SETS OF INDEPENDENT POSTULATES FOR BETWEENNESS*

BY

EDWARD V. HUNTINGTON AND J. ROBERT KLINE

INTRODUCTION

The "universe of discourse" of the present paper is the class of all well-defined systems \((K, R)\) where \(K\) is any class of elements \(A, B, C, \ldots\), and \(R\) is any triadic relation. The notation \(R[ABC]\), or simply \(ABC\), indicates that three given elements \(A, B, C\), in the order stated, satisfy the relation \(R\).

Examples of such systems \((K, R)\) are the following, of which example (a) is the most important:

(a) \(K\) is the class of points on a line; \(AXB\) means that the point \(X\) lies between the points \(A\) and \(B\).

(b) \(K\) is the class of natural numbers; \(AXB\) means that the number \(X\) is the product of the numbers \(A\) and \(B\).

(c) \(K\) is the class of human beings; \(AXB\) means that \(X\) is a descendant of \(A\) and an ancestor of \(B\).

(d) \(K\) is the class of points on the circumference of a circle; \(AXB\) means that the arc \(A-X-B\) is less than 180°.

(e) \(K\) is a class comprising four elements, namely, the numbers 2, 6, \(-6\), and 648; \(AXB\) means \(X^4 = A \times B\).

It is obvious that these systems, and others like them, will possess a great variety of properties expressible in terms of the fundamental variables \(K\) and \(R\). The object of this paper is to state clearly the characteristic properties of the type of system represented by example (a) above, by which this type of system is distinguished from all other possible systems \((K, R)\).

In Section 1, we give a basic list of twelve postulates, due essentially to Pasch,† from which various sets of independent postulates will later be selected.

* Presented to the Society, September 5, 1916. The parts of the paper which do not involve the postulates here numbered 5 and 8 were presented by Professor Huntington at the meetings of December 31, 1912, and April 26, 1913. The necessity of adding postulates 5 and 8 was kindly pointed out by Professor R. L. Moore, and all the theorems and examples which involve these two postulates are due to Dr. Kline.

† M. Pasch, Vorlesungen über neuere Geometrie, Leipzig, 1882; G. Peano, Sui fondamenti della geometria, R i v i s t a d i M a t e m a t i c a , vol. 4 (1894), pp. 51–90; F. Schur, Grundlagen der Geometrie, Leipzig, 1909. Other sets of postulates for betweenness have been given Trans. Am. Math. Soc. 20 301
These postulates are all "general laws" as distinguished from "existence postulates," and include, in fact, all the possible general laws of linear order concerning not more than four elements.

In Sections 2 and 3 we give an exhaustive discussion of all the possible ways in which any one of these basic postulates can be deduced from any others of the list, and in Section 4, we give an exhaustive list of all the distinct sets of independent postulates (eleven in number) which can be selected from the basic list.*

Any one of these sets of independent postulates may be used, as in Section 5, to define the type of system \((K, R)\) which we are considering—that is, to define the relation of betweenness.

The existence postulates which might be imposed, in addition to the general laws, would serve to distinguish the various sub-types which are included within the general type of system \((K, R)\) here considered. These existence postulates, such as the postulates of discreteness, density, continuity, etc., are already well known, and will not be discussed further in the present paper.†

1. Basic list of twelve postulates

In this section we give the basic list of twelve postulates from which various sets of independent postulates will later be selected.

The first four postulates, A–D, concern three elements.

Postulate A. \(AXB \not\rightarrow BXA\).

That is, if \(AXB\) is true, then \(BXA\) is true. In other words, in the notation \(ABC\), an interchange of the terminal elements is always allowable.

Postulate B.

\(A \neq B \neq C \neq A \not\rightarrow BAC \rightarrow CAB \rightarrow ABC \rightarrow CBA \rightarrow ACB \rightarrow BCA\).

That is, if \(A, B, C\), are distinct, then at least one of the three elements will occupy the middle position in a true triad.

Postulate C. \(A \neq X \neq Y \neq A \not\rightarrow AXY \rightarrow AYX \rightarrow 0\).

* The postulates of each of these sets are independent of each other in the ordinary sense of the term "independence"; that is, no postulate of any one set can be deduced from the remaining postulates of that set. It is probable that the postulates of each set are also "completely independent" in the sense suggested by E. H. Moore in his *Introduction to a Form of General Analysis* (New Haven Colloquium, 1906, published by the Yale University Press, New Haven, 1910, p. 82); but no attempt to discuss the "complete existential theory" of the postulates, in the sense there defined, has here been made.

† See, for example, E. V. Huntington, *The continuum as a type of order*, reprinted from the *Annals of Mathematics*, 1905 (Publication Office of Harvard University); second edition, Harvard University Press, 1917.
That is, if \(A, X, Y\), are distinct, we cannot have \(AXY\) and \(AYX\) both true at the same time.

From Postulates A and C it follows that if \(A, B, C\) are distinct elements, then not more than one of the three elements can occupy the middle position in a true triad.

From Postulates A, B, and C, together, it follows that if \(A, B, C\) are distinct elements, then one and only one of the triads \(ABC, BCA, CAB\) will be true.

Postulate D. \(ABC : \not\in : A \neq B . B \neq C . C \neq A.\)

That is, if \(ABC\) is true, then the elements \(A, B,\) and \(C,\) are distinct.

The remaining eight postulates are concerned with four distinct elements.

Postulates 1-8. If

\[A \neq B . A \neq X . A \neq Y . B \neq X . B \neq Y . X \neq Y,\]

then

1. \(XAB . ABY . \not\in . XAY;\)

2. \(XAB . AYB . \not\in . XAY;\)

3. \(XAB . AYB . \not\in . XYB;\)

4. \(AXB . AYB . \not\in . AXY \sim AYX;\)

5. \(AXB . AYB . \not\in . AXY \sim YXB;\)

6. \(XAB . YAB . \not\in . XYB \sim YXB;\)

7. \(XAB . YAB . \not\in . XYA \sim YXA;\)

8. \(XAB . YAB . \not\in . XYA \sim YXB.\)

The eight Postulates 1-8 (together with the analogous postulates obtained from these by the aid of Postulate A alone) include all the possible “general laws” of betweenness concerning four distinct elements. For, if we think of \(A\) and \(B\) as two given points on a line, the hypotheses of these postulates state all the possible relations in which two other distinct points \(X\) and \(Y\) of the line can stand in regard to \(A\) and \(B\). (See, however, the Appendix.)

We shall see later that no further general laws—that is, no general laws concerning more than four distinct elements—need be assumed as fundamental. (Existence postulates, which play a very different rôle from the general laws, are not here considered.)

2. **Theorems on deducibility**

In this section we take up all the cases in which the following question is to be answered in the affirmative:

Given, any subset \(S\) of the twelve postulates of our basic list, and any postulate \(P\) of the list, not belonging to \(S;\) is \(P\) deducible from \(S\)?
The answers are comprised in the following 71 theorems. In the proofs of these theorems, all the steps are given explicitly, except those depending only on Postulate A. Moreover, in case any postulate (except Postulate A) is used more than once in a proof, the frequency of its use is indicated by an exponent; this latter information, however, is added merely as a matter of possible interest to the reader, and the omission of the exponents would not affect the conclusions of the paper in any way.*

A summary of the theorems will be found at the end of § 2.

Proofs of postulate 1

Theorem 1a. Proof of 1 from A, B, C^3, 2, 4.
To prove: XAB . ABY . XAY. By B, XAY . AYX . AXY. Suppose AXY. Then by 4, ABY . AXY . ABX . XAB, contrary to XAB, by C. Suppose AYX. Then by 2, BAX . AYX . BAY , contrary to ABY, by C. Therefore XAY.

Theorem 1b. Proof of 1 from A, B, C^2, 3, 4.
To prove: XAB . ABY . XAY. By C, AXB and ABX are false, since XAB is true. By B, XYA . AXY . XAY.
Case 1. Suppose XYA. Then by 3, YBA . XBA, which is false.
Case 2. Suppose AXY. Then by 2, ABY . ABX . BXY, which are both false. Therefore XAY.

Theorem 1c. Proof of 1 from A, B, C^3, 2^2, 5.
To prove: XAB . ABY . XAY. By B, XAY . AYX . AXY. Suppose AXY. Then by 5, AXY . ABY . AXB . BXY. But AXB is contrary to XAB, by C; while if BXY, then by 2, ABY . BXY . ABX, contrary to XAB, by C.
Suppose AYX. Then by 2, BAX . AYX . BAY, contrary to ABY, by C. Therefore XAY.

Theorem 1d. Proof of 1 from A, B, C, 3^2, 5.
To prove: XAB . ABY . XAY. By C, XBA is false, since XAB is true. By B, XYA . AXY . XAY.
Case 1. Suppose XYA. Then by 3, YBA . XBA, which is false.

