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Introduction

The results necessary for the development of this paper are contained in a

paper by G. D. Birkhoff,t in a paper by J. Hadamard.J and in an earlier paper

by the present writer. §

In this earlier paper, as in the present paper, only those geodesies on the

given surfaces of negative curvature are considered which, if continued in-

definitely in either sense, lie wholly in a finite portion of space. A class of

curves is introduced, each of which consists of an unending succession of the

curve segments by which the given surface, when rendered simply connected,

is bounded. It is shown how a curve of this class can be chosen so as to

uniquely characterize some geodesic lying wholly in a finite portion of space.

Conversely, it is shown that every geodesic lying wholly in a finite portion

of space, is uniquely characterized by some curve of the above class.

The results of the earlier paper on geodesies, and the representation ob-

tained there, will be used in the present paper to establish various theorems

concerning sets of geodesies and their limit geodesies. In particular, the

existence of a class of geodesies called recurrent geodesies of the discontinuous

type,\\ will be established. This class of geodesies offers the first proof that

has been given in the general theory of dynamical systems, of the existence

of recurrent motions of the discontinuous type.

For a more complete treatment of the questions of the existence of surfaces

of negative curvature, the reader is referred to the paper by Hadamard,

already cited.

* Presented to the Society, Dec. 28, 1920.
t Quelques théorèmes sur le mouvement des systèmes dynamiques, Bulletin de la

Société Mathématique de France, vol. 40 (1912), p. 303.

î Les surfaces à courbures opposées et leur lignes géodésiques, Journal de Mathé-

matiques pures et appliquées, (5), vol. 4 (1898), p. 27.

§ A one to one representation of geodesies on a surface of negative curvature, American

Journal of Mathematics, vol. 42 (1920).
U G. D. Birkhoff, loc. cit.
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The surface

§ 1. We will consider surfaces without singularities in finite space. We will

suppose the surface divisible into overlapping regions, such that every point

of the surface lying in a finite portion of space is contained as an interior point

in some one of a finite number of these regions, and such that the Cartesian

coordinates x, y, z of the points of any one of these regions can be expressed

in terms of two parameters, u and v, by means of functions with continuous

derivatives up to a convenient order, at least the third, and such that

(D(xy)\2     (D(xz)\2     (DJy^V.r.

\Diuv)J +\Diuv)J ^XDiuv)) iU-

By a curve on the surface we will understand any set of points on the surface

in continuous correspondence with the points of an interval on a straight line,

including one, both, or neither of its end points.

We will suppose the Gaussian curvature of the surface to be negative at

every point, with the possible exception of a finite number of points, at which

points the curvature will necessarily be zero. A first result, given by Had-

amard in the paper already referred to, is that a surface of negative curvature

cannot be contained in any finite portion of space.

§ 2. By a funnel of a surface will be meant a portion of a surface topo-

graphically equivalent to either one of the two surfaces obtained by cutting

an unbounded circular cylinder by a plane perpendicular to its axis. We will

consider surfaces of negative curvature whose points, outside of a.sufficiently

large sphere with center at the origin, consist of a finite number of funnels.

Each of these funnels will be cut off from the rest of the surface along a simple

closed curve. These curves will be taken sufficiently remote on the funnels

to be entirely distinct from one another.

An unparted hyperboloid of revolution is an example of a surface of negative

curvature with two funnels.

From the definition of a funnel it follows that, by a continuous deformation

of the closed curve forming the boundary of the funnel, the funnel may be

swept out in such a way that every point of the funnel is reached once and

only once. Hadamard considers two classes of funnels: those which can be

swept out by closed curves which remain less in length than some fixed quan-

tity, and those which do not possess this property. Surfaces with funnels of

the first sort are for several reasons of less general interest than those with

funnels of the second sort. In the present paper surfaces with funnels only

of the second sort will be considered. Hadamard showed that there exist

surfaces of negative curvature possessing funnels all of the second sort, of

any arbitrary number exceeding one, and such that the surface obtained by

cutting off these funnels is of an arbitrary genus.
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§ 3. We shall consider surfaces which possess at least two funnels of the

second sort, and of the surfaces with just two funnels of the second sort, we

will exclude those surfaces that are topographically equivalent to an unbounded

circular cylinder. Hadamard proves that on such surfaces there exists one

and only one closed geodesic that is deformable into the boundary of a given

funnel, and that this geodesic possesses no multiple points, and no points in

common with the other closed geodesies that are deformable into the boundaries

of the other funnels.

