\[
\left(\frac{h_2(x)}{h_1(x)} \right)' , \left(\frac{h_3(x)}{h_1(x)} \right)' , \ldots , \left(\frac{h_n(x)}{h_1(x)} \right)' , \left(\frac{f(x)}{h_1(x)} \right)'
\]
implies its validity for the \(n + 1 \) functions \(h_1(x), h_2(x), \ldots, h_n(x), f(x) \), as may be shown by (13) and by Rolle's theorem. I had originally based my demonstration of Theorems I, II, III on Theorem V. I was led to the treatment of the subject I finally adopted by a kind remark made by Professor H. Weyl.

Eidg. Technische Hochschule, Zurich, Switzerland.

\section*{ERRATA, VOLUME 24}

J. F. Ritt, \textit{On algebraic functions which can be expressed in terms of radicals.}
Page 21, lines 30 and 33, for "\(n^2 \)" read "\(n \)".