* We are indebted to Mr. R. M. Foster, of Harvard University, for reductions in the "frequency exponents" (chiefly in regard to Postulate C) in the following theorems: 1b, 1d; 2c, 2g; 3a, 3b; 4b; 5f; 6j; 7b, 7c, 7j; 8b, 8c, 8d, 8f, 8j. A notion similar to that of "frequency exponents" was introduced by H. Brandes in his Halle Dissertation, 1908, Über die axiomatische Einfachheit, mit besonderer Berücksichtigung der auf Addition beruhenden Zerlegungsweise des Pythagoräischen Lehrsatzes. Compare F. Bernstein, Über die axiomatische Einfachheit von Beweisen, Atti del IV Congresso Internazionale dei Mathematici, Roma, 1908, vol. 3 (1909), pp. 391-392, and also E. Lemoine's Géométrographie of 1902.
Case 2. If AXY, then by 5, $ABY \cdot AXY \cdot ABX \sim XBY$; but ABX is false, and if XBY, then by 3, $YBX \cdot BAX \cdot YAX$. Therefore XAY.

Proofs of postulate 2

Theorem 2a. Proof of 2 from $A, B, C^3, 1^3, 7$.

To prove: $XAB \cdot AYB \cdot XAY$. By B, $XAY \sim AYX \sim AXY$. Suppose AYX. Then by 7, $BYA \cdot XYA \cdot BXY \sim XBY$. But if BXY, then by 1, $BXY \cdot XYA \cdot BXA$, contrary to XAB, by C; and if XBY, then by 1, $XBY \cdot BYA \cdot XBA$, contrary to XAB, by C. Suppose AXY. Then by 1, $BAX \cdot AXY \cdot BAY$, contrary to AYB, by C. Therefore XAY.

Theorem 2b. Proof of 2 from $A, B, C^3, 1, 6$.

To prove: $XAB \cdot AYB \cdot XAY$. By B, $XAY \sim AYX \sim YXA$. Suppose YXA. Then by 1, $BAX \cdot AXY \cdot BAY$, contrary to AYB, by C. Suppose AYX. Then by 6, $XYA \cdot BYA \cdot XBA \sim BXA$, contrary to XAB, by C. Therefore XAY.

Theorem 2c. Proof of 2 from $A, B, C^2, 3, 6$.

To prove: $XAB \cdot AYB \cdot XAY$. By C, BXA and XBA are false, since XAB is true. By B, $YXA \sim YXA \sim XAY$.

Case 1. Suppose YXA. Then by 3, $BYA \cdot YXA \cdot BXA$, which is false.

Case 2. Suppose XYA. Then by 6, $BYA \cdot XYA \cdot BXA \sim XBA$, which are both false. Therefore XAY.

Theorem 2d. Proof of 2 from $A, C, 3^2, 7$.

To prove: $XAB \cdot AYB \cdot XAY$. By 3, $XAB \cdot AYB \cdot XYB$. Hence by 7, $XYB \cdot AYB \cdot XAY \sim XBY$. But if AXY, then by 3, $BYA \cdot YXA \cdot BXA$, contrary to XAB, by C. Therefore XAY.

Theorem 2e. Proof of 2 from $A, C^3, 3, 4, 6$.

To prove: $XAB \cdot AYB \cdot XAY$. By 3, $XAB \cdot AYB \cdot XYB$. Hence by 4, $XYB \cdot XAB \cdot XYA \sim XAY$. But if XYA, then by 6, $XYA \cdot BYA \cdot XBA \sim BXA$, contrary to XAB, by C. Therefore XAY.

Theorem 2f. Proof of 2 from $A, B, C^3, 1^3, 8$.

To prove: $XAB \cdot AYB \cdot XAY$. By B, $XAY \sim AYX \sim YXA$. Suppose YXA. Then by 1, $BAX \cdot AXY \cdot BAY$, contrary to AYB, by C. Suppose AYX. Then by 8, $XYA \cdot BYA \cdot XBY \sim BXA$. But BXA is contrary to XAB, by C; while if XBY, then by 1, $XBY \cdot BYA \cdot XBA$, contrary to XAB, by C. Therefore XAY.

Theorem 2g. Proof of 2 from $A, B^2, C^3, 1^3, 5$.

To prove: $XAB \cdot AYB \cdot XAY$. By C, BAY and XBA and BXA
are false, since \(AYB \) and \(XAB \) are true. By B, \(AXY \sim XYA \sim XAY \); and by B, \(XBY \sim BXY \sim BYX \).

Case 1. Suppose \(AXY \). Then by 1, \(BAX \cdot AXY \cdot \Box \cdot BAY \), which is false.

Case 2. Suppose \(XBY \). Then by 1, \(XBY \cdot BYA \cdot \Box \cdot XBA \), which is false.

Case 3. Suppose \(XYA \) and \(BXY \). Then by 1, \(BXY \cdot XYA \cdot \Box \cdot BXA \), which is false.

Case 4. Suppose \(BYX \). Then by 5, \(BAX \cdot BYX \cdot \Box \cdot BAY \sim YAX \), where \(BAY \) is false. Therefore \(XAY \).

Theorem 2h. Proof of 2 from \(A, C, 3, 8 \).

To prove: \(XAB \cdot AYB \cdot \Box \cdot XYA \). By 3, \(XAB \cdot AYB \cdot \Box \cdot XYB \).

Hence by 8, \(XYB \cdot AYB \cdot \Box \cdot XAY \sim AXB \). But \(AXB \) is contrary to \(XAB \), by C. Therefore \(XAY \).

Theorem 2i. Proof of 2 from \(A, C, 3, 5 \).

To prove: \(XAB \cdot AYB \cdot \Box \cdot XYA \). By 3, \(XAB \cdot AYB \cdot \Box \cdot XYB \).

Hence by 5, \(XAB \cdot XYB \cdot \Box \cdot XAY \sim YAB \). But \(YAB \) is contrary to \(AYB \), by C. Therefore \(XAY \).

Proofs of postulate 3

Theorem 3a. Proof of 3 from \(A, B^2, C^3, I^4 \).

To prove: \(XAB \cdot AYB \cdot \Box \cdot XYB \). By C, \(XBA \) and \(BAY \) and \(BXA \) are false, since \(XAB \) and \(AYB \) are true. By B, \(XBY \sim BXY \sim XYB \); and by B, \(AXY \sim XYA \sim YAX \).

Case 1. Suppose \(XBY \). Then by 1, \(XBY \cdot BYA \cdot \Box \cdot XBA \), which is false.

Case 2. Suppose \(AXY \). Then by 1, \(BAX \cdot AXY \cdot \Box \cdot BAY \), which is false.

Case 3. Suppose \(BXY \) and \(XYA \). Then by 1, \(BXY \cdot XYA \cdot \Box \cdot BXA \), which is false.

Case 4. Suppose \(YAX \). Then by 1, \(BYA \cdot YAX \cdot \Box \cdot BYX \). Therefore \(XYB \).

Theorem 3b. Proof of 3 from \(A, B, C, 2^3 \).

To prove: \(XAB \cdot AYB \cdot \Box \cdot XYB \). By B, \(YBX \sim YXB \sim XYB \).

Case 1. Suppose \(YBX \). Then by 2, \(YBX \cdot BAX \cdot \Box \cdot YBA \), contrary to \(AYB \), by C.

Case 2. If \(YXB \), then by 2, \(YXB \cdot XAB \cdot \Box \cdot YXA \), whence, by 2, \(BYA \cdot YXA \cdot \Box \cdot BYX \). Therefore \(XYB \).

Theorem 3c. Proof of 3 from \(A, C, 2^3, 6 \).

To prove: \(XAB \cdot AYB \cdot \Box \cdot XYB \). By 2, \(XAB \cdot AYB \cdot \Box \cdot XAY \).
Hence by 6, $BAX \cdot YAX \cdot BYX \sim YBX$. But if YBX, then by 2, $YBX \cdot BAX \cdot YBA$, contrary to AYB, by C. Therefore XYB.

Theorem 3d. Proof of 3 from A, 1, 2.

To prove: $XAB \cdot AYB \cdot XYB$. By 2, $XAB \cdot AYB \cdot XAY$. Hence by 1, $BYA \cdot YAX \cdot BYX$. Therefore XYB.

Theorem 3e. Proof of 3 from A, C, 2, 8.

To prove: $XAB \cdot AYB \cdot XYB$. By 2, $XAB \cdot AYB \cdot XAY$. Hence by 8, $YAX \cdot BAX \cdot YBA \sim BYX$. But YBA is contrary to AYB, by C. Therefore XYB.

Proofs of postulate 4

Theorem 4a. Proof of 4 from A, B, C, 1.

To prove: $AXB \cdot AYB \cdot AXY \sim AYX$. By B, $AXY \sim AYX \sim XAY$. Suppose XAY. Then by 1, $XAY \cdot AYB \cdot XAB$, contrary to AXB, by C. Therefore $AXY \sim AYX$.

Theorem 4b. Proof of 4 from A, B, 1, 2.

To prove: $AXB \cdot AYB \cdot AXY \sim AYX$. By B, $AXY \sim AYX \sim XAY$. But if XAY, then by 1, $BYA \cdot YAX \cdot BYX$, whence, by 2, $AXB \cdot XYB \cdot AXY$. Therefore $AXY \sim AYX$.

Theorem 4c. Proof of 4 from A, B, 1, 2, 7.