We shall denote these closed geodesies, say » in number, by

(1) 9x 02 •• • gv ■

They will form the complete boundary of a part of the surface, contained in a

finite part of space. We denote this bounded surface by S. As shown in

§ 18 and § 19 of my earlier paper on geodesies, S may be rendered simply

connected as follows : S is first cut along a system of geodesies,

hx h2 • • • A„_i.

each of which has one end point on an arbitrarily chosen point, P, on gv,

and the other, respectively, on the geodesic of the set

,gxg2 ■ ■ • gv-x,

with the same subscript, and no two of which have a point other than P in

common, and no points other than their end points in common with the

geodesies, of the set (1). There then results a surface with a single boundary.

This surface can be rendered simply connected by 2p geodesies,

Cl c2 • • • c2p,

which can be taken as beginning and ending at P, and which will have no

other points than P in common with any of the other geodesies or with each

other.

We denote by T, the simply connected piece of surface obtained by cutting S

along the above geodesies. It may be proved as a consequence of the assump-

tions made concerning the representation of the given surface, that T is

topographically equivalent, to a plane region consisting of the interior and

boundary points of a circle.

Representation of geodesics by linear sets or by reduced curves

§ 4. We suppose that we have at our disposal an unlimited number of copies

of the simply connected surface T, and that each of these copies of T is entirely

distinct from every other copy of T.

Definition.   Let r be any integer, positive, negative or zero.   Let TV
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denote a particular copy of T. By a linear set of copies of T will be under-

stood a surface consisting of a set of copies of T of the form

(1) • • • Hi T-3 T0TxT2---,

or of the form of any subset of successive symbols of (1), in which no one

copy of T appears twice, and in which each copy of T is joined along some

one of its boundary pieces to that boundary piece of the succeeding copy of T

that arises from the opposite side of the same cut, while no copy of T is joined

to its predecessor and successor along the same boundary piece. A linear

set which has no first or last copy of T will be called an unending linear set.

Two linear sets will be considered the same if the two sets of their copies

of T can both be expressed by the same form (1), in such a manner that suc-

cessive symbols represent successive copies of T in the respective linear sets,

joined along copies of the same cut.

A linear set in which the number of copies of T is finite is seen to be a mul-

tiple-leaved, simply connected surface, bounded by a single closed curve.

Let the set of geodesic segments,

gxgz • ■-■• ff»; hxh2 ■ ■ ■ hv-i, cic2 • • • c2p,

described in § 3, be denoted by H.

Definition.    Let r be any integer, positive, negative, or zero.   Let kr be

any member of the set H.   By a reduced curve we shall understand any con-

tinuous curve that consists of a set of members of the set H, excluding gv, of

the form

(1) ■ • • fc_2 &_i k0kxk2 ■ ■ •,

or of the form of any subset of consecutive symbols of (1). In the special*

case where a kr and a kr+x of (1) are copies of the same member of the set H,

say I, we require that the end point of kr and the end point of Arr+X which are

joined, be points which on I would be considered as opposite end points. A

reduced curve without end points will be termed an unending reduced curve.

If a given reduced curve be traced out in an arbitrary sense, it follows from

the last condition of the definition of a reduced curve that no two consecutive

pieces of the given reduced curve will thereby appear as copies of the same

piece of H taken in opposite senses.

§ 5. The results of this section are established in § 12 and § 13, of my

earlier paper on geodesies, already referred to.

A given unending reduced curve is contained in one and only one linear

* We admit the possibility of two symbols in (1) representing the same member of the set

H, but as parts of the reduced curve we shall consider two such copies as distinct, in a manner

analogous to the convention ordinarily made in the construction of a Riemann surface.
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set, which set is an unending linear set. Conversely, every unending linear

set contains one and only one unending reduced curve. Each copy of T of

an unending linear set that contains an unending reduced curve contains

either a point or a single continuous segment of the given reduced curve, and

no other points of the given reduced curve. The results necessary for the

developments of this paper are summed up in the following :

Theorem 1. There is a one to one correspondence between the set of all

unending reduced curves on S, and the set of all unending linear sets, in which

each reduced curve corresponds to that linear set in which it is contained.

