
ON THE MEASURABLE BOUNDS AND THE DISTRIBUTION OF
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BY
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I. Introduction

1. Object and results. In this paper I define for every function f(x),

bounded and summablef on an interval oSi = i,ora measurable subset

thereof, two numbers, the measurable upper and lower bounds of / ( x ) on

(a, b). These numbers are analogous to the extrema extremorum of a

function which is continuous on (a,b), with which in fact they coincide

when/(a;) is continuous. I show that the measurable bounds can be deter-

mined by means of an enumerable set of constants (the " momental cor-

stants ") defined by the Lebesgue integrals

*(/)- 7 JT [f(z)}»dx.

These constants and certain analytic functions determined by them are found

to be intimately connected with the structure of the Lebesgue integral oif(x)

in the sense that the constants and the analytic functions corresponding to

two given functions / ( x ) and tb ( x ) are identical when and only when the de-

fining elements of the Lebesgue integrals of f(x) and tf>(x) are identical.

In other words these constants and functions are invariants of all transforma-

tions which leave unaltered the defining elements of the Lebesgue integral.

2. The method of Laplace and Darboux. If the functions /(x) and tf> (x)

are continuous for a =£ x = b, and tf> ( x ) assumes its maximum value only

once, say at a point x = c, it is clear that in general the value of the integral

ff(x){<p(X)}»dx
va

is for very large values of n essentially determined by the values of / ( x ) and

<j> (x) in the immediate neighborhood of the point x = c.   LaplaceJ used this

* Presented to the Society, October 30, 1915.
t The term "summable " is used as meaning "integrable in the sense of Lebesgue."

X Laplace, Théorie analytique des probabilités, Œuvres, vol. 7, p. 102.

181

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



182 C   N.   HASKINS: [April

principle for the determination of " functions of large numbers." His vaguely

stated and, measured by present standards, insufficiently established result

was rendered precise, and proved by Darboux* who put it in a form which

may be written

nU        {0(c)}-       --no\] r(c) ■

The method is applicable to the case of contour integrals of functions of a

complex variable. The case in which (p ( x ) assumes its maximum value a

finite number of times is reduced to the above mentioned case. Darboux

considers only functions <j> ( x ) having a finite number of discontinuities and

those of a simple character.

Stieltjes,f independently of Darboux, put Laplace's result in essentially the

same form but with fewer restrictions on the continuity of <j> (x). He showed

by an example that the result may hold when <j>(x) assumes its maximum

value an infinite number of times. Lebesgue,! however, has stated that an

example can be constructed in which (p(x) assumes its maximum value an

infinite number of times, and in which the Darboux-Stieltjes result does not

hold.

The methods of Darboux have been studied and extended by Flamme, §

Poincaré,|| Féraud,1f Coculesco,** and Hamyff with special reference to their

application to the problem of determining the approximate values of terms

of high order in the development of the perturbative function, and in series

relating to the elliptic motion of the planets.

The papers just mentioned (except that of Stieltjes) deal very largely with

the case in which / and <p are complex functions and the integral a contour

integral. The singularities of / and <f> are the ordinary isolated singularities

of functions which in general are analytic.

3. Singular integrals. The singular integrals which arise in the theory of

Fourier's and similar series and the general theory of which has been the

* Darboux, Journal des mathématiques, ser. 3, vol. 4 (1878), p. 32. Lebesgue,

Annales de la Faculté des Sciences de Toulouse, ser. 3, vol. 1 (1909),

pp. 119-128.
f Stieltjes, Correspondance d'Hermite et de Stieltjes, vol. 2, pp. 185-187.

î Lebesgue, loc. cit., p. 128.

§ Flamme, Recherche des expressions approchées des termes très éloignés dans les développe-

ments du mouvement elliptique des planètes.    Thèse (No. 600), Paris, 1887.

|| Poincaré, Les méthodes nouvelles de la mécanique céleste, vol. 1, p. 278, ff.

1 Féraud, Sur la valeur approchée des coefficients d'ordre élevé dans les développements en

série.    Thèse (No. 912), Paris, 1897.

