(ar)p(ar),

where p(x) is a continuous function such that

\p(x)\<l/(l-8).

Corollary.    If the integrals

C \K(x,t)f(t)\dt,        f*\K(x,t)\dt
Jx Jx

converge in I, converge uniformly in lb, and satisfy in I the inequalities

fa \K(x, t)f(t)\dt <N, f   \K(x,t)\dt<6,

where N is a constant, then equation (1) has in I a continuous solution 0(ar)

expressible in the form

<h(x)=f(x) + p(x),
where

|p(ar)|<iV/(l -0).

* Cf. Evans, loc. cit., p. 662.
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To prove the theorem, consider again the series (4). We note first that

un ( x ) is continuous in 7 and satisfies the inequality

(12) \un(x)\<en~1h(x) (»-1,2,...).

For, if we assume that n„_i ( x ) has these properties, the same will be true

for un (x ), by argument similar to that of § 2. But the assumption holds for

Vi ( x ), by hypothesis.

It follows from (12) that the series (4) converges absolutely in 7 and uni-

formly in lb • By making obvious modifications in the argument of § 2,

we see that 0(x) as given by (4) is continuous in 7, and satisfies equation

(1) in the same interval.

By (12), we have

Z K(x)| < j^^A(x),

so that

\<p(x)-fix)\<rzr-eh(x).

The form (11) for 0 (x) results at once.

The corollary is merely that case of the theorem in which we may take

A(x) = N.

4. Theorem 3. If there exists a continuous positive real function v(x) for

which the integral

£
v(t)dt

exists, and such that, in T,

(13) \K(x,t)f(t)\<\f(x)\v(t),

ZAen equation (1) has in I a continuous solution 0 (x) expressible in the form

0(x)=/(x)[14-€(x)],

where t(x) is continuous and has the property that

lim 6 ( x ) = 0.
£=00

We may evidently assume without loss of generality that

(14) f   r,(t)dt <6 (O<0<1).
J%

For, if this is not true throughout 7, it will be true in the interval x =S a',

where a! is sufficiently large.   After establishing the existence of a continuous

solution of (1) in this latter interval, we may by prolongement* extend it to

all values of x in 7.

* Cf. § 2.
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It results from (13) and (14) that

r\K(x,t)f(t)\dt<\f(x)\ rv(t)dt<e\f(x)\%j % t/i
(0 < e <l).

Further, the integral

£ \K(x,t)f(t)\dt

converges uniformly in 7&, by the following (Weierstrass's) test.t

Suppose that for all values of x in the interval a Si x Si b the function

F ( ar, 0 satisfies the condition

\F(x,t)\<M(t),

where M(t) is a positive function, independent of ar.   Then if the integral

f0 M(t)dt
converges, the integral

XOO
F(x,t)dt

is absolutely and uniformly convergent for all values of x in the interval

a Si x Si b.

Let us write

(X \K(x,t)f(t)\dt=  f  \K(x,t)f(t)\dt+ f \K(x,t)f(t)\dt.
Jx Jx Ji,

The test applies at once to the integral last written if we take

m = b,       F(x,t) = \K(x,t)f(t)\,       M(t) = Nv(t),

where N is the maximum value of |/(x) \ in lb.

Thus the conditions of Theorem 1 are satisfied in the present case, and by

that theorem there exists a continuous solution of (1) of the form

0(ar) =f(x)p(x).
If we put

p(ar) = 1 + e(ar),

it appears by (4) that
00

/(ar)e(ar) = £n„(a;),
n=l

and by (7) we have

!/(*)«(*)|sij;M*)I <ïzre\f(*)\,
or

_ |e(ar)|<0/(l-0).

t Cf., for instance, Bromwich, Infinite Series, p. 434.
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Now 8 may be taken arbitrarily small if x be taken sufficiently large, so that

lim e (x) = 0.
X=00

This completes the proof.