§ 6. The results of this section follow from the results of §§ 21, 22, and 23,

of the earlier paper on geodesies. For the purpose of representing geodesies

that lie wholly on S, it will be convenient to suppose each closed geodesic

replaced hy that geodesic obtained by tracing out the given closed geodesic

an infinite number of times in either sense.

Every geodesic lying wholly on S is contained on one and only one linear

set, which set must be an unending linear set. Conversely, every unending

linear set contains one and only one of the geodesies lying wholly on S. Every

copy of T of a linear set that contains a geodesic lying wholly on S, contains

either a point or a single continuous segment of this geodesic, and no other

point, on this geodesic.

Theorem 2. There is a one to one correspondence between the set of all

geodesies lying wholly on S, and the set of all unending linear sets, in which

each geodesic corresponds to that linear set in which it is contained.

The results of Theorems 1 and 2 can be combined in the following :

Theorem 3. There is a one to one correspondence between the set of all

geodesies lying wholly on S, and the set of all unending reduced curves, in which

each geodesic corresponds to that unending reduced curve that is contained in the

same linear set.

Theorem 4. // an unending reduced curve consists wholly of repetitions of a

closed curve, the geodesic that passes through the same linear set consists wholly

of successive repetitions of a closed geodesic. Conversely, if a geodesic consists

wholly of successive repetitions of a closed curve, the unending reduced curve

that passes through the same linear set, consists wholly of successive repetitions of a

closed curve.

Variation of geodesics with initial elements

§ 7. On a surface representable in the manner in which the given surface

is representable, there is one and only one geodesic through a given point,

and tangent to a given direction.

Definition. A point on the surface and a direction tangent to the surface

will be called an dement, and will be said to define that sensed geodesic that
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passes through the initial point of the given element, and is such that its positive

tangent direction at that point agrees with the direction of the given element.

If u and v are parameters in any representation of a part of the surface,

and if 0' is the angle which a given tangent direction makes at the point ( u' v' )

with the positive tangent to the curve, u = u', then ( u' v' 6' ) will represent

an element of the given surface. We shall understand by each statement

of metric relations between elements, the same statement of metric relations

between the points in space of three dimensions obtained by considering the

complex iu' v' 6') as the Cartesian coordinates of a point.

Let G be any geodesic segment lying on the original uncut surface. G is

an extremal in the Calculus of Variations problem of minimizing the arc

length, from which theory we can readily obtain the following theorem that

describes the nature of the variation of G with variation of its initial element.*

Theorem 5. Corresponding to any positive constants e and h, there exists a

positive constant d so small, that if any two elements, with initial points on the

bounded surface S, lie within d of each other, and if a second pair of elements lie

respectively on the two geodesies defined by the first two elements, and if further

the initial points of this second pair of elements lie respectively at a distance,

measured along the given geodesies from the geodesies' initial points, that is the

same in both cases and that does not exceed h, the second pair of elements will lie

within e of each other.

The following theorem describes the manner in which a geodesic varies with

the reduced curve contained in the same linear set. It is given in § 24 of

the earlier paper on geodesies.

Theorem 6. Corresponding to any positive constant e, there exists a positive

constant k, so large, that if two unending reduced curves possess in common a

continuous segment of length exceeding k, the two corresponding geodesies each

have at least one element within e of some element on the other, and with initial

point in the same copy of T, in the geodesic's linear set, as the mid point of the

common reduced curve segment.

Conversely, corresponding to any positive constant k, there exists a positive

constant e, so small, that if on each of two geodesies there exists some element

within e of some element on the other, the two corresponding reduced curves possess

in common a segment of length k, with mid point in the same copy of T in the

reduced curve's linear set, as the initial point of either of the two elements.

Representation of geodesics by sets of normal curves

§ 8. The previous representation of geodesics by means of linear sets and

reduced curves can now be replaced by another representation which will be

* Cf. Bolza, Vorlesungen über Variationsrechnung (1909), p. 219.
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fundamental in the work of this paper.    This representation will be in terms

of the geodesic segments,

(1) Ci c2 • • • c2p,

(2) gx g-2. — • gv-x,

which form a subset of the boundary pieces of each copy of T.

Definition. I. Each one of the geodesic segments of (1) and (2) will be

called a normal segment.