** Coculesco, Journal d^e s mathématiques, ser. 5, vol. 1 (1895), pp. 359-

442.
tt Hamy, Ibid., ser. 4, vol. 10 (1894), pp. 391-472; ser. 5,'vol. 2 (1896), pp. 381^40.
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object of extensive investigations by Hobson* and Lebesguef form a broad

generalization of the integral of Laplace and Darboux. These investigations

relate to integrals of the very general form

/%& /»&

I  f(t)tb(t,n,x)dt       and I  f(t)<b(t - x, n)dt,
Ja Ja

in which, in some cases at least, / and </> may have any singularities com-

patible with integrability in the sense of Lebesgue.

4. Relation of the present paper to those cited in §§ 2,3. The papers above

mentioned deal with singular integrals involving two functions f(t) and

{<l>(t)}n (or 4>(t, n, x)), and are primarily concerned with the determination

of the value oif(x) at a point where tb (x) (or its absolute value) has a maxi-

mum, or with the determination of the functional character of the nucleus-

function tb(t, n, x) such that

L   f f(t)<b(t,n,x)dt
n=oo Ja

may represent /( x ). In this paper, on the contrary, the singular integrals

involve only one function f(t) (or a continuous function of it), and I am con-

cerned not merely with the limiting value of the integral (as n becomes in-

finite), or its approximation to its limit; but also with the functional character

of the integral (or certain functions of it), regarded as depending on the

variable n. Some of my results are in certain cases (e. g., when f(x) ap-

proaches its maximum at only a finite number of points) derivable by special-

ization of the results of Darboux-Stieltjes. They are not, however, in general

so derivable since they hold provided/(a;) is merely bounded and summable

(or bounded, summable, and positive).

5. Character of functions considered. Throughout the paper the function

/ ( x ) will be assumed to have the following properties :

A. The function / ( x ) of the real variable x is defined, real, and single-valued

at every point of the interval a =s x = b, or at every point of a measurable

subset {x} thereof. (The measure of the domain of definition will be denoted

by/.)

B. The function /( x ) is uniformly bounded on its domain of definition,

i. e., there exist two constants h* and H* such that h* ^f(x) g H*.

C. The function /( x ) is summable over its domain of definition (and there-

fore over any measurable subset thereof).

* Hobson, Proceedings of the London Mathematical Society,

ser. 2, vol. 6 (1908), pp. 349-395.
t Lebesgue, Annales de la Faculté des Sciences de Toulouse,

ser. 3, vol. 1 (1909), pp. 25-117.
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II. Measurable bounds and momental constants

6. Measurable bounds of a summable function. Since the function / ( x )

is summable, the set of points for which f(x) ^ y is measurable, where y is

any real number. Let Mv be the measure of this set. Then 0 =i Mv =i I,

and My is a bounded, monotonie non-increasing function of y. The set of

points \y\ for which h* Si y and 0 < Mv =f I is bounded since Mv = 0 if

y > H*. Hence this set has a least upper bound H il H*. Consequently,

however small be the positive quantity e,

MH-, > 0,       but       MH+e = 0.

Evidently MH may qr may not be zero.

The quantity H thus defined I shall call the measurable upper bound of

f(x) on its domain of definition.

Similarly we may define the measurable lower bound h of f(x) as a number

such that the measure of the set of points for which f(x)^h-\-eis positive,

but the measure of the set for which / ( a; ) = A — «is zero, no matter how

small € may be.

The measurable bounds of a bounded summable function always exist.

The extension of the definition to unbounded functions is obvious, but of

course it does not follow from H* = oo that //"=». We may note that,

since the alteration of the values of a function at a set of points of measure

zero does not change the value of the integral of that function, the measur-

able bounds of a function are the most general kind of bounds or extremes

which we can determine through the instrumentality of a Lebesgue or a

Riemann integral.

7. The momental constants, vn(j). Since f(x) is bounded and summable,

so is also [f(x)]n, (n = 0, 1,2, •■•), and hence the constants

Vn(f) =]f  lf(x)]ndx (« = 0,1,2, ...),

exist. Evidently va = 1, v\ = integral mean value oîf(x). Geometrically

hi, hi, • • • are the several moments of the curve y = f ( x ) about the axis

of X, and are therefore analogous to the constants

un(f) =   f xnf(x)dx (n=0,l,-2, •••),
Ja

which are the moments of the curve about the axis of Y. Since, however,

the constants i>„ (/) have a quite different function-theoretic significance

from that of the ßn (/), I propose to call them the momental constants of

f(x) on (a, b), as the term moments is already appropriated to the pn(f).
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8. The fundamental theorem of the momental constants.*   If f (x) and

tb(x) are two real, single-valued, bounded, summable functions defined on the

interval a sü x S¡ b or measurable subset thereof, the necessary and sufficient

condition that their momental constants on that interval (or set) shall satisfy

the relations

"»(/) = "»(<£) (»«0,1,2, •••).