To prove: $AXB \cdot AYB \cdot AXY \sim AYX$. By B, $AXY \sim AYX \sim YAX$. But if XAY, then by 1, $XAY \cdot AYB \cdot XAB$; and by 1, $YAX \cdot AXB \cdot YAB$; whence by 7, $XAB \cdot YAB \cdot XYA \sim YXA$. Therefore $AXY \sim AYX$.

Theorem 4d. Proof of 4 from A, C, 5, 2.

To prove: $AXB \cdot AYB \cdot AXY \sim AYX$. By 5, $AXB \cdot AYB \cdot AXY \sim YXB$; and by 5, $AYB \cdot AXB \cdot AYX \sim XYB$. Suppose AXY and AYX are both false. Then YXB and XYB, contrary to C. Therefore $AXY \sim AYX$.

Theorem 4e. Proof of 4 from A, 3, 5, 2, 7.

To prove: $AXB \cdot AYB \cdot AXY \sim AYX$. By 5, $AXB \cdot AYB \cdot AXY \sim YXB$, and by 5, $AYB \cdot AXB \cdot AYX \sim XYB$. Suppose AXY and AYX are both false. Then YXB and XYB, whence by 7, $XYB \cdot AYB \cdot AXY \sim XAY$. But if XAY, then by 3, $BXY \cdot XAY \cdot BAY$, and by 3, $BYX \cdot YAX \cdot BAX$; whence by 7, $XAB \cdot YAB \cdot XYZ \sim YXA$. Therefore $AXY \sim AYX$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 4f. Proof of 4 from \(A, 5^2, 7, 8^2 \).
To prove: \(AXY \sim AYX \).

By 5, \(AXY \sim YXB \),
and by 5, \(AYB \sim AXB \).
Suppose \(AXY \) and \(AYX \) are both false.
Then \(YXB \) and \(XYB \), whence by 8, \(AXY \sim YAB \),
and by 8, \(AYB \sim YXB \).
But if \(YAB \) and \(XAB \), then by 7, \(XAB \sim YAB \).
Therefore \(AXY \sim AYX \).

Theorem 4g. Proof of 4 from 2, 5.
To prove: \(AXY \sim AYX \).

By 5, \(AXY \sim YXB \).
But if \(YXB \), then by 2, \(AYB \sim YXB \).
Therefore \(AXY \sim AYX \).

Theorem 4h. Proof of 4 from \(A, 1^2, 5, 7^2 \).
To prove: \(AXY \sim AYX \).

By 5, \(AXY \sim YXB \).
Suppose \(AXY \) false.
Then \(YXB \), whence, by 7, \(YXB \sim XAB \).
But if \(YAX \), then by 1, \(YAX \sim AXB \).
and by 1, \(XAY \sim AYB \).
whence by 7, \(XAB \sim YAB \),
whence, by 1, \(XAY \sim AYB \).
Therefore \(AXY \sim AYX \).

The following two theorems, 4i and 4j, are the only ones in which Postulate C is used without Postulate A. (It will be noted that there are no cases in which Postulate B is used without Postulate A.)

Theorem 4i. Proof of 4 from \(C^2, 5^2, 7^3, 8^2 \).
To prove: \(AXY \sim AYX \).

By 5, \(AXY \sim YXB \),
and by 5, \(AYB \sim AXB \).
Suppose \(AXY \) and \(AYX \) are both false. Then \(YXB \) and \(XYB \),
whence by 7, \(YXB \sim AXB \).
and by 7, \(XYB \sim AXY \); whence \(YAX \) and \(XAY \).
Again, by 8, \(AXY \sim YAB \),
and by 8, \(AYB \sim XAB \),
whence, by 7, \(YAB \sim XAB \), contrarily to \(YAX \) and \(XAY \),
respectively, by C. Therefore \(AXY \sim AYX \).

Theorem 4j. Proof of 4 from \(C^2, 1^2, 5^2, 7^3 \).
To prove: \(AXY \sim AYX \).

By 5, \(AXY \sim YXB \),
and by 5, \(AYB \sim AXB \).
Suppose \(AXY \) and \(AYX \) are both false. Then \(YXB \) and \(XYB \),
whence by 7, \(AXB \cup AYX \sim YAX \),
and by 7, \(XYB \cup AYB \sim XAY \).
But if \(YAX \) and \(XAY \), then by 1, \(YAX \cup AXB \sim YAB \),
and by 1, \(XAY \cup AYB \sim XAB \),
whence by 7, \(YAB \cup XAB \sim YXA \sim XYA \), contrary to \(YAX \) and \(XAY \), respectively, by C. Therefore \(AXY \sim AYX \).

Proofs of postulate 5

Theorem 5a. Proof of 5 from A, B, 1, 2.

To prove: \(AXB \cup AYB \cup AXY \sim YXB \). By B, \(AXY \sim XYA \sim XAY \).
But if \(XYA \), then by 2, \(BXA \cup XYA \sim BYA \). If \(XAY \), then by 1, \(BXA \cup XAY \sim BXY \).
Therefore \(AXY \sim YXB \).

Theorem 5b. Proof of 5 from A, B, 1, 2, 7.

To prove: \(AXB \cup AYB \cup AXY \sim YXB \). By B, \(AXY \sim XAY \sim XYA \).
Case 1. If \(XAY \), then by 1, \(BXA \cup XAY \sim BXY \).
Case 2. If \(XYA \), then by 7, \(XYA \cup BYA \sim XBY \sim BXY \). But if \(XBY \), then by 1, \(AXB \cup XBY \sim BYA \). Therefore \(AXY \sim YXB \).

Theorem 5c. Proof of 5 from A, B, C, 1, 8.

To prove: \(AXB \cup AYB \cup AXY \sim YXB \). By B, \(AXY \sim XAY \sim XYA \).
Case 1. Suppose \(XAY \); then by 1, \(BXA \cup XAY \sim BXY \).
Case 2. Suppose \(XYA \); then by 8, \(BYA \cup XYA \sim BYA \). \(BYA \sim XBA \), where \(XBA \sim BYA \sim XBY \), contrary to \(AXB \), by C. Therefore \(AXY \sim YXB \).

Theorem 5d. Proof of 5 by A, B^2, C^3, 1, 2, 6.

To prove: \(AXB \cup AYB \cup AXY \sim YXB \). By B, \(AXY \sim XAY \sim XYA \),
and by B, \(YXB \sim BYX \sim YBX \).
Case 1. If \(XAY \), then by 1, \(BXA \cup XAY \sim BXY \).
Case 2. If \(XYA \) and \(BYX \), then by 6, \(AYX \cup BYX \sim ABX \sim BAX \),
contrary to \(AXB \), by C.
Case 3. If \(XYA \) and \(YBX \), then by 1, \(BYX \cup BXA \sim YBA \), contrary to \(AYB \), by C. Therefore \(AXY \sim YXB \).

Theorem 5e. Proof of 5 from A, 2, 4.

To prove: \(AXB \cup AYB \cup AXY \sim YXB \). By 4, \(AXB \cup AYB \sim AXY \sim AYX \).
But if \(AYX \), then by 2, \(BXA \cup XYA \sim BXY \). Therefore \(AXY \sim YXB \).

Theorem 5f. Proof of 5 from A, C, 4^2, 7.

To prove: \(AXB \cup AYB \cup AXY \sim YXB \). By 4, \(AXB \cup AYB \cup AXY \sim AYX \); and by 4, \(BXA \cup BYA \sim BXY \sim BYX \).
Suppose \(AYX \) and \(BYX \). Then by 7, \(XYA \cup BYA \sim XBY \sim BXY \),
where \(XBY \) is contrary to \(BYX \), by C. Therefore \(AXY \sim YXB \).
Theorem 5g. Proof of 5 from $A, C^2, 4^2, 6$.

To prove: $AXB \cdot AYB \cdot AXY \sim YXB$.

By 4, $AXB \cdot AYB \cdot AXY \sim AYX$;
and by 4, $BXA \cdot BYA \cdot BXY \sim BYX$.

Suppose AXY and YXB are both false.

Then AYX and BYX, whence by 6, $AYX \cdot BYX \cdot ABX \sim BAX$,
contrary to AXB, by C. Therefore $AXY \sim YXB$.

Theorem 5h. Proof of 5 from $A, 1, 4, 7$.

To prove: $AXB \cdot AYB \cdot AXY \sim YXB$.

By 4, $AXB \cdot AYB \cdot AXY \sim AYX$.

If AYX, then by 7, $XYA \cdot BYA \cdot XBY \sim XBY$. But if XBY, then by 1, $AXB \cdot XBY \cdot AXY$. Therefore $AXY \sim YXB$.

Theorem 5i. Proof of 5 from $A, C, 4, 8$.

To prove: $AXB \cdot AYB \cdot AXY \sim YXB$.

By 4, $AXB \cdot AYB \cdot AXY \sim AYX$.

But if AYX, then by 8, $BYA \cdot XYA \cdot BXY \sim XBA$, where XBA is contrary to AXB, by C. Therefore $AXY \sim YXB$.

To prove: $AXB \cdot AYB \cdot AXY \sim YXB$.

By 4, $AXB \cdot AYB \cdot AXY \sim AYX$.

Suppose AXY and YXB are both false.

Then AYX and BYX, whence by 7, $AYX \cdot BYX \cdot ABX \sim BAY$.