II. Let m be any integer, positive, negative, or zero. Let Cm represent

any sensed normal segment. By a normal set C, will be understood an un-

ending ordered set of sensed normal segments, in the form

(3) • • • C_2 C—x Co CxC2 • • •,

in which no two successive members are the same normal segment taken in

opposite senses.

III. Two normal sets C will be considered the same if they contain the

same normal segments in the same order with the same senses.

A normal set C will not in general constitute a reduced curve. For a re-

duced curve may include any normal segment, and in addition any geodesic

segment of the set,

(4) hi h2 ■■■ hv-x.

However, it is readily seen that, with the aid of the members of the set

(4), there can be formed from a given normal set C one and only one sensed

reduced curve whose normal segments taken in the order and with the senses

in which they appear on the given reduced curve constitute the given normal

set C. Conversely, if there be given any unending sensed reduced curve,

its normal segments taken in the order and with the senses in which they

appear on the given unending sensed reduced curve, constitute a normal set C.

Thus there is a one to one correspondence between the set of all unending

sensed reduced curves and the set of all normal sets C, in which each normal

set C corresponds to that unending sensed reduced curve whose normal seg-

ments, taken in the order and with the senses in which they appear on the

given unending sensed reduced curve, constitute the given normal set C.

Definition. If an unending sensed reduced curve and a normal set C

correspond in the sense of the preceding statement, the normal set C will be

said to represent the given unending sensed reduced curve, and also that

sensed geodesic that passes through the same linear set of copies of T in the

same sense as does the given unending sensed reduced curve.

By virtue of Theorem 3, § 6, every sensed geodesic lying wholly on the

surface S, is represented by one and only one normal set C, while every

normal set C represents one and only one sensed geodesic.
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Closed geodesics

§ 9. If a normal set C of the from (3) of the preceding section represents a

closed geodesic it follows from Theorem 4, § 6, that there exists a positive

integer p, such that in the set C

Lm  ==   Lm+p ,

where m is any integer, positive, negative, or zero. The given normal set

will then be said to be periodic, and to have the period p. Theorem 4, § 6

now becomes the following:

Theorem 7. A necessary and sufficient condition that a geodesic be closed,

is that the normal set C representing that geodesic be periodic.

Let q be the smallest period of a periodic set C. Then any other period p

must either equal q, or else be a multiple of q. For if p were not equal to q or

a multiple of q, it follows from Euclid's Algorithm that there exist three

integers, A, B, and r, of which r is less than q, and is greater than zero, and

which are such that
Aq + Bp = r.

It follows from this equation that r is also a period of the given periodic set C,

contrary to the assumption that q was the smallest period of the given periodic

set C.

Definition. If q is the smallest period of a periodic normal set C, then

any q successive sensed normal segments of the given set C will be called a

generating set of the given set C, and also of the closed geodesic represented

by the given set C.

If £ is a generating set of a normal set C, this set C consists merely of an

unending succession of sets B, which we will write in the form,

••• BBBBBBBB •••

All generating sets of a periodic set C, can evidently be obtained from any

one such generating set by a circular permutation of the sensed normal seg-

ments composing the given generating set.

§ 10. We consider now the question of the arbitrary formation of sets that

may serve as generating sets of some geodesic. To that end we form a finite

ordered set of sensed normal segments, in which neither the first and last

members, nor any two successive members are the same normal segment

taken in opposite senses, and which cannot be obtained through repetitions

of a similar set containing fewer sensed normal segments. Denote the set

so obtained by D. The set

(1) ••■ DDDDD •••

is, in the first place, a normal set C.   For D is made up of sensed normal
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segments in which neither the first and last members, nor any two successive

members are the same normal segment taken in opposite senses. Further D

is a generating set of the set (1), for otherwise (1) would have a period smaller

than the number of successive segments in D, and hence a period that is a

divisor of the number of successive segments in D. D could then be obtained

by a finite number of repetitions of a similar set containing fewer sensed

normal segments, contrary to the last hypothesis made concerning D.

The number of different periodic normal sets C is seen to equal the number

of generating sets not obtainable one from the other by a circular permutation

of their normal segments. The number of such generating sets is readily

seen to be an enumerable infinity. From this result, together with the theorem

of the preceding section, we have the result given by Hadamard:

There are an enumerable infinity of distinct closed geodesies on the surface S.

