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Introduction

Huntington f has developed a set of thirteen independent postulates for

fields. These postulates make use of the undefined notions of multiplication

and addition. They thus represent a state of the theory of postulates for

fields analogous to that prevailing in boolean algebras before the work of

Sheffer.J Sheffer showed that the three operations of disjunction, conjunc-

tion, and negation could be derived by iterating the operation ä O b, and

that the logical constants z and « could be obtained in like manner. It is

the purpose of this paper to perform an analogous task for ordinary algebra.

Our undefined operation, which we shall symbolize by x @ y, will turn out

to have the formal properties characteristic of 1 — x/y.

Postulate set for fields

We assume :

I. A class K,

II. A binary X-rule of combination @.

III. The following properties of K and @ :

1. Whatever x may be, there is a P-element y such that x @ (y @ y) is

not a X-element.

2. If x and y are P-elements, but x @ y is not a K-element, there is a K-

element z such that y = z @z.

3. Whenever x and y are distinct P-elements, either x@yory@xisa

PJ-element.

4. Whenever x, y, «, v, and their indicated combinations are Ä-elements,

and x @ y = « @ v, then x @ u = y @ v.

Definition. Z = x @ x, if x and x % x belong to K, and x @ x is unique

in the system.

* Presented to the Society, December 30, 1919.
t E. V. Huntington, Note on the definitions of abstract groups and fields by sets of independent

postulates, these Transactions, vol. 6 (1905), pp. 181-193.

Î H. M. Sheffer, A set of five independent postulates for boolean algebras, with application to

logical constants, these Transactions., vol. 14 (1913), pp. 481-488. Sheffer's termin-

ology and method of exposition are followed closely here.
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5. If x, y, x @ y, and Z are 7i-elements, and x @ y = Z, then x = y.

6. If x, y, z, Z, and their indicated combinations belong to K,

[(x@y)@(Z@y)]@z = [(x@z)@(Z@z)]@y.

Definition. U = Z @x, ii x, Z, and Z @ x belong to K, and Z @ x is

unique in the system.

Definition, x O y = {U @ {[ ( U@y @ U) @ x] @ ¿7}} @ U, if all the

indicated expressions belong to K.   Otherwise, if Z belongs to K, x O y = Z.

Definition.   x~y = xQ(y@x).

7. If x, y, u, v, and all their indicated combinations belong to K, we

have (x ~ y) ~ (m~î>) = (x ~ u) ~ (y ~ u).

Definition, x © y is defined as m, the unique 7i-element for which x = u

~ y, if such a unique Ti-element exists, and as Z, if Z is a 7v-element, and if

there is no 7i-element u for which x = u ~ y.

Classification of postulates 1-7

Postulate 1 is a simple existence-postulate. Postulates 2 and 3, while in

form hypothetical existence-postulates, function as 7i-closing postulates in a

limited sense, for they narrow the class of cases where x and y are 7i-elements,

while x @ y fails to be a 7^-element. Postulates 6 and 7 are simple equivalence-

postulates, for they assert that two expressions shall always have the same

meaning when they are significant. Postulates 4 and 5 are hypothetical

equivalence-postulates, with equivalences for hypotheses. Thus our set

consists of one simple existence-postulate, two hypothetical existence-Ti-closing

postulates, two simple equivalence-postulates, and two hypothetical equiva-

lence-postulates.

Consistency of postulates 1-7

With the following interpretation of K and @ postulates 1-7 are satisfied:

K consists of all rational numbers, and x @ y = 1 — x/y.

Independence of postulates 1-7

With each of the interpretations of K and @ given in (l)-(7) below, all

postulates except the one correspondingly numbered are satisfied; that

postulate is therefore independent of the remaining six.

(1) K contains only one element m; m @ m = m.

(2) K contains only two elements, m and n; m @ m — m; n@ m = n;

m @ n and n@ndo not belong to K.

(3) K contains only two elements, m and re; m@m = m; re@re = re;

m @ re and re @ m do not belong to K.

(4) K contains only three elements, h = h, l2, and l3; h@ lk+i does not

belong to K ; otherwise l, @h = lk+i •
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(5) K contains only two elements, ra and ra;  m@m = m@n = n@m

= ra; ra @ ra does not belong to K.

(6) K contains only three elements, I, m, and ra;   @ is defined by the

following table (for example: I @ m = ra; I @ I does not belong to K).

