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In a previous paper of the same titlet I have developed the fundamental

principles of a general theory which includes as particular instances the

theories of Cesàro and Holder summability of divergent series and divergent

integrals. I further made use of these fundamental principles to prove a general

theorem which includes as special cases several important theorems in the

above mentioned special theories.

In the present paper the general theory referred to above is extended to

the case of multiple limits and the theorem mentioned is likewise generalized.

The theorem thus obtained includes as special cases the extension to multiple

series of the Knopp-Schnee-Ford theorem^ on the equivalence of Cesàro and

Holder summability for divergent series, the extension to multiple integrals of

the analogous theorem of Landauf for the case of divergent integrals, and the

extension to partial derivatives of a corresponding theorem with regard to the

equivalence of certain generalized derivatives. Once the principles of the

theory are set forth, the proof of this general theorem is fully as simple as

the proofs of any of the special theorems would be. Thus we have exhibited

the greater power of the methods of General Analysis as compared with the

methods of classical analysis.

The basis of our general theory may be indicated as follows :

(«;$»;%; ...; $m;@t;@,; ...; ©„; ©•»*.«.«-.*•«;

$,««,. ©,,.., ®.to« (¿= 1,2,...,»»);

g.on@„s„...,®„tosi (» = 1,2, ...,m);

Ron®,,®,, ..., ®mtoÄ. &on@,,®,, ..., ®»to«. «,(»»).

#»•*»«.!<»««**. (»' = 1,2, ...,m);

^onGto^onÇtoS)

* Presented to the Society April 14,1922.

t These Transactions, vol. 24 (1922), pp. 79-88.
| For references to the literature dealing with the special theorems referred to, see Paper I.
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where 2Í = [a] denotes the class of all real numbers a, 5f3¿ = [pi] denotes

a class of elements pi (i = 1, 2,..., m), and ©» = [a®] denotes a class of

sets a® of elements^ of the range $& (¿ = 1, 2,..., wi); © = [y], C¿ = [^®]

(* = 1,2, ..., w), &eee[op®](¿ = 1,2, ...,m), ¿ = [?], and g = [99] are

(2»w4-3) classes of functions, y, rfu,..., t¡im), <pm, ..., op(m>, t¡, and op respec-

tively on ©!, ©a, ..., @m to 21 (we consider only single-valued functions);

op<m) is a special function of the class $; «7i is a functional operation turning

a function of the class © into a function of the class §¿ or a function of the

class & into a function of the class fa, denoted by JiY or Jii¡® respectively;

and J is a functional operation turning a function of the class © into a function

of the class ¡q or a function of the class § into a function of the class %,

denoted by Jy or Ji¡ respectively.

In order to show the relationship of our general theorem to the special

cases of it to which we have referred, we will indicate here what the general

basis reduces to in the particular instances in and IV.

«ß1» = [all n, = 1, 2, 3, . ..] (¿=1,2,..., m);

@i = [o"n( = (1,2,..., ni)\m] (¿=1,2,..., m);

© = & = ft = £ = g = [all y, ,», y®, ,, yons,...,®,.^«]

(* = 1, 2, .... m);

<P0m) (o«., <Jn„ . • •, ffnj = «i nj • • • «m (n,-; t = 1, 2, ..., wi);

A<=n<

(di ö)(oMl,-on ) = 2 »(a»,, .. ., afc, . . ., an )

(n<; *= 1, 2, ..., m; 0 *= y, f®);

k,=n,        *««=bk

(^0) (a«,, ..., a»J = J£ • ■ •  2 Vi"*,, ..., OkJ;
fc,=i       km=i

(m; i = 1, 2, ..., m; 0 = y, i¡).