But if ABY, then by 3, $YBA \cdot BXA \cdot YXA$; and if BAY, then by 3, $YAB \cdot AXB \cdot YXB$. Therefore $AXY \sim YXB$.

Proofs of postulate 6

To prove: $XAB \cdot YAB \cdot XBY \sim YXB$. By B, $XYB \sim YBX \sim BXY$.

Suppose XBY. Then by 2, $XBY \cdot BAY \cdot XBA$, contrary to XAB, by C. Therefore $XYB \sim YXB$.

Theorem 6b. Proof of 6 from $A, B, 2^2, 7$.

To prove: $XAB \cdot YAB \cdot XBY \sim YXB$. By B, $XYB \sim YBX \sim BXY$.

But if XBY, then by 2, $XBY \cdot BAY \cdot XBA$; and by 2, $YBX \cdot BAX \cdot YBA$;
whence by 7, $XBA \cdot YBA \cdot XBY \sim YXB$. Therefore $XYB \sim YXB$.

Theorem 6c. Proof of 6 from $1^2, 7$.

To prove: $XAB \cdot YAB \cdot XBY \sim YXB$.

By 7, $XAB \cdot YAB \cdot XYA \sim YXA$.

Case 1. If XYA, then by 1, $XYA \cdot YAB \cdot XYB$.

Case 2. If \(YXA \), then by 1, \(YXA \cdot XAB \cdot YXB \).

Therefore \(XYB \sim YXB \).

Theorem 6d. Proof of 6 from \(A, 3^2, 7 \).

To prove: \(XAB \cdot YAB \cdot XYB \sim YXB \).

By 7, \(XAB \cdot YAB \cdot XYA \sim YXA \).

Case 1. If \(XYA \), then by 3, \(BAX \cdot AYX \cdot BYX \).

Case 2. If \(YXA \), then by 3, \(BAY \cdot AXY \cdot BXY \).

Therefore \(XYB \sim YXB \).

Theorem 6e. Proof of 6 from 1, 8.

To prove: \(XAB \cdot YAB \cdot XYB \sim YXB \).

By 8, \(XAB \cdot YAB \cdot XYA \sim YXB \).

But if \(XYA \), then by 1, \(XYA \cdot YAB \cdot XYB \).

Therefore \(XYB \sim YXB \).

Theorem 6f. Proof of 6 from \(A, 3, 8 \).

To prove: \(XAB \cdot YAB \cdot XYB \sim YXB \).

By 8, \(XAB \cdot YAB \cdot XYA \sim YXB \).

But if \(XYA \), then by 3, \(BAX \cdot AYX \cdot BYX \).

Therefore \(XYB \sim YXB \).

Theorem 6g. Proof of 6 from \(A, B, 2^2, 8 \).

To prove: \(XAB \cdot YAB \cdot XYB \sim YXB \). By \(B \), \(XYB \sim YXB \sim YBX \), and by 8, \(XAB \cdot YAB \cdot XYA \sim YXB \). But if \(YBX \) and \(XYA \), then by 2, \(YBX \cdot BAX \cdot YBA \), whence by 2, \(XYA \cdot YBA \cdot XYB \). Therefore \(XYB \sim YXB \).

Theorem 6h. Proof of 6 from \(A, B, C^2, 3, 5 \).

To prove: \(XAB \cdot YAB \cdot XYB \sim YXB \). By \(B \), \(XYB \sim YBX \sim BXY \).

Suppose \(YBX \). Then by 3, \(YBX \cdot BAX \cdot YAX \), whence by 5, \(YBX \cdot YAX \cdot YBA \sim ABX \), contrary to \(YAB \) and \(XAB \), respectively, by \(C \). Therefore \(XYB \sim YXB \).

Theorem 6i. Proof of 6 from \(A, C, 8^2 \).

To prove: \(XAB \cdot YAB \cdot XYB \sim YXB \).

By 8, \(XAB \cdot YAB \cdot XYA \sim YXB \); and by 8, \(YAB \cdot XAB \cdot YXA \sim XYB \).

Suppose \(YXB \) and \(XYB \) are both false. Then \(XYA \) and \(YXA \), contrary to \(C \). Therefore \(XYB \sim YXB \).

Theorem 6j. Proof of 6 from \(A, B^2, C^2, 1^2, 5 \).

To prove: \(XAB \cdot YAB \cdot XYB \sim YXB \). By \(C \), \(XBA \) and \(ABY \) are false, since \(XAB \) and \(YAB \) are true. By \(B \), \(XAY \sim XYA \sim YXA \); and by \(B \), \(XBY \sim XYB \sim YXB \).

Case 1. Suppose \(XAY \) and \(XBY \).

Then by 5, \(XBY \cdot XAY \cdot XBA \sim ABY \), which are both false.
Case 2. If \(XYA \), then by 1, \(XYA . YAB . \sim XYB \).
Case 3. If \(YXA \), then by 1, \(YXA . XAB . \sim YXB \).
Therefore \(XYB \sim YXB \).

Proofs of postulate 7

Theorem 7a. Proof of 7 from \(A, B, C, 2^3 \).
To prove: \(XAB . YAB . \sim XYA \sim YXA \).
By \(B \), \(XYB \sim YXB \sim XBY \).
Case 1. If \(XYB \), then by 2, \(XYB . YAB . \sim XYA \).
Case 2. If \(YXB \), then by 2, \(YXB . XAB . \sim YXA \).
Case 3. If \(XB \sim Y \), then by 2, \(XB \sim YAB . \sim XBA \), contrary to \(XAB \),
by \(C \). Therefore \(XYA \sim YXA \).

Theorem 7b. Proof of 7 from \(A, B, C^3, 6^3 \).
To prove: \(XAB . YAB . \sim XYA \sim YXA \).
By 6, \(XAB . YAB . \sim XYB \sim YXB \). Hence by \(C \), \(YBX \) is false.
By \(B \), \(XAY \sim XYA \sim YXA \). Suppose \(XAY \).
Then by 6, \(YAX . BAX . \sim YBX \sim BYX \);
and by 6, \(XAY . BAY . \sim XBY \sim BXY \). But \(YBX \) is false; hence both
\(BYX \) and \(BXY \) must be true, which is impossible by \(C \).
Therefore \(XYA \sim YXA \).

Theorem 7c. Proof of 7 from \(A, C^3, 4^2, 6^3 \).
To prove: \(XAB . YAB . \sim XYA \sim YXA \).
By 6, \(XAB . YAB . \sim XYB \sim YXB \).
Case 1. Suppose \(XYB \) true. Then by 4, \(XAB . XYB . \sim XAY \sim XYA \).
But if \(XAY \), then by 6, \(XAY . BAY . \sim XBY \sim BXY \), contrary to \(XYB \)
by \(C \). Hence in Case 1, \(XYA \).
Case 2. Suppose \(XYB \) false; then \(YXB \).
Then by 4, \(YAB . \sim YAX \sim YXA \).
But if \(YAX \), then by 6, \(YAX . BAX . \sim YBX \sim BYX \), where \(BYX \) is false
by hypothesis, and \(YBX \) is contrary to \(YXB \) by \(C \). Hence in Case 2, \(YXA \).
Therefore \(XYA \sim YXA \).

Theorem 7d. Proof of 7 from \(2^2, 6 \).
To prove: \(XAB . YAB . \sim XYA \sim YXA \).
By 6, \(XAB . YAB . \sim XYB \sim YXB \).
Case 1. If \(XYB \), then by 2, \(XYB . YAB . \sim XYA \).
Case 2. If \(YXB \), then by 2, \(YXB . XAB . \sim YXA \).
Hence in either case, \(XYA \sim YXA \).

Theorem 7e. Proof of 7 from \(2, 8 \).
To prove: \(XAB . YAB . \sim XYA \sim YXA \).
By 8, \(XAB . YAB . \sim XYA \sim YXB \).
If \(YXB \), then by 2, \(YXB . XAB . \sim YXA \).
Therefore \(XYA \sim YXA \).
Theorem 7f. Proof of 7 from A, C, 8^2.
To prove: $XAB \cdot YAB \cdot \mathbf{C} \cdot XYA \sim YXA$.

By 8, $XAB \cdot YAB \cdot \mathbf{C} \cdot XYA \sim YXB$; and by 8, $YAB \cdot XAB \cdot \mathbf{C} \cdot YXA \sim YXB$.

Suppose XYA and YXA are both false. Then YXB and YXB, contrary to C. Therefore $XYA \sim YXA$.

Theorem 7g. Proof of 7 from A, B^2, C^4, 5^3.
To prove: $XAB \cdot YAB \cdot \mathbf{C} \cdot XYA \sim YXA$. By B, $XYB \sim YXB \sim XBY$, and by B, $XAY \sim XYA \sim YXA$.

Case 1. If XYB, then by 5, $XYB \cdot XAB \cdot \mathbf{C} \cdot XYA \sim AYB$, where AYB is contrary to YAB, by C. Hence in Case 1, XYA.

Case 2. If YXB, then by 5, $YXB \cdot YAB \cdot \mathbf{C} \cdot YXA \sim AXB$, where AXB is contrary to XAB, by C. Hence in Case 2, YXA.

