Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On multiform solutions of linear differential equations having elliptic function coefficients
HTML articles powered by AMS MathViewer

by Wilson Lee Miser
Trans. Amer. Math. Soc. 17 (1916), 109-130
DOI: https://doi.org/10.1090/S0002-9947-1916-1501032-5
References
    Ch. Hermite: Sur quelques applications des fonctions elliptiques, Oeuvres de Ch. Hermite par É. Picard, vol. 3 (1912), pp. 267-421; Comptes Rendus, vols. 85 (1877), 86 (1878), 89 (1879), 90 (1881), 94 (1884). É. Picard: Sur les équations différentielles linéaires à coefficients doublement périodiques, Comptes Rendus, vol. 90 (1880), pp. 293-296, 1065-1067, 1118-1119; Journal für Mathematik, vol. 90 (1881), pp. 281-303. G. Mittag-Leffler: Sur les équations différentielles linéaires à coefficients doublement périodiques, Comptes Rendus, vol. 90 (1880), pp. 299-300. P. Appell: Sur une classe d’équations différentielles à coefficients doublement périodiques, Comptes Rendus, vol. 92 (1881), pp. 1005-1008.
  • M. Elliot, Sur une équation linéaire du second ordre à coefficients doublement périodiques, Acta Math. 2 (1883), no. 1, 233–260 (French). MR 1554598, DOI 10.1007/BF02415216
  • G. Floquet, Sur les équations différentielles linéaires à coefficients doublement périodiques, Ann. Sci. École Norm. Sup. (3) 1 (1884), 181–238 (French). MR 1508741
  • E. Sjoblom: Om de entydiga integralerna till en lineer homogen differential eqvation med dubbelperiodiska koefficienter, Stockholm Öfversigt, vol. 41, no. 5 (1884), pp. 155-168; Studier inom teorim for de lineera homogena differential eqvationer, hvilkaskkoefficienter aro dubbelperiodiska funktioner, Helsingfors, (1884)$^{\ast }$, 43 pages. Th. Craig: A Treatise on Linear Differential Equations, vol. 1 (1889), pp. 52-53, 496-514. C. Bigiavi: Sopra una classe di equazioni differenziali lineari a coefficienti doppiamente periodici, Pisa Annali, vol. 6 (1889), pp. 163-252; Sulle equazioni differenziali lineari a coefficienti doppiamente periodici, Accademia dei Lincei Rendiconti (4), vol. 6 (1890), pp. 339-346; Sulla riducibilita della equazioni differenziali lineari a coefficienti doppiamente periodici, Annali di matematica (3), vol. 5 (1901), pp. 107-139. F. Bremer: Ueber lineare homogene Differentialgleichungen mit doppelt-periodischen Coefficienten, Dissertation, Giessen, (1890), 30 pages. O. Venska: Integration eines speciellen Systems linearer homogener Differentialgleichungen mit doppelt-periodischen Funktionen als Coefficienten, Göttinger Nachrichten (1891), pp. 85-88.
  • E. A. Stenberg, Über die allgemeine Form der eindeutigen integrale der linearen homogenen Differentialgleichungen, Acta Math. 15 (1891), no. 1, 259–278 (German). Mit doppeltperiodischen Coefficienten. MR 1554819, DOI 10.1007/BF02392610
  • E. Naetsch: Zur Theorie der homogenen linearen Differentialgleichungen mit doppelt-periodischen Coefficienten, Dissertation, Leipzig, (1894), 66 pages; Untersuchungen über die Reduction und Integration von Picard’schen Differentialgleichungen, Leipziger Berichte, vol. 48 (1896), pp. 1-78. C. Jordan: Cours d’Analyse, vol. 3 (1896), pp. 276-299. E. W. Barnes: A new proof of Picard’s theorem, Messenger of Mathematics, vol. 27 (1897), pp. 16-17. M. Malmberg: Om integrationen af en klass af lineara differential-ekvationer med dubbelperiodiska koefficienter, analog de s. k. Hermet’ska differential-ekvationerna, Upsala Universitets arsskrift, (1897)$^{\ast }$ and Dissertation, Upsala, 31 pages. L. Schlesinger: Handbuch des linearen Differentialgleichungen, vol. 2 (1898), pp. 403-424.
  • J. Plemelj, Über Systeme linearer Differentialgleichungen erster Ordnung mit doppeltperiodischen Coefficienten, Monatsh. Math. Phys. 12 (1901), no. 1, 203–218 (German). MR 1546853, DOI 10.1007/BF01692127
  • A. R. Forsyth: Theory of Differential Equations, 3d part, vol. 4 (1904), pp. 441-477. J. Mercer: On the solutions of ordinary linear differential equations having doubly-periodic coefficients, Cambridge Transactions, vol. 20 (1908), pp. 383-436.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 34B30, 33E05, 34M05
  • Retrieve articles in all journals with MSC: 34B30, 33E05, 34M05
Bibliographic Information
  • © Copyright 1916 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 17 (1916), 109-130
  • MSC: Primary 34B30; Secondary 33E05, 34M05
  • DOI: https://doi.org/10.1090/S0002-9947-1916-1501032-5
  • MathSciNet review: 1501032