^ = [allaf>0] (i = 1,2, ...,m);

©. = [a® = (all^suchthatO^a^a^   (at.^O; ¿=1,2, ..., m)];

© = [all functions that are finite in any finite region (0<a;¿<¡a¿;

i — 1, 2, ..., m) and are integrable (Lebesgue) with respect
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to each of the variables xi (i = 1, . ■ ■, m) on every finite inter-

val (0 < xí <j Oí; i = 1, ..., m)] ;

r
§t. =. ail »/(*' =  J y(xx,Xt, ...,Xi, ...,xm)dxi    (xi>0; i= 1, ..., m);

o

I*B?< = allç>(i) = I ^fo,;*:», ...,a*, ...,xm)dxi     (xi>0;i~l,...,m);

£> = allr/ =  I  • • •  I   y(iCi, ..., Xm)        (xi>0; i = 1, .. ., m);

0 0

Ja* -?»
•••  Il   l(xi, • ■ -, xm)        (xí>0; i — 1, ..., mi);

0 0

(q>0m))(aa,, ..., oaJ — a* a* • ■ • am (aï, * — 1, ..., m);

r'
W9) (<*a>, ... , oaJ =  \  ddxi       (oí; i = 1, .. ., m; 6 = y, t/<»);

o

a, a„

(Jö) (oa,, . .., aaJ = I  • • •  I   8       (at; i = 1, ..., m; $== y, ç).

With regard to each of the classes ©i, ©», ..., ©m we make definitions

analogous to those made for the class © in Paper I, and we further postulate

analogous properties. These properties will be referred to by the same letters

as in the previous paper with a subscript or index attached to indicate the

particular class to which reference is made. When any two functions 9, «on

@u • ■ -, @m to SI are regarded as functions of a single set a®, the other sets

being held fixed, we define the notation (Df 6) (a<« ..., a^) = a (a(1),..., a<m>)
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in a manner entirely analogous to that in which the notation(Z>0) (a) = a (a)

was defined in Paper I.

When functions of the class © are regarded as functions of a single set ff(i),

the other sets being held fixed, we postulate for them the properties of class ©

of Paper 1, these properties to be referred to by the same letter with suitable

index or subscript. Analogous properties for the classes ö and %, designated

in similar fashion, are also postulated. Furthermore for the classes §j and 3¿,

regarded as functions of the set a® alone, we postulate the properties of

classes £> and % of Paper I and indicate them in like manner. When the

functions of classes © and §¿ that are involved in the operation Ji are regarded

as functions of the set a® alone, we require Ji to have all the properties

required of J in Paper I, which properties we shall designate by the same

symbols with subscript or index i. We further postulate that any of the

operations Jx, J2, ..., Jm is interchangeable with any other of the set, which

property we designate as (Z). We also postulate as to the relationship be-

tween J and Ji, J2, ..., Jm that

(N)      iJv) (<*», • - •, a«) = iJx(J2 • • • ( JmV)...)) (aW .. ., o«W).

With regard to the special function xpQm) (<ß-\ ..., <¿m)) we postulate that

iX) xpf» (a'«, . ..., a<"»)) = op0 (a«) xp0 (o») ■ •. op0 (a<»'>),

where xp0 (<*(i)) as function of a®, for i = 1, 2, ..., m, is the same function

as xp0 (a) of Paper I as function of a. We also postulate for the class ££ that

(<7i op) (a(1), ..., a(m)), for i = 1, 2,..., m, is of the class g, which property

we designate as (K).

For the sake of brevity we shall agree to represent, in all cases where no

loss of clearness is involved, the set of elements p(1\ ..., p(m) by the single

symbol p, the set of classes $(1),..., 5ß(OT) by 5ß, the set of classes é(1),..., ©(TO)

by ©, and the set of sets a(1), ..., a("*> by a. Analogous to the definition of

the notation lim,, 6 (a) = a in Paper I, we define the corresponding notation

in the case that a represents the set of sets o(1), ..., a(m) to mean that corre-

sponding to every positive e there exist sets a<°, ..., a<m> such that for sets

0(0 > a(¿) (¿ = j f 2, ..., m) we have 10(a) — a\ <: e.