Case 3. If XYB and XAY, then by 5, $XYB \cdot XAY \cdot \mathbf{C} \cdot XBA \sim ABY$, contrary to XAB and YAB, by C. Therefore $XYA \sim YXA$.

Theorem 7h. Proof of 7 from A, C^2, 5^3, 6.
To prove: $XAB \cdot YAB \cdot \mathbf{C} \cdot XYA \sim YXA$.

By 6, $XAB \cdot YAB \cdot \mathbf{C} \cdot XYB \sim YXB$.

Case 1. If XYB, then by 5, $XYB \cdot XAB \cdot \mathbf{C} \cdot XYA \sim AYB$, where AYB is contrary to YAB, by C. Hence in Case 1, XYA.

Case 2. If YXB, then by 5, $YXB \cdot YAB \cdot \mathbf{C} \cdot YXA \sim AXY$, where AXB is contrary to XAB, by C. Hence in Case 2, YXA. Therefore $XYA \sim YXA$.

Theorem 7i. Proof of 7 from A, 4, 5^3, 8^3.

To prove: $XAB \cdot YAB \cdot \mathbf{C} \cdot XYA \sim YXA$.

By 8, $XAB \cdot YAB \cdot \mathbf{C} \cdot XYA \sim YXB$; and by 8, $YAB \cdot XAB \cdot \mathbf{C} \cdot YXA \sim XYB$.

Suppose XYA and YXA are both false; then YXB and YXB, whence by 5, $YXB \cdot YAB \cdot \mathbf{C} \cdot YXA \sim AXY$, and by 5, $YXB \cdot XAB \cdot \mathbf{C} \cdot XYA \sim AYB$.

But if AXB and AYB, then by 4, $AXB \cdot AYB \cdot \mathbf{C} \cdot AXB \sim AYX$.

Therefore $XYA \sim YXA$.

Theorem 7j. Proof of 7 from A, 1^2, 4^3, 5^3, 6^3.

To prove: $XAB \cdot YAB \cdot \mathbf{C} \cdot XYA \sim YXA$.

By 6, $XAB \cdot YAB \cdot \mathbf{C} \cdot XYB \sim YXB$.

If XYB is true, then by 4, $XYB \cdot XAB \cdot \mathbf{C} \cdot XYA \sim XAY$; and by 5, $XYB \cdot XAB \cdot \mathbf{C} \cdot XYA \sim AYB$.

If YXB is true, then by 4, $YXB \cdot YAB \cdot \mathbf{C} \cdot YXA \sim YAX$, and by 5, $YXB \cdot YAB \cdot \mathbf{C} \cdot YXA \sim AXB$. Suppose that XYA and YXA are both false. Then there are three cases to consider.

Case 1. Suppose XYB true and YXB false. Then XAY and AYB.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Then by 6, \(XAY \cdot BAY \cdot XBY \sim XYB \),
whence by 1, \(AYB \cdot YBX \cdot AYX \).

Case 2. Suppose \(XYB \) false and \(YXB \) true. Then \(YAX \) and \(AXB \).
Then by 6, \(YAX \cdot BAX \cdot YBX \sim BYX \),
whence by 1, \(AXB \cdot XBY \cdot AXY \).

Case 3. Suppose \(XYB \) true and \(YXB \) true. Then \(AYB \) and \(AXB \).
Then by 4, \(AXB \cdot AYB \cdot AXY \sim AYX \). Therefore \(XYA \sim YXA \).

Proofs of postulate 8

Theorem 8a. Proof of 8 from \(A, B, C, 2^2 \).
To prove: \(XAB \cdot YAB \cdot XYA \sim YXB \). By B, \(XBY \sim XYB \sim YXB \).
Case 1. If \(XBY \), then by 2, \(XBY \cdot BAY \cdot XBA \), contrary to \(XAB \), by C.
Case 2. If \(XYB \), then by 2, \(ZFP \cdot YAB \cdot AYB \). Therefore \(XYA \sim YXA \).

Therefore \(XYA \sim YXB \).

Theorem 8b. Proof of 8 from \(A, B^2, C^3, 1, 5^2 \).
To prove: \(XAB \cdot YAB \cdot XYA \sim YXB \). By C, \(XBA \) and \(ABY \) and
\(AYB \) are false, since \(XAB \) and \(YAB \) are true. By B, \(XAY \sim YXA \sim XYA \);
and by B, \(XBY \sim XYB \sim YXB \).
Case 1. Suppose \(XAY \) and \(XBY \).
Then by 5, \(XBY \cdot XAY \cdot XBA \sim ABY \), which are both false.
Case 2. If \(XYB \), then by 5, \(XYB \cdot XAB \cdot XYA \sim AYB \), where \(AYB \)
is false.
Case 3. If \(YXA \), then by 1, \(YXA \cdot XAB \cdot YXB \).
Therefore \(XYA \sim YXB \).

Theorem 8c. Proof of 8 from \(A, B^2, C^3, 3, 5^2 \).
To prove: \(XAB \cdot YAB \cdot XYA \sim YXB \). By C, \(XBA \) and \(ABY \) and
\(AYB \) are false, since \(XAB \) and \(YAB \) are true. By B, \(XAY \sim YXA \sim XYA \);
and by B, \(XBY \sim XYB \sim YXB \).
Case 1. Suppose \(XAY \) and \(XBY \).
Then by 5, \(XBY \cdot XAY \cdot XBA \sim ABY \), which are both false.
Case 2. If \(XYB \), then by 5, \(ZFP \cdot XAB \cdot XYA \sim AYB \), where \(AYB \)
is false.
Case 3. If \(YXA \), then by 3, \(BAY \cdot AXY \cdot BXY \).
Therefore \(XYA \sim YXB \).

Theorem 8d. Proof of 8 from \(A, B, C, 3, 6^2 \).
To prove: \(XAB \cdot YAB \cdot XYA \sim YXB \).
By 6, \(XAB \cdot YAB \cdot XYA \sim YXB \); and by B, \(AXY \sim XAY \sim XYA \).
Case 1. If \(AXY \), then by 3, \(BAY \cdot AXY \cdot BXY \). Hence in Case 1, \(YXB \).
Case 2. If XAY and XYB, then by 6, $XAY \cdot BAY \cdot XBY \sim BXY$, where XBY is contrary to XYB, by C. Hence in Case 2, YXB.

Therefore $XYA \sim YXB$.

Theorem 8e. Proof of 8 from 1, 7.
To prove: $XAB \cdot YAB \cdot XYA \sim YXB$.

By 7, $XAB \cdot YAB \cdot XYA \sim YXA$.

But if YXA, then by 1, $YXA \cdot XAB \cdot XYB$.

Therefore $XYA \sim YXB$.

Theorem 8f. Proof of 8 from A, B, C, 1, 62.
To prove: $XAB \cdot YAB \cdot XYB \sim YXB$; and by B, $YXA \sim XAY \sim XYA$.

Case 1. If YXA, then by 1, $YXA \cdot XAB \cdot XYB$. Hence in Case 1, YXB.

Case 2. If XAY and XYB, then by 6, $XAY \cdot BAY \cdot XBY \sim BXY$, where XBY is contrary to XYB, by C. Hence in Case 2, YXB. Therefore $XYA \sim YXB$.

Theorem 8g. Proof of 8 from A, 3, 7.
To prove: $XAB \cdot YAB \cdot XYA \sim YXB$.

By 7, $XAB \cdot YAB \cdot XYA \sim YXA$.

But if YXA, then by 3, $BAY \cdot AXB \cdot BXY$.

Therefore $XYA \sim YXB$.

Theorem 8h. Proof of 8 from 2, 6.
To prove: $XAB \cdot YAB \cdot XYB \sim YXB$.

By 6, $XAB \cdot YAB \cdot XYB \sim YXB$.

But if XYB, then by 2, $XYB \cdot YAB \cdot XYA$. Therefore $XYA \sim YXB$.

Theorem 8i. Proof of 8 from A, C, 5, 6.
To prove: $XAB \cdot YAB \cdot XYA \sim YXB$.

By 6, $XAB \cdot YAB \cdot XYB \sim YXB$.

But if XYB, then by 5, $XYB \cdot XAB \cdot XYA \sim AYB$, where AYB is contrary to YAB, by C. Therefore $XYA \sim YXB$.

Theorem 8j. Proof of 8 from A, C, 4, 62.
To prove: $XAB \cdot YAB \cdot XYA \sim YXB$.

By 6, $XAB \cdot YAB \cdot XYB \sim YXB$. Suppose XYB.

Then by 4, $XAB \cdot XYB \cdot XAY \sim XYA$. But if XAY, then by 6, $XAY \cdot BAY \cdot XBY \sim BXY$, where XBY is contrary to XYB, by C. Therefore $XYA \sim YXB$.

Theorem 8k. Proof of 8 from A, B, 23, 7.
To prove: $XAB \cdot YAB \cdot XYA \sim YXB$. By B, $XYB \sim XYB \sim YXB$.

Case 1. If XYB, then by 2, $YBX \cdot BAX \cdot YBA$.
and by 2, $XBY \cdot BAY \cdot XBA$,
whence by 7, $XBA \cdot YBA \cdot XYB \cdot YXB$.