is that the measure of the set of points for which yx < f ( x ) < y2 shall be equal

to the measure of the set of points for which y\ < tb ( x ) < y2 for all pairs of real

numbers yx, y2 (yi < y2) ■

The moments un (f) determine the values which a function assumes at the

points of its domain of definition (with possible exception of a set of measure

zero).f They establish a correspondence between the values x of the domain

and the values y of the set of functional values of/. In this sense, like Fourier's

and other similar constants, they are constants of functional correspondence.

The momental constants vn (/), on the other hand, determine the lengths

of the sub-intervals (or measure of the subsets) for which f(x) lies between

any two prescribed values. They give what may be termed the statistical

distribution of the set of functional values of f(x) over its domain of defini-

tion and may therefore be called constants of functional distribution. They

become constants of functional correspondence when and only when the func-

tion f(x) is required to be monotonie non-decreasing (or monotonie non-

increasing). Í

9. Schwarz's inequality.    In the well-known inequality of Schwarz

f'u,(x)}*dx f {X(x)}2dx- j   f t(x)x(x)dxY^0,
Ja •'« 1 Ja 1

the linear dependence of \p ( x ) and x ( x ) save possibly at a set of points of

measure zero is an obviously sufficient condition that the equality sign may

hold. That it is also a necessary condition has been shown to be true for

Riemann integrals,! and the proof, e. g., by Landsberg's transformation

* The sufficiency of the condition is obvious. The necessity was proved by me for the

case of monotonie / and <j> (to which the general case can be reduced) provided one of the

functions admits a continuous and positive derivative, which of course is a considerable re-

striction. The proof was effected by reduction to the theorem of Stieltjes and Lebesgue

(A n'n ales de la Faculté des Sciences de Toulouse, ser. 3, vol. 1 (1909),

p. 101) concerning the moments Mn(/). Prof. Dunham Jackson has, however, proved the

theorem in its full generality, and I therefore refer to his note in the present number of these

Transactions.

t Lebesgue, loc. cit., p. 102.
% See the corollary to the theorem in Prof. Jackson's note.

§ Landsberg, Mathematische Annalen, vol. 69, 1910, p. 232. Fischer,

Archiv für Mathematik und Physik, ser. 3, vol. 13 (1908), pp. 32-40.
Richardson and Hurwitz, Bulletin of the American Mathematical

Society, vol. 16 (1909), p. 18.    Curtiss, Ibid., vol. 17 (1911), p. 464.
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£ {t(x)\*dxf\x(x)}*dx- {jPV(*)x(z)az}2

1  f f U(x)*(y) *
= 2ll\X(x)x(y)   ***>

can be extended to Lebesgue integrals also.*

10. Application of Schwarz's inequality to the momental constants. Sup-

pose first that 0 3= h < II, that is, that / ( x ) if negative at all, is so at most

at a set of points of measure zero, and further f(x) is not merely a constant

(save for a set of points of measure zero).

If in Schwarz's inequality we put

fix) = {/(z)}("+1)/2,        x(z) = {/(z)}(n~1,/2     (» = 0,1,2...),

we see that

vn+1(f)pn^(f) - {*„(/)}* >0 (» = 0,1,2...),

and since by the first theorem of the mean

0SÄ" < vn(f) <//",

Vn-l (/) Vn (f)

The inequality sign can be replaced by the equality sign when and only when

h = H, i. e., when f(x) is constant save for a set of points of measure zero,

and the fractions fail to have a meaning when and only when 0 = h = II,

i. e., when f(x) has the constant value zero (with possible exception of a stt

of points of measure zero).

If h < 0 we may still make the same reduction to Schwarz's inequality

provided n be an odd positive integer.    In particular we note that

V2<J)vo(j)   -   {Pl(f)}2   =   V2(f)   -   {Vi(f)\2>Q

in all cases provided h =1= H.