I
m

n

n       m

I        n
m       I

(7) K consists of all complex numbers;

ix 4- iy) @ (« + iv) = 1 - ——j.

Deductions from the postulates

Theorem I.   K contains at least two elements.

Theorem II.    K contains an element answering to the definition of Z.

Theorem III.    7/ x and y belong to K, and y j¿ Z, x @y belongs to K.

Theorem IV.   K contains no elements of the form x @ Z.

Theorem V.   K contains an element distinct from Z, answering to the

definition of U.
Theorem VI.    If x, y, and z belong to K and y j¿ Z, z 7e Z, then

[(x@y)@U]@z = [(x@z)@U]@y.

Theorem VIL   If x is a K-element, ix @ U) @ U = x.

Theorem VIII. If y j± Z and x = y O z, then z = (x @ y) @ U, and
conversely.

Theorem IX.    7/ x and y belong to K, x Q y belongs to K.

Theorem X.   x Q y = y O x.

Theorem XL    IfxQy = Z,x = Zory = Z, and vice versa.

Theorem XII.    If x and y belong to K, x © y belongs to K.

Theorem XIII.    Ifx@x = x,x = Z and vice versa.

Theorem XIV.   IfuQx = uOy and u¿¿ Z, then x = y.

Theorem XV.    (a; O y) Q z - x O iy O z).

Theorem XVI.   x O (y © z) = (a; O y) © ix O z).

Theorem XVII.   x © y = y © x.

Theorem XVIII.   ix ® y) © z = x © (y ® z).

Theorem XIX. If x is a K-element, there is a K-element y such that

y © x = Z.

Theorem XX. If x and y are K-elements, there is a K-element u such that

u © x = y.
Trans. Am. Math. Soc. 16
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Proofs of the preceding theorems

Proof of I. If K contains only one element x, it follows by 2 that x @ x = x.

Hence x @ (x @x) = x and is a P"-element. As this contradicts 1, K con-

tains at least two elements.

Proof of II.    (1) K contains an element of the form x @ x [by 1 and 2].

If x and y are .K-elements, a:@2/ory@a;isa ^-element [by 3].

If x @ y is a P-element, x @ y = x @ y. Then, if x @ x and y @ y are

P-elements,

(2) x @ x = y @ y.

Similarly, if y @ x, x @ x, and y @ y are P-elements,

(3) x@x = y@y.

Hence K contains a unique term Z [by (1), (2), (3) and the definition of Z\.

Proof of III.   This theorem follows directly from II and 2.

Proof of IV.   This theorem follows directly from II and 1.

Proof of V. [(Z@y)@(Z@,y)]@z belongs to K unless y = Z or

z = Z [by III].   Therefore, if y ?± Z, z ¥^ Z,

[(Z@y)@(Z@y)]@z = [(Z@z)@(Z@z)]@2/[by6andII].

(1) Z. Z @ z = Z @ y [by II].

(2) Z@Z is not a member of K [by IV].

(3) U is a member of K [by (1), (2) and the definition of U].

If Z = U, then if a; is a P-element other than Z, Z @ x = Z [by III and

the definition of U]. Then Z = x, which is impossible [by 5]. But K con-

tains an element other than Z [by I].

(4) .'. Z^U.
Statements (3) and (4) constitute the theorem.

Theorems I-V inclusive will be used in the following proofs without explicit

citation.

Proof of VI.   This theorem follows directly from V and 6.

Proof of VII. [(x@U)@U]@x = [(x@x)@U]@ U [by VI],
= (Z@U)@U = U@U = Z.

.-.    (x@ U)@U = x.

Proof of VIII.   Let x = yOz and x?¿Z,y¿¿Z,Z9¿Z.   Then

Z @ U 5¿ z @ z [by V, 5].

.-.    U@Z9* Z@z[by4],

(1) Z.    (U@z)@U^Z[by5\.

[(U@z@U)@y]@U^Z.
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(2) .'.    {U@ {[(U@z@,U)@y]@ U}} © U belongs to K.

x = {U @ {[ ( U@z @U)@y]@U}} @U [Definition of O ].

x@U= {{U @ {[(U @ z @ U) @ y] @ U}} @U}@U

= U@{[(U~@z~@U)@y]@U}.

.-.    U@x = [(U@z)@U]@ y [by 4, VII].

.-.    <7@z = y@a;[by4, VII].