Case 2. If XYB, then by 2, $XYB \cdot YAB \cdot XYA$.
Therefore $XYA \cdot YXB$.

Theorem 81. Proof of 8 from $A, B, l^2, 5, 6^2$.

To prove: $XAB \cdot YAB \cdot XYA \cdot YXB$. By B, $YXA \cdot XAY \cdot XYA$, and by 6, $XAB \cdot YAB \cdot XYB \cdot YXB$.

Case 1. If YXA, then by 1, $YXA \cdot XAB \cdot XYB$.

Case 2. If XAY and ZFP, then by 5, $XYB \cdot XAB \cdot XYA \cdot AYB$, and by 6, $Z^F \cdot BAY \cdot XBY \cdot BXY$. But if AYB and XBY, then by 1, $AYB \cdot YBX \cdot XYA$. Therefore $XYA \cdot YXB$.

Theorem 8m. Proof of 8 from $A, 1, 4, 5, 6^2$.

To prove: $XAB \cdot YAB \cdot XYA \cdot YXB$. Suppose XYA and YXB are both false. Now by 6, $XAB \cdot YAB \cdot XYB \cdot YXB$. As YXB is false, XYB. By 4, $XYB \cdot XAB \cdot XYA \cdot XAY$. As XYA is false, XYB. By 5, $XYB \cdot XAB \cdot XYA \cdot AYB$. As XYA is false, AYB. By 6, $BAY \cdot XAY \cdot BXY \cdot XBY$. As BXY is false, then XBY. By 1, $AYB \cdot YBX \cdot XYA$, contrary to supposition. Therefore $XYA \cdot YXB$.

The results of these 71 theorems may be conveniently summarized in the following table. In this table, the numbers in the last column indicate the sets of independent postulates, if any (see § 4), in connection with which each theorem is available.

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Postulate</th>
<th>follows from</th>
<th>Set.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>1</td>
<td>A B C 2 4</td>
<td>6</td>
</tr>
<tr>
<td>1b</td>
<td>1</td>
<td>A B C 3 4</td>
<td>9, 10, 11</td>
</tr>
<tr>
<td>1c</td>
<td>1</td>
<td>A B C 2 5</td>
<td>7</td>
</tr>
<tr>
<td>1d</td>
<td>1</td>
<td>A B C 3 5</td>
<td>8</td>
</tr>
<tr>
<td>2a</td>
<td>2</td>
<td>A B C 1 7</td>
<td>4</td>
</tr>
<tr>
<td>2b</td>
<td>2</td>
<td>A B C 3 6</td>
<td>3</td>
</tr>
<tr>
<td>2c</td>
<td>2</td>
<td>A B C 1 6</td>
<td>9</td>
</tr>
<tr>
<td>2d</td>
<td>2</td>
<td>A C 3 7</td>
<td>10</td>
</tr>
<tr>
<td>2e</td>
<td>2</td>
<td>A C 3 4 6</td>
<td>5</td>
</tr>
<tr>
<td>2f</td>
<td>2</td>
<td>A B C 1 5</td>
<td>2</td>
</tr>
<tr>
<td>2g</td>
<td>2</td>
<td>A C 3 5 8</td>
<td>11</td>
</tr>
<tr>
<td>2h</td>
<td>2</td>
<td>A C 3 5 8</td>
<td>8</td>
</tr>
<tr>
<td>2i</td>
<td>2</td>
<td>A C 3 5 8</td>
<td>8</td>
</tr>
<tr>
<td>3a</td>
<td>3</td>
<td>A B C 1 1</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>3b</td>
<td>3</td>
<td>A B C 2 2</td>
<td>1, 6, 7</td>
</tr>
<tr>
<td>3c</td>
<td>3</td>
<td>A C 2 6</td>
<td>1</td>
</tr>
<tr>
<td>3d</td>
<td>3</td>
<td>A 1 2 8</td>
<td>1</td>
</tr>
<tr>
<td>3e</td>
<td>3</td>
<td>A C 2 8</td>
<td>1</td>
</tr>
<tr>
<td>4a</td>
<td>4</td>
<td>A B C 1 1</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>4b</td>
<td>4</td>
<td>A B 1 2 7</td>
<td>4</td>
</tr>
<tr>
<td>4c</td>
<td>4</td>
<td>A B 1 7</td>
<td>4</td>
</tr>
<tr>
<td>4d</td>
<td>4</td>
<td>A C 5 5 7</td>
<td>2, 7, 8</td>
</tr>
<tr>
<td>4e</td>
<td>4</td>
<td>A 3 5 7</td>
<td>7</td>
</tr>
</tbody>
</table>
3. Theorems on Non-Deducibility and Examples of Pseudo-Betweenness

In this section we show that the question proposed at the beginning of § 2 must always be answered in the negative, except in the cases covered by the 71 theorems just established. That is, we show that no one of the twelve postulates of our basic list is deducible from any others of the list, except in the cases covered by our 71 theorems.
In order to prove this statement, we first construct 44 examples of pseudo-betweenness, that is, 44 examples of systems \((K, R)\) which satisfy some but not all of the twelve postulates.

In the first four examples, A–D, the class \(K\) consists of three elements.

Example A. Let \(K = \) a class of three numbers, say 1, 2, 3, and let \(XYZ\) be true in the cases 123, 231, and false in all other cases.

Here 123 is true, while 321 is false, so that Postulate A is not satisfied. C is satisfied vacuously, since the conditions mentioned in the hypothesis do not occur. B and D hold. Postulates 1–8 are satisfied vacuously, since the class contains only three elements.

Example B. Let \(K = \) a class of three numbers, say 1, 2, 3, and let \(XYZ\) be false for all values of \(X, Y, Z\).

Here B is clearly not satisfied. A, C, D, and 1–8 are satisfied vacuously.

Example C. Let \(K = \) a class of three numbers, say 1, 2, 3, and let \(XYZ\) mean that \(X, Y, Z\) are distinct.

Here A, B, and D are satisfied, while C is not. Postulates 1–8 are satisfied vacuously.

Example D. Let \(K = \) a class of any three numbers; and let \(XYZ\) mean that \(Y\) belongs to the interval from \(X\) to \(Z\) inclusive, when \(X, Y, Z\) are arranged in order of magnitude.

Here A, B, and C are satisfied, while D is not. Postulates 1–8 are satisfied vacuously.

In the remaining examples, 1–40, the class \(K\) consists of four numbers, 1, 2, 3, 4, and the meaning of \(R [XYZ]\) is defined by simply giving a catalog of the ordered triads of elements for which the relation is true.

In all these examples, Postulate D is satisfied.* Which of the other postulates is satisfied in each case may be ascertained from Table II.

In examples 1–5, all four of the Postulates A, B, C, D are satisfied.

Example 1. 124, 134, 213, 243, 312, 342, 421, 431.

Example 2. 123, 142, 234, 241, 314, 321, 413, 432.

Example 3. 123, 142, 143, 241, 243, 321, 341, 342.

Example 4. 142, 213, 234, 241, 312, 314, 413, 432.

Example 5. 123, 143, 214, 321, 324, 341, 412, 423.

In Examples 6–11, Postulate B fails, while A, C, and D hold.

Example 6. 123, 234, 321, 432.

Example 7. 123, 143, 243, 321, 341, 342.

Example 8. 123, 243, 321, 342.

Example 9. 123, 124, 243, 321, 342, 421.

* In verifying these examples with respect to Postulates 5 and 8, the following peculiarity of these two postulates should be borne in mind: as to 5, for example, it is not sufficient to test for \(AXB \cdot AYB\); it is necessary also to test for \(AYB \cdot AXB\); and similarly as to 8. For illustrations of the importance of this precaution, see, for instance, Examples 33 and 34.
Example 10. 123, 143, 321, 341.
Example 11. 213, 214, 312, 412.
In Examples 12–24, Postulate C fails, while A, B, and D hold.
Example 14. 124, 213, 234, 312, 314, 324, 413, 421, 423, 432.
Example 17. 123, 143, 214, 243, 321, 324, 341, 342, 412, 423.
Example 18. 213, 214, 234, 243, 312, 314, 324, 342, 412, 413, 423, 432.
In Examples 25–37, Postulate A fails, while B, C, and D hold.
Example 25. 123, 142, 234, 341.
Example 26. 123, 142, 143, 213, 214, 243, 413, 423, 421.
Example 27. 123, 124, 243, 341.
Example 28. 123, 143, 324, 421.
Example 29. 123, 143, 213, 243, 412, 413, 423.
Example 30. 123, 124, 143, 213, 214, 243, 413, 421, 423.
Example 31. 123, 214, 341, 423.
Example 32. 123, 142, 314, 412, 423.
Example 33. 123, 142, 143, 324.
Example 34. 123, 142, 143, 324.
Example 35. 123, 124, 143, 243, 412, 423.
Example 36. 123, 124, 143, 243, 423.
Example 37. 123, 143, 214, 243, 412, 423.
In Example 38, Postulates A and C fail, while B and D hold.
Example 38. 123, 143, 213, 214, 243, 412, 413, 421, 423.
In Examples 39 and 40, Postulates B and C fail, while A and D hold.
Example 40. 123, 143, 243, 321, 324, 341, 342, 423.