III. The DISTRIBUTION FUNCTIONS R(f, n), P(f,n),

J(J,z), K(f,z), L(f,z)

11. The distribution functions R (f, n), P (f, n) for non-negative /.(x).

In this section we assume 0 =i h < H.    Put

R(f,n)^^S)- P(f,n)=\vn(f)}^     (» = 1,2,3..-).
Vn-\ (J ;

Then

P(f,n) = \R(f,l)R(f,2) ... R(f,n)} lln

* This appears to be a matter of common knowledge, though I do not find specific reference

to it in the literature.
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By the first theorem of the mean,

h<R(f,n) <H,       h<P(f,n)<H,

and by Schwarz's inequality,*

R(f,n) <R(f,n + l).

Hence by a well-known tbeoremt

P(f,n) <P(f,n + l).

But since the geometric mean of n different terms lies between the extreme

terms

P(f,n) <R(f,n).

Hence each of the sequences  \P(f,n)}  and   {R(f,n)}   is bounded and

monotonie increasing (not merelj non-decreasing).    Therefore the limits

Jj P(f,n)=H1,       and       1¿R(f,n)=H2
n^-t- oo «=+ oo

exist,! and
h <H1^H2^H.

12. The limits of the distribution functions R (f, n) and P (f, n). Let

e be any fixed positive quantity. Let \xe} be the set of points for which

f(x)^H~e and {x'c} its complementary set. Since f(x) is summable

{xe} and [x'c\ are measurable. Let le be the measure of \xe\. Then by

the definition of H, lt is positive.    Define a function gt(x) as follows :

ge(x) = H - e   on    {a;,},

ge(x) = 0 on    {x\\.

Then
O^gAx)^f(x) (a^x^b),

and therefore

}fa  [gÁx)]ndx=\j    [gt(x)]»dx<\^ [f(x)Ydx = vn(f).

Consequently

t(H -€)»<*,(/) <H»,

and

(|)'V- 0 <P(f,n) <H.

* Cf. § 10.
t Cf. Brom wich, Infinite Series, p. 392, ex. 10 (2).
X It is of course a consequence of a well-known theorem that if Ht exists so does also Hi,

and Hi = Hi. (Cf. Bromwich, Infinite Series, p. 384.) The above form of the proof is

chosen in order to show that ffi = ff2 = H and that Ä (/, n) is a better approximation to

the limit than is P (/, n ).
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Since « is fixed, Ze is fixed, and

Mi)"*--
whence

H-e^H1=   L P(/,n)=iff, =  L R(f,n)^H.

But e may be taken as small as we please, and consequently

Hi=  L P(f,n) =   L R(f,n) =H2 = H.

If f(x) is not bounded on (a,b) it may still happen that H is finite, in

which case the foregoing reasoning holds without change. If H is infinite

the constants v„ (f) may not exist if n > 1. Of course vi (/) exists since

we suppose /( x ) to be summable. If, however, vn(f) exists for all positive

integral values of n, we still have

P(f,n) <R(f,n),
but

Jj P(J, n) = L R(f,n) = + ».
n~+ oo tt^-f oo

Suppose now we define the momental constants vn (/) for negative integral

index — n by the relation

V-n(f)   =   Vn( J )■

Then if h > 0 the constants v-n (/) surely exist and we have

Ä<Ä(/, -n)<Ä[/, -(«-1)]<P(/, -n)<P[f, -(„-1)]<—Í—

and finally

*«L R(f, -») = L P(/, ~n).
n=+oo w^ + oo

If Ä = 0 the constants v^n(f) need not exist for any or for all values of n.

If they do exist the above relations still hold. Hence we have the following

theorem.

13. Theorem. // the lower measurable bound h of a summable function f (x)

defined on a finite interval (a, b) or measurable subset thereof is positive, and

its upper measurable bound H is finite and different from h then the momental

constants

„„(/) bjJ   {f(x)}ndx        <»-0, ±l,±2, •••)

exist.    The two functions

P(f,n) = [pn(f)]lln (n = ±l,±2,...),

R(f,n) = -^7^: (»-0±1, ±2,.-.)
vn-\ (J )
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are monotonie increasing functions of the integral variable n which satisfy the

inequalities

h<P(f,n) <R(f,n) <H,    if   n > 0,

h <R(f,n) < P(f,n) < H,    if   n < 0,

and the limiting relations

L P(f,n) = L R(f,n) = h,
n~—cn n=— oo

L P(f,n) = L R(f,n) =H.
»=+« n—+00

If h = 0, or H = oo , or both, the relations are true when the momental constants

exist.    If h = H the inequalities become equations and the theorem is trivial.