.-.   x @ y = z @ U [by 4].

(3) .-.    (x@y)@U= (z@<7)@t7 = z[byVII].

(4) liy ='Z or z = Z, then x = Z [by the definition of O ].

If x = Z,  then' {U @ {[(U@z@ U).@y]@ U}} @U is  not  a  K-

element [by (1)].

(5) Then y = Z or z = Z [by (2)].    .'. IÎ y¿¿ Z, x = z = Z [by (4) and (5)].
(6) Then (x @-y) @U = Z = z.

Statements (3) and (6) constitute the theorem, and all the steps taken

are reversible.

Proof of IX.   This follows immediately from II and the definition of O .

Proof of X.   Let x = y Q z and y 9^ Z ,z^ Z, then

Z = [(x @ y)@U]@z [by Ylll],

= [(x@z)@U]@y[byVl].

(1) Consequently x = z Q y [by VIII, 5].

If y = Z or z = Z,   {i7@ {[((7@z@ (7) @ «] @ U)} @ U is  not a

2£-element, and by the definition of0,j/0z = zO|/ = Z.

This fact and (1) constitute the proof of X.

Proof of XI.   Suppose x O y = Z.   Then x = Z or

y = (Z @ x) @ U = U @ U = Z [by VIII].

The converse of this proposition follows from the definition of O .

Proof of XII.    If x © y does not belong to K, there are two distinct K-

elements, « and », such that

(1) x = u ~ y = v ~ y [by definition of © ].

Then either u ~ y = Z or (u ~ y) ~ (v ~ y) — Z [by XI, definition of ~ ].

Then either re~w = Z or u ~ v = Z or y = Z or

(u ~ ») ~ (y ~ y) = Z[by 7].
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lim ~ n = Z, m = n, and \lm = nT^ Z,m ~ n = Z [by definition of ~ ].

.'.    u = y       or       u = v       or       y = Z.

v = y       or        » = i¿       or       y = Z.

(2) .\w = »       or       y = Z.

Iiy = Z,x = uOU = vOU[by (1)].

(3) Then m = (m @ U) @ U = (» @ t7) @ (7 = » [by VII, VIII, X].
Statements (2) and (3) constitute the theorem.

Proof of XIII. If x © x = x and x 7a Z, then x ~ x = x [by definitions

of O , ~ , and © ].

(1) Then x = x©(x@x) = x O Z = Z [by XI].

(2) Z © Z = Z [by XI and the definitions of ~ and of © ].

Statements (1) and (2) constitute the theorem.

Proof of XIV. Suppose z = uOx = uOy and m is a if-element other

thanZ.   Thenx = (a©«) @ U = y [by VIII].

Proof of XV. Suppose u = ixOy)Oz,v = xOy, and x ¿¿ Z, y ?* Z,

z?¿ Z.   Then y = (» @ x) @ U and » = (w@z)@ £7 [by VIII, X].

.-.   7/ = {[iu@z)@U]@x\ @U

= [[(u@x)@U]@z}@U\byYJ\.

The steps already taken are reversible, and by retracing them after the

interchange of x and z, it appears that ifx^Z.Ty^ZjZ^Z,

(1) (x O y) O z = (z O y) O x = x O (y Q z) [by X].

If x, y, or z = Z, by XI,

(2) (xOy) ©z = Z = x O (y Oz).

Statements (1) and (2) constitute the theorem.

Proof of XVI.
Lemma, x O (m ~ ») = (x O u) ~ (x O »), if both sides belong to K,

unless x = Z.

Proof. Suppose u 9e Z, v 9e Z. Let x O u = m and x O v = n. Then

m;¿ Z, n¿¿ Z [by XI]. Then u = (to @ x) @ U and » = (re @x) @ (7

[by VIII]. Hence w@m = [(m@x)@i/']@m = [(to@to)@{7]@x

[by VI] = U @ x = » @ n [by VI, as before].

(1) Therefore » @ u = n @ m [by 4].

xO(m~»)=xO [u O iv @ u)] [by definition of ~ ],

= (x Ou) O iv@u) [by XV],

= m O (n@m) [by (1)],

(2) = m ~ n [by definition of ~ ].
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(3) If « = Z, m = Z, and neither x O ( « ~ « ) nor m ~ ra is a A-element,

by the definition of ~ .