The properties possessed by these 44 systems are conveniently exhibited in Table II, in which a dot (.) indicates that a postulate is satisfied, while a cross (×) indicates that it is not satisfied.

Table II. Examples of Pseudo-Betweenness

<table>
<thead>
<tr>
<th>Ex.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Lemma in which used.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X</td>
<td>.</td>
<td>A'</td>
</tr>
<tr>
<td>B</td>
<td>.</td>
<td>X</td>
<td>.</td>
<td>B'</td>
</tr>
<tr>
<td>C</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>C'</td>
</tr>
<tr>
<td>D</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>D'</td>
</tr>
</tbody>
</table>

1. 123, 142, 214, 241, 321, 324, 412, 423. 4', 5', 6', 7', 8'.
2. 123, 143, 243, 321, 324, 341, 342, 423. 5'.

By inspection of these 44 examples, we have at once 68 lemmas on non-deducibility, as exhibited in Table III.
Table III. Lemmas on Non-Deducibility

<table>
<thead>
<tr>
<th>Lemma</th>
<th>Postulate</th>
<th>is not deducible from postulates</th>
<th>Proof by example</th>
</tr>
</thead>
<tbody>
<tr>
<td>A'</td>
<td>A</td>
<td>B C D 1 2 3 4 5 6 7 8</td>
<td>A</td>
</tr>
<tr>
<td>B'</td>
<td>B</td>
<td>A C D 1 2 3 4 5 6 7 8</td>
<td>B</td>
</tr>
<tr>
<td>C'</td>
<td>C</td>
<td>A B D 1 2 3 4 5 6 7 8</td>
<td>C</td>
</tr>
<tr>
<td>D'</td>
<td>D</td>
<td>A B C 1 2 3 4 5 6 7 8</td>
<td>D</td>
</tr>
<tr>
<td>1'a</td>
<td>1</td>
<td>A B C D 2 3 4 5 6 7 8</td>
<td>1</td>
</tr>
<tr>
<td>1'b</td>
<td>1</td>
<td>A B C D 4 5 6 7 8</td>
<td>2</td>
</tr>
<tr>
<td>1'e</td>
<td>1</td>
<td>A B D 2 3 4 5 6 7 8</td>
<td>12</td>
</tr>
<tr>
<td>1'f</td>
<td>1</td>
<td>B C D 2 3 4 5 6 7 8</td>
<td>25</td>
</tr>
<tr>
<td>2'a</td>
<td>2</td>
<td>A B C D 1 3 4</td>
<td>3</td>
</tr>
<tr>
<td>2'b</td>
<td>2</td>
<td>A B C D 4 5 6 7 8</td>
<td>2</td>
</tr>
<tr>
<td>2'c</td>
<td>2</td>
<td>A B C 1 3 6</td>
<td>7</td>
</tr>
<tr>
<td>2'd</td>
<td>2</td>
<td>A B C D 1 4 5 6 7 8</td>
<td>8</td>
</tr>
<tr>
<td>2'e</td>
<td>2</td>
<td>A B D 1 3 4 5 6 7 8</td>
<td>13</td>
</tr>
<tr>
<td>2''</td>
<td>2</td>
<td>B C D 1 3 4 5 6 7 8</td>
<td>26</td>
</tr>
<tr>
<td>3'a</td>
<td>3</td>
<td>A B C D 4 5 6 7 8</td>
<td>2</td>
</tr>
<tr>
<td>3'b</td>
<td>3</td>
<td>A B C D 1 4 5 6 7 8</td>
<td>8</td>
</tr>
<tr>
<td>3'c</td>
<td>3</td>
<td>A B C 2 4 5 7</td>
<td>9</td>
</tr>
<tr>
<td>3'd</td>
<td>3</td>
<td>A B D 1 4 5 6 7 8</td>
<td>14</td>
</tr>
<tr>
<td>3'e</td>
<td>3</td>
<td>A B D 2 4 5 6 7 8</td>
<td>15</td>
</tr>
<tr>
<td>3'f</td>
<td>3</td>
<td>B C D 1 4 5 6 7 8</td>
<td>27</td>
</tr>
<tr>
<td>4'a</td>
<td>4</td>
<td>A B C D 2 3 4 5 6 7 8</td>
<td>1</td>
</tr>
<tr>
<td>4'b</td>
<td>4</td>
<td>A B C D 1 2 3 4 5 6 7 8</td>
<td>10</td>
</tr>
<tr>
<td>4'c</td>
<td>4</td>
<td>A B D 1 3 5 6 8</td>
<td>16</td>
</tr>
<tr>
<td>4'd</td>
<td>4</td>
<td>A B D 5 6 7</td>
<td>17</td>
</tr>
<tr>
<td>4'e</td>
<td>4</td>
<td>B C D 1 2 3 4 5 6 7 8</td>
<td>23</td>
</tr>
<tr>
<td>4'f</td>
<td>4</td>
<td>B C D 1 3 5 6 8</td>
<td>29</td>
</tr>
<tr>
<td>4'g</td>
<td>4</td>
<td>B C D 3 5 6 7</td>
<td>37</td>
</tr>
<tr>
<td>4'h</td>
<td>4</td>
<td>B D 1 3 5 6 7</td>
<td>38</td>
</tr>
<tr>
<td>5'a</td>
<td>5</td>
<td>A B C D 1 3 4</td>
<td>3</td>
</tr>
<tr>
<td>5'b</td>
<td>5</td>
<td>A B C D 2 3 4 5 6 7 8</td>
<td>1</td>
</tr>
<tr>
<td>5'c</td>
<td>5</td>
<td>A B C D 1 2 3 4 5 6 7 8</td>
<td>10</td>
</tr>
<tr>
<td>5'd</td>
<td>5</td>
<td>A B D 1 3 4 5 6 7</td>
<td>18</td>
</tr>
<tr>
<td>5'e</td>
<td>5</td>
<td>A B D 4 5 6 7 8</td>
<td>21</td>
</tr>
<tr>
<td>5'f</td>
<td>5</td>
<td>B C D 1 2 3 4 5 6 7 8</td>
<td>33</td>
</tr>
<tr>
<td>6'a</td>
<td>6</td>
<td>A B C D 1 3 4</td>
<td>3</td>
</tr>
<tr>
<td>6'b</td>
<td>6</td>
<td>A B C D 4 5 6 7 8</td>
<td>4</td>
</tr>
<tr>
<td>6'c</td>
<td>6</td>
<td>A B C D 1 2 3 4 5</td>
<td>11</td>
</tr>
<tr>
<td>6'd</td>
<td>6</td>
<td>A B C D 2 4 5 7</td>
<td>9</td>
</tr>
<tr>
<td>6'e</td>
<td>6</td>
<td>A B D 1 2 3 4 5 7 8</td>
<td>19</td>
</tr>
<tr>
<td>6'f</td>
<td>6</td>
<td>A B D 4 5 7 8</td>
<td>24</td>
</tr>
<tr>
<td>6'g</td>
<td>6</td>
<td>A D 2 4 5 7 8</td>
<td>39</td>
</tr>
<tr>
<td>6'h</td>
<td>6</td>
<td>B C D 1 2 3 4 5 7 8</td>
<td>31</td>
</tr>
<tr>
<td>6'i</td>
<td>6</td>
<td>B C D 2 3 4 5 7 8</td>
<td>32</td>
</tr>
<tr>
<td>7'a</td>
<td>7</td>
<td>A B C D 1 3 4</td>
<td>3</td>
</tr>
<tr>
<td>7'b</td>
<td>7</td>
<td>A C D 1 3 6</td>
<td>7</td>
</tr>
<tr>
<td>7'c</td>
<td>7</td>
<td>A C D 1 2 3 4 5</td>
<td>11</td>
</tr>
<tr>
<td>7'd</td>
<td>7</td>
<td>A B D 1 3 4 5 6 8</td>
<td>16</td>
</tr>
<tr>
<td>7'e</td>
<td>7</td>
<td>A B D 1 3 4 6 8</td>
<td>18</td>
</tr>
<tr>
<td>7'f</td>
<td>7</td>
<td>A B D 1 2 3 4 5 7 8</td>
<td>19</td>
</tr>
<tr>
<td>7'g</td>
<td>7</td>
<td>A B D 3 4 5 6 8</td>
<td>20</td>
</tr>
<tr>
<td>7'h</td>
<td>7</td>
<td>B C D 1 3 4 5 6 8</td>
<td>30</td>
</tr>
<tr>
<td>7'i</td>
<td>7</td>
<td>B C D 1 2 3 4 5</td>
<td>31</td>
</tr>
</tbody>
</table>
TABLE III—Continued.