Limit geodesics of sets of geodesics

§ 11. Definition. A geodesic G will be said to be a limit geodesic of a set

of geodesics if a set of elements, M, lying on the given set of geodesics, have

as a limit an element E, on G, while all the initial points of those elements of

the set M that lie on G, are at distances, measured along G from the initial

point of E, exceeding a fixed positive quantity.

From the property of continuous variation of a geodesic with its initial

element, as given in Theorem 5, § 7, it follows that if one element on G is a

limit element of elements on a given set of geodesics, then every element

on G is a limit element of elements on the given set of geodesics.

If a closed geodesic should be considered as replaced by an unclosed geodesic

that traces out the given closed geodesic an infinite number of times in either

sense, the latter geodesic would be a limit geodesic of itself. In this sense

any closed geodesic will be considered a limit geodesic of itself.

From Theorem 6, § 7, it follows that a necessary and sufficient condition

that a geodesic G be a limit geodesic of a set of geodesics J, not including G,

is that every finite segment of the unending reduced curve corresponding to G

be contained in the unending reduced curve corresponding to some geodesic

of the set J.    In terms of normal sets C, this result becomes the following :

Theorem 8. A necessary and sufficient condition that a geodesic G be a

limit geodesic of a set of geodesics J, not including G, is that every subset of con-

secutive normal segments of the normal set representing G, be a subset of consecu-

tive normal segments of some normal set representing a geodesic of the set J.

The following theorem is given by Hadamard, with a proof, however, that

is different from the following.

Theorem 9.    Every geodesic lying wholly on a surface of negative curvature
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for which 2p + v — 1 =Z 2 (cf. section 3), is a limit geodesic of the set of all

closed geodesies on that surface.

The number of different normal segments equals 2p + v — 1. Hence on

any of the surfaces considered, there are at least two different normal segments.

Since any closed geodesic is a limit geodesic of itself, we need only consider

the case of a geodesic not a closed geodesic. Let G be any geodesic lying

wholly on S, and not a closed geodesic. Let there be given an arbitrary

finite subset of consecutive normal segments of the normal set C representing G.

If this subset does not begin and end with the same normal segment taken in

opposite senses, we denote the subset by D; in the other case we add to the

given subset a normal segment different from the first and last normal seg-

ment, and denote this set also by D.

In either case,
••• DDDDDDD •■•

will be a normal set C. This normal set is periodic; according to Theorem 7,

§ 9, it then represents a closed geodesic. Further this normal set contains

as a subset of successive normal segments the given arbitrary subset of the

normal set representing G. From Theorem 8, it accordingly follows that G

is a limit geodesic of the set of all closed geodesic on S, and the theorem is

proved.

Theorem 10. On a surface of negative curvature for which 2p + v — 1 =z 2,

there exists at least one geodesic which has for a limit geodesic every geodesic

lying wholly on S.

The set of all possible finite subsets of consecutive normal segments of

normal sets C, form an enumerable set which may accordingly be put into

one to one correspondence with the set of all integers, positive, negative, or

zero. In this correspondence that one of these subsets that corresponds to

the integer n, we denote by Bn.    The set,

• • • B—2 B—x Bo Bi B2 • • •

will be a normal set C, unless for some integer n, the last sensed normal seg-

ment of B„r~x and the first sensed normal segment of Bn are the same normal

segments taken in opposite senses. In every such case we insert between

B„_i and Bn a normal segment different from the normal segment in question.

The resulting set will be a normal set, which we denote by C.

C contains each subset B„ as a subset of consecutive normal segments.

It follows from Theorem 8, that every geodesic lying wholly on S, with the

possible exception of the geodesic represented by C, is a limit geodesic of

the geodesic represented by C. That the geodesic represented by C is a

limit geodesic of itself, follows from the fact that every closed geodesic is a
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limit geodesic of the geodesic represented by C, while every geodesic lying

wholly on S is a limit geodesic of the set of all closed geodesics on S.

Recurrent geodesics

§ 12. The following definition, and Theorems 11, 12, and 13, are restate-

ments for the case of geodesics of what is given by Professor Birkhoff for a

dynamical system, in the paper referred to in the introduction.

Definition. By a minimal set of geodesics we shall understand any set

of geodesics lying wholly on S, each of which has every other geodesic of the

set, and no other geodesic, as a limit geodesic. Any geodesic of a minimal

set will be called a recurrent geodesic.

A closed geodesic constitutes a minimal set in which it is the only geodesic.