If h and H are of opposite sign the theorem can be applied to find the upper

and lower measurable bounds of [/(x) ]2 and hence of \f(x)\.

14. The distribution functions J (f, z), K (f,z), L (f, z) for functions

of any sign. The functions P(f,n), R(f ,n) of the preceding paragraphs

have the disadvantage of requiring h ^ 0. We now proceed to study certain

functions analogous to P and R which do not, however, labor under this

disadvantage.* In this section we suppose — °°<A<.ff<-|-«>, but

make no restriction on the signs of h and H.

Let us introduce the auxiliary function of the continuous real or complex

variable 2

Then since

U(f,z) =jf e'f^dx.

„/w_n^ *"!/(*)!'-£
n^Ó n\

the convergence being uniform for all finite z and all x for which f(x) is

defined, we have
n=~Vn(f)zn

U(f,z)= z
nl

and U (f, z) is an analytic, and in fact an integral transcendental function of z.

It obviously has no real roots.t U(f,z) is completely determined by the

momental constants, and, conversely, it completely determines them.

We now define two functions J (f, z), K(f,z) with properties analogous

to those of P(/, n), R(/, n) by the relations

* Were it not that the functions R, P depend much more directly on the momental con-

stants v than do the functions /, K, L, it would hardly be worth while to study them in

detail.

t But it may have complex roots.   If a = — 1,6 = +l,/(x) =x,U(f,z) = (sinhz)/z

and has the roots z = ± nxi (n = 1,2,3, •••)•

Trans. Am. Math. Soc. 14
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J(f,z) =\\nU(f,z)=~\n j f e*™dx,
z z       ljn

f e«Mf(x)dx

Í ezfM dx

The only singularities of J(f, z) and K(f, z) occur at the (necessarily com-

plex) roots of U(f,z). They are poles of the first order for K(f,z) and

logarithmic singularities for J(f, z) ■

We shall be particularly interested in the behavior of /(/, 2) and K(f, z)

as 2; traverses all real values from — 00 to + °o . If however we wish a func-

tion having properties analogous to those of J and K but for which z is re-

stricted to the original range (a, b) on which f(x) was defined we may use

f7»-aV(x)/*        x ,

15. Formulae relating to U (f, z), J (/, z), K (f, z). In this section I

set down certain formula? involving U, J, aiid K, some because they are used

in later sections and others because of their intrinsic interest. The proofs

are omitted on account of their simplicity.

(1) J(f,z) = \\nU(f,z) =-  fZK(f,z)dz,
Z Z  Ja

(2) K(f, z) = I In U(f, z) = zdJU¿Z) + J(f, z),

(3)
d(*ir*J(j,z)\ = an_, <*»-**(/,*)
dz\        dzn~l         ) ~ dz"*1

If c be a constant,

(4)           K(f + c,z)=K(f,z)+c, cK(f,cz) =K(cf,z);

J(f + c,z) =J(f,z)+c, cJ(f,cz) =J(cf,z).

where

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1916] ON   SUMMABLE   FUNCTIONS 191

h(f) = »i(f),

(6) h (/) = „o (/) v2 (f) - v\ (f) ( ,„ (/) = 1 ),

h (/) = vl (f) v3 (f) - 3»>o (/) v, (/) * (/) + 2v\ (f),

(7) Pn+l (/)   =S (x ) "-A (/) h (f) .

16. Monotonie character of J (/, z) and K (f, z) for real z.   We have

f e*><*> (/(z))2<fa f e2'« ¿a; - {  Ç e"-^f(x)dx
*Ja *Ja \   %Jad

dzK(f,z) =
e2/(x) dx

To the numerator we may apply the inequality of Schwarz* with

t ( x ) = e<2/2)/(l) / ( x ),       x ( x ) = eWM .

Hence since h 4= H

ÍK(f,z)>0,

and K (f, z) is a monotonie increasing (not merely non-decreasing) function

of z for all real z.