<table>
<thead>
<tr>
<th>Lemma</th>
<th>Postulate</th>
<th>is not deducible from postulates</th>
<th>Proof by example</th>
</tr>
</thead>
<tbody>
<tr>
<td>8'a</td>
<td>8</td>
<td>A B C D 1 3 4</td>
<td>3</td>
</tr>
<tr>
<td>8'b</td>
<td>8</td>
<td>A B C D 2 4 5</td>
<td>5</td>
</tr>
<tr>
<td>8'c</td>
<td>8</td>
<td>A B C D 3 5 7</td>
<td>4</td>
</tr>
<tr>
<td>8'd</td>
<td>8</td>
<td>A C D 1 2 3 4 5</td>
<td>11</td>
</tr>
<tr>
<td>8'e</td>
<td>8</td>
<td>A C D 2 4 5 7</td>
<td>9</td>
</tr>
<tr>
<td>8'f</td>
<td>8</td>
<td>A C D 3 4 6</td>
<td>7</td>
</tr>
<tr>
<td>8'g</td>
<td>8</td>
<td>A B D 1 2 3 4 5</td>
<td>19</td>
</tr>
<tr>
<td>8'h</td>
<td>8</td>
<td>A B D 3 4 5 6</td>
<td>20</td>
</tr>
<tr>
<td>8'i</td>
<td>8</td>
<td>A B D 4 5 6 7</td>
<td>22</td>
</tr>
<tr>
<td>8'j</td>
<td>8</td>
<td>A B D 1 3 4 6</td>
<td>23</td>
</tr>
<tr>
<td>8'k</td>
<td>8</td>
<td>A D 1 3 5 6</td>
<td>40</td>
</tr>
<tr>
<td>8'l</td>
<td>8</td>
<td>B C D 2 3 4 5 7</td>
<td>34</td>
</tr>
<tr>
<td>8'm</td>
<td>8</td>
<td>B C D 3 4 5 6 7</td>
<td>35</td>
</tr>
<tr>
<td>8'n</td>
<td>8</td>
<td>B C D 1 3 4 5 6</td>
<td>36</td>
</tr>
<tr>
<td>8'o</td>
<td>8</td>
<td>B C D 1 2 3 4 5</td>
<td>31</td>
</tr>
</tbody>
</table>

By comparing these lemmas with the theorems in § 2, we can now establish the following theorem of non-deducibility:

Theorem. No one of the twelve postulates of our basic list is deducible from any others of the list, except in the cases covered by our 71 theorems.

For example, consider the case of Postulate 3. By Lemmas 3'a–3'f, we see that Postulate 3 can certainly not be proved without the use of at least one postulate from each of the following groups: 1, 2; B, 2; B, 1, 6, 8; C, 2; C, 1; A; hence the following combinations are the only ones which need to be investigated: A, 1, 2; A, B, C, 1; A, B, C, 2; A, C, 2, 6; A, C, 2, 8. But by reference to Theorems 3a–3e we see that each one of these combinations is in fact sufficient to prove Postulate 3.

The truth of the theorem for each of the other cases is established in a similar way.

4. Eleven sets of independent postulates

We are now in position to select from our basic list of twelve postulates, several smaller lists which are free from redundancies.

An examination of our results in regard to deducibility shows that this selection can be made in precisely eleven ways; that is, there are precisely eleven sets of independent postulates which can be selected from our basic list.

The eleven sets are as follows:

1. A, B, C, D, 1, 2.
2. A, B, C, D, 1, 5.
3. A, B, C, D, 1, 6.
5. A, B, C, D, 1, 8.
10. A, B, C, D, 3, 4, 7.
11. A, B, C, D, 3, 4, 8.
That the postulates of each set are independent of one another is proved by the existence of Examples A–D, 1, 2, 3 above. (See Lemmas A–D, 1’a, 2’a, 3’a, 4’a, 5’a, 6’a, 7’a, 8’a, 1’b, 2’b, and 5’b.)

That the postulates of each set are sufficient to establish the entire list of twelve postulates is proved by our theorems on deducibility; in fact, in several cases the missing postulates can be deduced from the given postulates in more than one way. Table I, at the end of § 2, will show clearly all the possible ways in which the missing postulates in each set can be deduced from the given postulates of that set.

It will be noticed that certain theorems are not directly available in any of the eleven sets, since no one of the sets contains explicitly the postulates used in the proof of these theorems.

A comparison of the merits of the eleven sets of postulates by the aid of Table I, while perhaps not convincing in the present state of our knowledge of the standards to which such sets of postulates should conform, would at any rate be of some interest.

For example, if our aim is to find the set which shall be the most condensed, and from which the remaining postulates can be most readily deduced, we should select Set 1. If, on the other hand, our aim is to analyze the postulates down to their lowest terms, that is, to find a set from which the necessary deductions can just barely be made, we should then probably select Set 10. It is quite possible, of course, that some other considerations (not now clear) might lead us to select some other of the eleven sets as preferable for some purpose then in view.

In any case, it is satisfactory to know that these eleven sets are the only sets of independent postulates which can be selected from the basic list of twelve postulates from which we started.

Moreover, this basic list of twelve postulates must always occupy a central place in any theory of betweenness. For, as we have already pointed out, this set contains all the general laws concerning the betweenness relations among three or four elements; and even if further propositions concerning five or more distinct elements should be added to the list, no one of the basic list of twelve could thereby be made redundant. To prove this fact, we have merely to notice that the system exhibited in each of the examples used above in proving independence contains at most four elements, and would therefore satisfy vacuously any proposition involving five or more distinct elements.

5. Definition of betweenness

The following definition of betweenness may now be formulated:

Definition. Any system \((K, R)\) in which the class \(K\) and the triadic relation \(R\) are found to possess all the properties demanded by any one of
our sets of independent postulates (see § 4) may be called an ordered class or series, and the relation R itself may then be called the relation of betweenness.

The most familiar example of such an ordered class or series is the system (K, R) in which K is the class of points on a line, and AXB means that the point X belongs to the interior of the segment AB.

Another example is the system (K, R) in which K is the class of natural numbers and AXB means that the number X is larger than the smaller of the two numbers A and B, and smaller than the larger one.

In each of these examples we say that X is “between” A and B.

The relation between the theory of betweenness and the theory of serial order may be expressed as follows.

Let A and B be any two distinct elements of a “betweenness” system, and let X and Y be any other distinct elements of the system. Then we say that X precedes Y, in the order AB, if any one of the following conditions is true: (1) XAB and either XYA or $Y = A$ or AYB or $Y = B$ or ABY; (2) $X = A$ and either AYB or $Y = B$ or ABY; (3) AXB and either XYB or $Y = B$ or ABY; (4) $X = B$ and ABY; (5) ABX and BXY. From this definition, and the properties of betweenness, it is easy to derive the usual properties of the dyadic relation of serial order, always, however, with respect to the fixed base AB.

Appendix

Remark Concerning Postulate A.—In regard to the general laws of betweenness concerning four elements A, B, X, Y on a line, if we agree to read always in the direction from A towards B, the total number of these general laws appears at first sight to be twenty-four, which group themselves into nine groups, as follows:

1. $XAB . ABY . XAY$
2. $XAB . AYB . XYB$
3. $AXB . ABY . AXY$
4. $XAB . AYB . AXY$
5. $AXB . ABY . XAY$
6. $XAB . AYB . YXB$
7. $AXB . AYB . YXB$
8. $XAB . ABY . YXB$
9. $AXB . ABY . YAX$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
1917] INDEPENDENT POSTULATES FOR BETWEENNESS 325

4. $AXB \cdot AYB \cdot \mathcal{C} \cdot AXY \sim AYX$
 4b. $AXB \cdot AYB \cdot \mathcal{C} \cdot XYB \sim YXB$
5. $AXB \cdot AYB \cdot \mathcal{C} \cdot AXY \sim YXB$
 5a. $AXB \cdot AYB \cdot \mathcal{C} \cdot AYX \sim XYB$

6. $XAB \cdot YAB \cdot \mathcal{C} \cdot XYB \sim YXB$
6b. $ABX \cdot ABY \cdot \mathcal{C} \cdot AXY \sim AYX$

7. $XAB \cdot YAB \cdot \mathcal{C} \cdot XYA \sim YXA$
7b. $ABX \cdot ABY \cdot \mathcal{C} \cdot BXY \sim BYX$
8. $XAB \cdot YAB \cdot \mathcal{C} \cdot XYA \sim YXB$
8a. $XAB \cdot YAB \cdot \mathcal{C} \cdot YXA \sim XYB$
8b. $ABX \cdot ABY \cdot \mathcal{C} \cdot AXY \sim BYX$
8c. $ABX \cdot ABY \cdot \mathcal{C} \cdot AYX \sim BXY$

But each of the postulates in the second column is immediately obtainable from the postulate standing opposite it in the first column, without the use of any other postulate, so that the list of 24 is at once reducible to 15.

Furthermore, any two of the 24 postulates which bear the same number are deducible from each other by the aid of Postulate A alone. Hence the list of 24 reduces to 8, which may be selected in various ways; all these selections are equivalent in view of Postulate A; the Postulates 1–8 of the text represent one such selection.

On the other hand, if we agree to read either forward or backward along the line, the list of 24 would have to be greatly enlarged, so as to include, for example, such postulates as $XAB \cdot YBA \cdot \mathcal{C} \cdot YAX$. All such postulates are immediately deducible from Postulates 1–8 by the aid of Postulate A, and are not here considered. It should be noted, however, that if it were desired to give a complete discussion of what could be proved without the aid of Postulate A, it would be necessary to consider the whole of the enlarged list, and also to modify slightly the wording of Postulate C.

Harvard University,
The University of Pennsylvania

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use