The following theorem serves as an existence proof for recurrent geodesics.

Theorem 11. Every geodesic lying wholly on S contains among its limit

geodesics at least one minimal set of geodesics.

Concerning the number of recurrent geodesics in a minimal set, we have

Theorem 12. The power of any minimal set not simply a closed geodesic, is

that of the continuum.

The characteristic property of a recurrent geodesic is given by the following:

Theorem 13. A necessary and sufficient condition that a geodesic lying

wholly on S be a recurrent geodesic is that, corresponding to any arbitrary positive

constant e, there exist a positive constant h, so large, that if L be any segment of

the given geodesic of length at least equal to h, any element of the given geodesic

lies within e of some element of L.

§ 13. Let there be given a set of symbols of the form,

(1) • • • B—i B—i Bo -Ri Bt • • •.

Let m and n be any integers, positive, negative, or zero.

Definition. I. A set of symbols of the form (1) will be said to be recurrent,

if corresponding to any positive integer r, there exists a positive integer s,

so large that any subset of (1) of the form,

(2) Bm Äm+1 * * * Rm+r

is contained in every subset of (1) of the form

(3) Bn Rn+l ■ ■ ■ Rn+t •

II. The set (1) will be said to be periodic, if there exists a positive integer p,

such that

Rn   =  Bn+p,

whatever integer n may be, and p will be said to be a period of the set (1).

It appears at once that a set (1) that is periodic, is also recurrent.
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Theorem 13, § 12, interpreted in terms of normal sets C by means of The-

orem 6, § 7, becomes the following

Theorem 14. A necessary and sufficient condition that a geodesic lying

wholly on S be recurrent, is that the set C representing the given geodesic be re-

current.

Existence of recurrent geodesics, not periodic.

§ 14. We come now to the question of the existence of recurrent geodesics

that are not closed geodesics.

On a surface of negative curvature topographically equivalent to an un-

bounded circular cylinder, the only possible recurrent geodesic is a single closed

geodesic. On a surface of negative curvature topographically equivalent to

an unbounded plane, there are no recurrent geodesics whatever. The surfaces

of negative curvature which we have been considering include neither of these

two types of surfaces (cf. § 3).

We have seen in Theorem 7, § 9, that a geodesic that is periodic is repre-

sented by a normal set C that is periodic; while Theorem 14, § 13, states that a

normal set C that is recurrent represents a geodesic that is recurrent. Hence,

to prove the existence of a geodesic that is recurrent without being periodic,

it is sufficient to prove the existence of a normal set C that is recurrent without

being periodic.

Now there are just 2p + v — 1 normal segments (cf. § 8). We are con-

sidering surfaces for which 2p + v — 1 =% 2. Hence any of the surfaces of

negative curvature considered will possess at least two normal segments.

We will seek a normal set C that is composed solely of two normal segments.

For that purpose the following lemma is introduced.

Lemma. There exists an unending set of symbols each of which is either 1 or 2,

which forms a set that is recurrent without being periodic.

By the juxtaposition of two or more symbols representing ordered sets of

symbols, we shall mean here, as elsewhere, the ordered set obtained by taking

the symbols of the given sets in the order in which the sets are written.

Let n be any positive integer.    We introduce the following definitions :

a0 = 1,

6o = 2,

ai = ao 6o,

6i = 60a0,

fitn+i = an 6„,

6n+i = 6„ a„.



96 HAROLD  MARSTON MORSE [January

We introduce the set of symbols,

(2) • • • d_2 d_i dodidi • • •,
of which

do di • • • d¡»

are defined respectively as the 2" integers of a„; further, if m is any positive

integer, d_„, is defined as equal to cU-i.   The set (2), so defined, will be

proved to be recurrent without being periodic.

For definiteness we write out (2) in part, beginning with do".

(3) 12212112   21121221   21121221    •••

It follows from the definitions (1), that if the integers of (2) be grouped in

groups of 2n integers, then the set (2) can be expressed, beginning with d0,

by a succession of the sets a„ and 6„, obtained by replacing the integers 1 and 2

in the set (2), respectively by a„ and 6n. Thus beginning with d0, (2) is given

in part as

(4) an 6„ 6„ an   6„ a„ a„ 6„   6„ a„ a„ 6„

The symbols of the set (2) that have negative subscripts, can be obtained,

according to their definition, by taking the symbols of (2) with positive or

zero subscripts in reverse order. It follows from the definitions (1) that the

integers of a„ and 6„, taken respectively in their reverse orders, give an and 6„

when n is even, and 6n and an when n is odd.    We have the result:

Whatever integer n may be, the set (2) can be expressed by a properly chosen

succession of the sets, an and 6„.    Thus, if r be any integer such that

r = 0 modulo 2n,

then any subset of (2) of the form

dr dr+i • • ■ «r+2»

is either a set a„ or a set b„.