If « t^ Z, and v = Z, then ra = Z, so that a; O (« ~ ») = m O (?) @ «)

[as before], =raO U = m O (ra @ ra)

(4) '= ra ~ ra [as before].

Statements (2), (3), and (4) constitute the lemma.

Lety ®z = p. If p5¿ Z,theny = p ~ z [def. ©f ©, (1) of VIII]. Then
x O y = (a: O p) ~ (x Q z) [by (2) and (4)].

(5) .-.   x Op = ix O y) © (x Oz) [by XII, def. of ©].

lip = Z, there is no 7í-element a such that y = q ~ z [def. of © ]. Then

iixj^Z there is no ? such that x Q y = (i0{)~(ï02) [by the Lemma,

XI, XIV].
(6) Then x O p = (a; O y) © (a; 0 z) [by the def. of  © ].

(7) li x — Z, the theorem becomes, by XII, Z = Z ® Z, which is an

immediate consequence of the definition of © .

Statements (5), (6), and (7) constitute the theorem.

Proof of XVII. Suppose x ® y = u, U96 Z. Then x = « ~ y [def. of

©], = « O iy @ «) [def. of ~].

This proposition is equivalent to ix@u)@U = y@u, or to [by VII,

VIII];  iy@u)@U = x@u[byVI].

Reversing our former reasoning, y = u ~ x, and

(1) u = y ® x [by def. of © , XII].

(2) If x ® y = Z, y ® x = Z [by def. of © , XII, (1)].
Statements (1) and (2) constitute the theorem.

Proof of XVIII.   Let a;©î/ = ra,2/©z = ra,ra©z = «, and x ® n = v.

Case I.   Suppose x, y, z, ra, ra, u, and v are all distinct from Z.    Then

a; = ra~î/,z = ra~î/,a; = »~ra,z = M~7re [by def. of ©, XVII].

.'.   a;~z = (m~t/)~(re~î/) = (î)~ra)~(M~ra) [def. of ~ ].

.". ra ~ ra = iv ~ ra) ~ (w ~ m) [by 7, def. of ~].

.". « ~ m = (v ~ ra) ~ (m ~ ra) [by XVII, defs. of ffi and ~ ].

= v ~ m [by 7, def. of ~ ].

.'.   Z=(«~m)~(B~m) [by def. of ~]

= («~») ~ (ra~ra) [by 7, def. of ~ ]

= « ~ v [by def. of ~ ]

= u@v [by def. of ~, XI].

(1) .'.    » = « [by 5].
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Case II.   Let x, y, or z = Z.

(2) a © Z = Z © a = a [by XVII and the defs. of © and ~ ].

(3) Combining this proposition with XVII, the proof is obvious.

Case III. Let x, y, z, n, u, and v be all distinct from Z, and let m = Z.

Then y = n~z,x = v~n,z = u~Z = « [by defs. of © and ~; XVII].

(4) Whatever p, x ?¿ p ~ y.   Suppose m^i.    Then

x — v ~ n

= (?)~7i) ~ ( w ~ « ) [by def. of ~ ],

= (v ~ u) ~ (n~w) [by 7],

(5) =(jj~«)~y.

(6) Statements (5) and (4) contradict one another.    Hence « = v.

(7) Case IV.    Similarly, if n alone is Z, u = v.

(8) Case V. It follows from the cases already considered by XII and the

definitions of ~ and © that if « = Z, v = Z, and vice versa.

Statements (1), (3), (6), (7), and (8) constitute the theorem.

Proof of XIX.    If a, b, and x are distinct from Z and from one another,

(a ~ x) ~ (6 ~ x) = (a ~ 6) ~ (x ~ x) [by 7],

= (a ~6) O Î7[def. of ~,U],

= [U@{[(U@U@U)@(a~b)]@U)) @U

[def. of O ],

= {U@ {[U@(a~b)]@ U}} @U[def. of U],

= {(a~b)@{[U@U}@U}\ @tf[by4,VI],

(1) = a ~ 6 [by VII].

(2) Then (a~a:)~a = (6~x)~6 [by 7]. Now, (a ~ x) ~ a can

never be expressed in the form u ~ x. For, suppose ( o ~ * ) ~a = «~ar.

Then (a~a:)~« = a~x [by 7].

(3) .'.    a ~ x = (o ~ x) O [«@ (a ~ a;)] [def. of ~].

But we have just seen in (1) how it can be shown that

(4) (a ~ x) = (a ~ x) Q U.