Now from formula (3) of § 15

d |■ JJ(f,z)
dz 1 dz

Hence

But since

__,dK(f,z)
dz

SgnUzz2^(/'z)}=SgnZ (z+0)

dz

dz

except at z = 0 where it has its minimum value zero.    Hence

dJ(f,z)
dz

except possibly at z = 0.

* Cf. § 10.

>0,
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But

dz
dJ,f    ,1 v»(f) - (vi(f))2

and this is positive by Schwarz's inequality (§ 10).

Therefore for all real z

dJ(f,z)
dz

>0,

and J (f, z) is a monotonie increasing function of z.

Moreover, by (2) of § 15,

K(f,z)-J(f,z)=zd^(f,z),

and therefore

K(f,z)>J(f,z) <»>0),

K(f,0)=J(f,0) = Vl>

K(f,z) <J(f,z) <«<0).

17. Limits of the distribution functions J (f, z), K (f, z).   By the first

theorem of the mean

h<J(f,z)<H,       h<K(f,z) <H,

for all real z.    Hence the limits

L K(f,z) = h",       L K(f,z)=H",
Z=—00 2=+00

L J{f,z) = h',     ;l j(f,z) = H',
«=—00 Z=L+M

exist, and

h^h"Sh' <Vl<H'^ H" S H.

Now if as in § 12 we let {xc} be the set of points for which f(x) ^ H — e,

and {aré} its complementary set, and if we put

gt(x,z) = e*H-*    (on {*,}),

gt(x,z) = 0 (on {a;;});

we have for positive z

0 <gt(x,z) ^e°M,

and may show, by reasoning entirely similar to that of § 12, that

H' = H" = H.

From § 15, formula 4, we have
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K(f,z) = -K(-f,-z),

J(f,z) = -J(-f, -z),

from which follows at once that

h  = h   = h.

The results thus far obtained may be summarized as follows.

18. Theorem.    If on the finite interval (a,b)  or measurable subset  {x}

thereof, the function f (x) is bounded and summable, the two functions*

fe^f(x)dx
K(f,z)=^—b-,       J(f,z)=-\nj \  e'^dx,

e^dx Ja
Ja

are analytic functions of the complex variable z in the entire finite z plane, except

possibly for certain points which are poles of the first order of K(f, z) and log-

arithmic singularities of J (/, z). For all real finite values of z, K(f, z) and

J (f, z) are analytic and monotonie increasing functions of z. If h, v\, and H

(h < H), are respectively the lower measurable bound, the integral mean value,

and the upper measurable bound off(x) on its domain of definition, the following

relations are true:

h <K(f,z) <J(f,z) <vi<H (*<0),

K(f,0) =J(f,0) = vlt

h <vi<J(f,z) <K(f,z) <H (z>0),

L  J(/,*) =   L K(f,z) = h,

Li  J(f,z) =   L  K(f,z) =H.
2=+00 3=+ 00

If h = H the inequalities become equations and the theorem is trivial.

19. The functions J (f, z), K (f, z) and the distribution of functional

values. The functions J (f, z), K(f,z), and U(f,z) completely deter-

mine one another, and U(f, z) completely determines and is determined

by the momental constants vn (f). Hence, we have, making use of the results

of § 8, the theorem stated as follows.

Theobem. Two functions K (f, z ) and K ( <p, z ) (or J (f, z) and J(<p, z))

corresponding to two bounded summable functions f(x) and <j>(x) defined on

* Here /   is to be interpreted as the integral over the domain of definition of / ( x ), be it

(a, b) or {x}, and I is the measure of that domain.
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the same finite interval (a, b) or subset {x} thereof are identical when and only

when the measure of the set of points for which pi <f(x) < y2 is for all pairs

of real numbers y\ and y2 (yi < y2) equal to the measure of the set for which

yi <tf>(x) <y2.

It follows that the set of all bounded summable functions defined on (a, b)

(or {x}) can be divided into classes each of which is characterized by the

enumerable set of momental constants vn or by either of the analytic functions

J, K. Two functions of the set belong to the same class when and only

when their Lebesgue integrals have the same infinitesimal structure. The

typical representative of a class is a monotonie increasing function which is

uniquely determined save for its values at an enumerable set of points. *

* Cf. the corollary in Prof. Jackson's note.
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