We will now prove that the set (2) is recurrent.

Let there be given any subset of (2) of the form

(5) d. d,+i • • • da+m,

where s is any integer, positive, negative, or zero, and m is any positive integer.

Let r' be the largest integer less than s such that

r' s 0 modulo 2m.

From the choice of r', we have,

r'<8<s + m<r' + 2»*1.
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Hence the set (5) is a subset of the set,

(6) dri dr<4-i • • • dr/+2m+i.

From the result of the preceding paragraph, it appears that (6) must be one

of the four possible ordered combinations of am and 6m, that is, one of the

four sets,
ßm om,    om om,    om am,    am am.

Each of these four sets is a subset of am+3 and 6m+3; for from the equations (1),

we have,

Om+3   =  ttm+2 6m+2   =  Clm+1 6m+i 6m+i Om+i   =  ttm 0m Om Om 6m Om am 6m ,

6m+3 = bm+2 a-m+i. = 6m_)_i dm+i Om+i 6m+i = bmamambmam bm bm am.

Since the set (2) can be expressed as a succession of the sets am+3 and bm+3,

each of which contains 2m+3 integers of the set (2), it appears that any subset

of at least 2m+4 successive integers of (2), say B, contains at least one of the

sets Om+3 and 6^3. Retracing the steps it is seen that B contains a subset

identical with the given set (5).   The set (2) is thus recurrent.

We will now show that the set (2) is not periodic. Suppose that the set (2)

had a period prime to 2. Since p is prime to 2, there exists an integer m,

greater than one, such that

(7) 2 = 2m,       modulo p.

Since the set (2) has the period p, it follows from (7) that the set

(8) d2d3di---

must be identical with the set

(y) 02«* Ö2*»+i a^wt-tz • ■ •.

The set (8) commences with the integers

(10) 2 1 2 1 1 2 • • •,

while the set (9) commences as does bm, which is seen from the equations (1)

to commence with the integers

(11) 2 112 12--.

The sets (10) and (11) are not identical. The set (2) can thus have no period

prime to p.

Finally suppose that the set (2) had a period 2r p, where r is any positive

integer, and p is prime to 2. Let the set (2), commencing with d0, be written

in terms of aT and 6r :

(12) Or 6r 6r a, bT ar • • •.

Trans. Am. Math. Soe. 7
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Considered as a succession of symbols ar and br, (12) has the period p. But

the original expression for (2) in terms of its integers, and commencing with d0,

is obtained from (12) by replacing the symbols ar and 6r respectively by 1 and 2.

Thus the expression for the set (2), in terms of its integers, and commencing

with d0, would have a period prime to 2.    We have seen this to be impossible.

Thus the set (2) is recurrent without being periodic, and the lemma is

proved.

§ 15. Theorem 15.   On a surface of negative curvature for which

2p + v - 1 S 2,

there exists a set of geodesies that are recurrent without being periodic, and this

set has the power of the continuum.

The number of different normal segments equals 2p + v — 1. We are

considering surfaces of negative curvature for which 2p + v — 1 g£ 2. Hence

on any of the surfaces considered, there are at least two different normal seg-

ments. Let Ari and N2 be two different normal segments, each taken in an

arbitrary sense.

In the preceding lemma we have established the existence of a set,

• • • d—2 d-i do dj di ■ • •,

that is composed entirely of the integers one and two, and which is a set that

is recurrent without being periodic.    The set

(1) • • • Nd_, JVV, Nd, Ndl Nd,---

is accordingly recurrent; from Theorem 14, § 13, it follows that the geodesic

represented by the set (1) is recurrent. The set (1) is not periodic; it follows

from Theorem 7, § 9, that the geodesic represented by (1) is not periodic.

We have thus established the existence of a geodesic that is recurrent without

being periodic.