We then postulate as to the class § the property (75) defined by

(7J)  If lim,, t¡ (a) exists and is equal to a, then \i¡ (a)| < ai (a).
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If we also for the sake of brevity agree to represent a group of properties

such as Rx, B2,..., Bm by the single letter B, we may indicate the foundation

of our theory as follows:

V _  /or   Wi    ffXVAR. (uonStoM.LP   c- on S to SI. L. P, s2J / • 1 \
2^ = \^,V;®       ;© ,Vi ' (l=l,...,m);

<y,ontStoW.L(PfS(¿) C(â,        /■ _ . N. ç-onStoSI.iPSoB
O t \* — I ■ • • • , m ),       <y

cyOnStoW.LPSBCáK (m)%.X
û ;    <Po      ;

j<m<Stof>l.on6ttofil.JIÍ)MS>l(¿>I(/l (i = 1 m)-

ron®to$.on$ toS.J?\

We now set

(1) «C>(«)  -   <Pon(°Wï<Pon(*2))---<Pon(°(m)),

where q>^ (a®), as function of a®, is the same function as g>0n (a), as function

of a, defined by equation (3) of Paper I. We are then ready to define the

two generalized limits with which we shall be concerned. Given any function

i¡(a), we set

(2) (cnV)(°)=-Mr^(Jnv)(<>) (»).

(3) (Mi)(o)=-J^(JV)(a),

(4) (Hni)(a)=(M*i)(o)        (n).

If for a fixed n lima(Cn^) (a) exists, we define this limit as the generalized

limit of type (Cn) for r¡ (a). If \\ma(Hnn) (a) exists, we define this limit

as the generalized limit of type (Hn) for i\ (a).
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Before proceeding to the proof of the equivalence theorem we introduce the

following notations:

(5) (Miy)io) = [l/opo(a®)](jfy)(o) (i = l,...,m),

(6) (C**"--«*f)(o) = yow(^.!.)^\a(^))^---(Ji+^)---)(CT)    (n)'

y(0(a) = 9>o(o(i))9'o(a<í))---ípo(ow_2)y(o)       («>2; ¿=l,...,m),

(7)

;f (o) = 9>o(o(i)) r(°), if 00 = y(a) (¿ = 1, ..., m),

where a®, a®, ... are defined with regard to o® in the same manner as

di, Ou, ... with regard to a in Paper I;

(8)    (5®y)(o)= ({^-Mi + j¡-E)y]jia)       (n),

(9) (S«1'2" ■■•öy)(o) = (fif(Sf--(Sfy)" •))(«)    (n;¿=l,...,m),

(10) (Ä„y)(a) = (tf(rf'--(^'''))W («),

(11)   (r„*y)(o) = tty(a)-   ^J] iJir(»)i°)       in; i= 1, ..., m).

We are now ready for the proof of our theorem ; we begin by proving some

lemmas.

LEMMA 1.  If we define Sn as in (10), we have the identity

(12) (Sn iCn n)) (a) = (M(Cn-x V)) (a)       in).

We have from Lemma 1 of Paper I and the interchangeability of the various

operations involved
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(Sn(CnV)) (a) =   (Si1'2.,*-1) (<#'.m-" (ÄS* «tf0 *)))) (*)

- (-i#2.•W-1) (eg»«--—» (Jfm (CÍA i?)))) (o)

- (ä2*--—• (a«-2.m-2) (¿ir» (dr" (if« (cía *)))))) (a)

= (¿gA-.«*-» (^2'-m-2) (üfm_i (Mm (&ZÏ'm) n))))) («)

= [Ux (Mt ■ ■ ■ (Mn (Cnr-i n)) ■ ■ ■ )) (a) = (M(C-i n)) (°).

Our lemma is therefore established.

We define 9® in a manner analogous to the definition of y® in (7). We also set

fon-i(a) = ?>on(a®).

We then prove

LEMMA 2. If\imaq>(a) exists and is equal to a and \<p(o)\ •<■ ax for every a,

then limelfon (a®)]-1 (J( qp®) (a) will exist and be equal to aln and we shall

have

\[<Pon (aW)]_1 (Ji <) (°)l < < (O, »,  * = 1, . . . ( «).