5. Theorem 4.    If there exist functions A(x)  and v(x)* such that the

inequalities

(15) \K(x,t)f(t)\<h(x)v(t),

(16) \K(x,t)\h(t)<h(x)v(t)

are satisfied in T, then equation (1) has in I a continuous solution 0(x)  ex-

pressible in the form

0(x)=/(x) + A(x)e(x),

where e ( x ) is continuous and has the property that

lim « (x) = 0.
«=00

Corollary.    7/ there exists a function n(x) such that the inequalities

\K(x,t)f(t)\<r,(t), \K(x,t)\<r,(t)

are satisfied in T, then equation (1) has in I a continuous solution 0(x) ex-

pressible in the form

0(x)=/(x)+e(x),
where

lim « ( x ) = 0.
x=oo

From (15) and (16) it appears that (9) and (10) are satisfied.    The integrals

f" | K(x, t)f(t) \dt   and     f   \K(x,t)\h(t)dt
Jz Jx

are readily seen to satisfy the other conditions of Theorem 2.    Hence equation

(1) has a continuous solution

4>i%) =/(*)4- A(x)e(x),
where

Now by (15)

l"i(s)l   , »
~HxT     '

and by (12)

_        hh)È{Unix)]<T^-8'
* The functions h ( x ) and ij ( x ) have the same properties as in Theorem 2 and The-

orem 3 respectively.
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SO that

|e(x)|< 0+0/(1 -0).

The desired result follows as in § 4.

To prove the corollary, take h ( x ) = 1.

6. Application. The foregoing results may be used in a variety of ways to

discuss particular equations of the form (1). The following may be mentioned

as a typical application:

Let p(x), q(x), and r(x) be polynomials in ar such that for large values

of ar

R[p(x)] <R[q(x)]<R[r(x)],

where Jfî [ar] means the real part of ar. If for sufficiently large values of ar,

and for values of t = ar, we may write, in Poincaré's sense,*

/(ar)~ e^>ar*(ao+^+ • • • V

K(x,t)~e^x>e^H^bo,o + \^ + hf + h^+..),

where a, ß, y, a0, •••,6o,o, ••• are determinate constants, then for the

same values of ar the equation (1) has a continuous solution 0 (ar) such that

we may write

0(ar) ~/(ar).

To prove this statement, we note first that ar may be taken so large that

\K(x,t)\<Ni\ePV>x!'\\e-rWp\,        \f(x)\< N2\e^ xa\,

where Ni and N2 are certain constants.   Thus

(17) \K(x,t)f(t)\<NiN2\&v> xe «««-'«> r+y|.

Let us now apply Theorem 4, taking

h(x) = \e^xß\,        r, (ar) = JV|««C)-rW \x«,

where N is the larger of the quantities Ni and iVi N2, and Ar is the larger of

the quantities

R[a + ß],       R[a + y].
Since

R[q(x)]<R[r(x)],
the integral

X"V(t)dt

'Acta   Mathematica,   vol. 8 (1886), p. 296.
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exists.    We have directly, by (17), the inequality

\K(x,t)f(t)\<h(x)v(t).
Also

\K(x,t)\h(t) < Ni\#to x* e*™* f^K h(x)n(t),

since

(18) R[p(x)]<R[q(x)].

Thus the hypotheses of Theorem 4 are satisfied, and equation (1) has a con-

tinuous solution of the form

0(x)=/(x)+ A(x)e(x)

= e^x^a04-^4-...4.an+^iX)^+\e^x'\e(x),

where n is an arbitrary positive integer and

lim con(x) = 0,        lim e (x) = 0.
x=oo a:=oo

Put
_ e(x)|ep(l)xfl|

eiX) - ep(x) xß >

ùln ( X ) = Un ( X ) 4- ep<-z)-^x) Xß~a+n € ( X ) .

Then we have

0(x) = e«''V^o + -+ ••• +-J.

It appears by (18) that
lim un ( x ) = 0,
* = 00

whence we may write

0 (x) ~ e«w xa ( do -I- — + ■■■).

Thus 0 ( x ) has an asymptotic expansion coinciding with that of / ( x ), which

was to be proved.

It is believed that the present theorems may prove useful in the study of

certain problems in the theory of linear differential equations. (The writer

hopes to consider applications of this type in a later paper.)

University of Michigan.