Hence, u @ (a ~ x) = U [(3), (4), X, XIV], = Z © (a ~ x) [def. of t/].

.".    i7 = Z@M = (a~x)@(a~x)=Z.
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Since this contradicts V,

(5) (a~x)~a^M~a:.

From (2) and (5) we conclude that, if x ^ Z, there is a unique term

x = (a~x)~a,

such that whatever u, x ^ u ~ x.

(6) .-.    Z = x © x  [def. of © , XII]

(7) Z = Z © Z [def. of ©, U, ~, argument of (1)].

Statements (6) and (7) constitute the theorem, unless it is impossible for

an a to be found distinct from Z and x. In this case K contains only Z and U.

Here the same result may be obtained by a simple computation.

Proof of XX. Let x and y be 7£-elements. Then either y = Z or y ~ x

is a 7v-element v [by IX, def. of ~ ].

(1) If y = Z, there is a 7i-element u such that u ® x = y [by XIX].

(2) If y í¿ Z, since » = y~x,»ffia; = y [by def. of © , XII].

Postulates 1-7 and the definition of a field

In the article already cited, Huntington gives the following reduced set of

postulates for a field, the sufficiency of which he proves, but not their inde-

pendence.

1. If a and b belong to K, a © b belongs to K.

2. (a © b) © c = a © (b © c).

3. a ® b = b © a.

4. If a and b belong to K, a O b belongs to K.

5. (a Q b) O c = a Q (b Q c).

6. a Qb = b O a.

7. Either aO(6©c) = (a06)©(aOc),or

(6 © c) Oa= (b O a) © (cQa).

8. Given a and b, there is an x such that a © x = b.

9. Given a and 6, and a © a ^ a, there is ay such that a O y = b.

10. There are at least two elements in the class.

That the postulates of Huntington are deducible from those of this paper

will be seen at once from an inspection of the following table of correspondences.

The figures beneath the line refer to Huntington's postulates; those above,

to the present article.

Corresponds to XII   XVIII   XVII   IX   XV   X   XVI   XX   VII, X   I
1 2 3 4567 8 9       10

If for any elements a and b of Huntington's class, we write a @ b for 1 — a/b,

Huntington's set implies set 1-7.
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A  SINGLE  UNDEFINED  NOTION  FOR  COMPLEX ALGEBRA

The laws of complex algebra cannot be expressed entirely in terms of +

and X . Huntington* has given a set of postulates for complex algebra in

which the undefined notions are addition, multiplication, the class of all

complex numbers, the class of all real numbers, and the order of magnitude

among real numbers. He has suggestedf how all these notions may be

derived from that of the absolute value of the difference between two complex

numbers, though he has given no set of postulates for this operation. Apart

from this operation, which is rather unlike those on which we are accustomed

to base sets of postulates in that it always results in a number of a very special

sort—a real number, no single operation has been developed which may

serve as the sole foundation of complex algebra.

There are other such operations, however, and one of them is closely allied

to the one taken for the fundamental notion of this set of postulates. This

operation has already been employed to demonstrate the independence of

postulate 7. Denoting a — ib, the conjugatej imaginary of a + ib, by

C ( a + ib ), our operation, which we shall term x * y, is

*-c(i)-

We define Z, U, and multiplication in terms of * in the same manner in

which they have already been defined in terms of @.    C ( x ) is defined as

U*[U* (U*x)].

We say that x is real if x = C ( x ). We define i ApsC(i#J/), and addition

is defined in terms of A as previously in terms of @. If x and y are real,

x is said to be larger than y when there is a P-element z, the product of a

real by itself, which when added to y gives x.

The formulation of a set of postulates for * is a very difficult matter.

Postulates 1-6 of this paper may stand unchanged, but the properties of

addition and of the series of reals are so intricate as not to lend themselves

readily to independence proofs. In general, independence proofs that are

satisfactory when addition and multiplication are assumed separately break

down on more than one postulate when translated in terms of *. The

system of *, though fundamentally the same as that of the familiar complex

algebra, has a technique of its own of considerable difficulty.

*E. V. Huntington, A set of postulates for ordinary complex algebra, these  Transac-

tions, vol. 6 (1905), pp. 209-229.
t Ibid., note on p. 210.
t This use of the conjugate was suggested to me by an unpublished paper of Sheffer.

Massachusetts Institute op Technology,

June, 1919.