According to Theorem 12, § 12, the existence of one geodesic that is recurrent

without being periodic, is sufficient to establish that the power of the complete

set of geodesics that are recurrent without being periodic is that of the con-

tinuum.

§ 16. Theorem 16.    On a surface of negative curvature for which

2p + v - 1 S 2,

the set of all geodesics that are recurrent without being periodic, has as a limit

geodesic every geodesic lying wholly on S.

Let there be given an arbitrary closed geodesic lying on S. Let B be any

finite subset of successive normal segments of the normal set C representing

the given closed geodesic.    Let Ni and N2 be the two sensed normal segments
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used in the proof of the preceding theorem, and — JVi and — N2 be, respec-

tively, the same normal segments taken in opposite senses.

If now the set B does not begin or end with — JVi, or — JV2, we denote

the set B, by D. If the set B begins with — Nx or — N2, we prefix N2 or Nx,

respectively, to the set B, while if the set B ends with — Ni or — iV2, we add

iV2 or 2V"i, respectively to the set B, and in either case denote the resulting

set by D . We interpose this set D between each two successive sensed normal

segments of the normal set C, given by (1) in the proof of the preceding the-

orem, and denote the resulting set by C.

It is a consequence of the nature of the construction of the set C", that

no two of its successive sensed normal segments are the same normal segment

taken in opposite senses. The set C is thus a normal set. The normal

set (1) of the proof of the preceding theorem, is recurrent without being

periodic; it follows that the set C is recurrent without being periodic. The

geodesic represented by C is accordingly recurrent without being periodic.

The set C contains B as a subset of successive normal segments. It follows

from Theorem 8, § 11, that the given closed geodesic is a limit geodesic of the

set of all recurrent geodesics that are not periodic.

That every geodesic lying wholly on S is a limit geodesic of the set of all

geodesic that are recurrent without being periodic, follows now from the fact

that every geodesic lying wholly on S is a limit geodesic of the set of all closed

geodesics on S.

Distribution of elements on recurrent geodesics

§ 17. Definition. Two elements E' and E" of a set of elements M on a

region B of S, will be said to be mutually accessible in M and on B, if corre-

sponding to any positive constant e, there exists in the set M, a finite ordered

subset of elements of which the first is E', and the last E", while each element

of the subset, excepting the last, lies within a geodesic distance e, measured

on B, of the following element.

The following theorem is established in § 25 of the earlier paper on geodesics.

Theorem 17. On any simply connected region B of S, and in the set of all

elements on B, and on geodesics lying wholly on S, no two elements on different

geodesics are mutually accessible.

A particular consequence of the preceding theorem is that, on any simply

connected region R of S, and in the set of all elements on R, and on geodesics

that are recurrent, no two elements on different geodesics are mutually acces-

sible. A set of recurrent geodesics with this property are of a type called

discontinuous recurrent motions by Professor Birkhoff.   Thus:

Theorem 18. The set of all recurrent geodesics on S constitutes a set of

recurrent motions of the discontinuous type.



100 HAROLD  MARSTON  MORSE

The proof, given in this paper, of the existence of a set of this type, is the

first proof of the existence of a discontinuous set of recurrent motions.

§ 18. A recurrent geodesic was defined as a member of a minimal set,—a

set in which every geodesic has every geodesic of the set, and no other geodesic,

as a limit geodesic. In case a given recurrent geodesic is a closed geodesic,

the minimal set containing the given geodesic consists merely of the given

closed geodesic. In case a recurrent geodesic is not a closed geodesic, the

power of the minimal set that contains the given recurrent geodesic, is, accord-

ing to Theorem 12, § 12, that of the continuum.

From the definition of a minimal set, it appears that no two minimal sets

that are not identical, have any geodesic in common. Each recurrent geodesic

thus belongs to one and only one minimal set. The question arises as to how

many different minimal sets there are on the given surface. That there are

at least an enumerable infinity, follows at once from the fact that there are an

enumerable infinity of closed geodesics. The number of minimal sets that

do not consist simply of one closed geodesic still remains to be determined.

It has been seen that any geodesic lying wholly on S can be completely

characterized by means of normal sets of sensed normal segments. It may be

inquired whether or not any minimal set may not be characterized in terms

of sensed normal segments, and if so, what is the explicit nature of the char-

acterization. These questions seem to indicate the opening to an interesting

field of inquiry.

Harvard University,

June, 1917