Given a positive e, we choose oé so that a — (e/4)< ?>(o)< a + (e/4) for

a^oj.* We have

[^(••)^(Ji»i?)(9)

(13)       = [^ (a®)]-1 («7; y®) (a», ..., a®', ..., <»<*>)]

+ [^ (a®)]"1 [(J, 9><?) (*)-(/, <») (°(1), ..., of, ..., a<"«)].

* It should be remembered throughout that «¡ is an abbreviation for («r*1* , <r®, ...,

a™),  and that <r>«J is  an  abbreviation  for the set of relationships <r(x)>a(X), ...,
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Analogous to (18) of Paper I we have the relationship

[October

(14) mpffx«)»^^^«'-.*)»])^)

Making use of (14), and postulates Mf and If, we see that the second term

on the right hand side of (13) lies between

%\ 4/L Von(°(,,)J n\ 4/[ foni° W)J

From (IV) of Paper I it follows that for a proper choice of q'¿ > aj the above

expression differs from a In by a quantity that is less in absolute value than

\e for all a> a".

The first term on the right side of (13) is seen from (14), Mi%\ and Ij to

be less in absolute value than

n <p0ni°li>)

From IV of Paper I it follows that we can choose a"' > <s'e so as to make this

expression less in absolute value than £e for a > o'e". If now we choose for oe

the greater of ai' and a'", it follows from (13) that for a^oe,

K„ (o®)]"1 (Ji V«) (o) - («/») I < *,

and the first part of our conclusion is established.

Making use of (14) and M®, we have

— «i

n <[<Pon(°ii))]-1(Ji<P(¿>)i°)<-%->

which establishes the second part of our conclusion.
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LEMMA 3. If \\ma (p(o) exists and is equal to a, and \ q> (a) | <c a^ for every a,

thenlim(r(8nf)(o) will exist and be equal to a and we shall have | (Sn f) (i) | < at

for every a.

By virtue of definition (10) the operation 8n is equivalent to a succession

of operations Sn for i = 1, 2, ..., m. It follows from Lemma 2> for the

case n = 1, that if a function (p (a) remains finite for all a and approaches

a limit as to a, the same is true for the function resulting from the operation

Sn applied to <p (a). Hence by a succession of m applications of Lemma 2,

we obtain the conclusion of the present lemma.

We now set

(15) (p'i(o) = (&%)(<») (»-1,2, ...,«).

We then prove

LEMMA 4. If for any i lim^op^o) exists and is equal to a, and | f'i(a)\ < Oi

for every a, then \ima(p(a) will exist and be equal to a, and we shall have

19(°) I < <h for every a.
By a procedure analogous to that used in the proof of Lemma 3 of Paper I

we may transform equation (15) into the form

(16) (p(a) = (2£>i)(°)    (*>2; t = l,...,m),

where T® is defined by equation (11). Our lemma then follows from Lemma 2

for n ¡> 2. For n = 1 it is an obvious consequence of (15) and (8).

LEMMA 5. If lim,, (Sn f) (a) exists and is equal to a and \(Sn f) (a)\ <c ax

for every a, then lim^ gp(a) will exist and be equal to a and we shall have

\f(a)\ < at for every a.

Making use of the definition of Sn given in equation (10), we see that this

lemma may be established by successive applications of Lemma 4.

Noting that Sn and M are interchangeable operations, we have from suc-

cessive applications of (12), in a manner analogous to the corresponding

reductions in Paper I by means of equation (14) of that paper,

(17)    (Hn r¡) (*) - U(&. • • (St (Sn-! (Sn (Cn *?))) •••))) (a) («).
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We are now ready to prove our theorem:

THEOREM. If lima iCn r¡) (a) exists and is equal to a, then lim,, iHn i¡) (a)

will exist and be equal to a, and conversely.

From (17), (7J), and successive applications of Lemma 3, we obtain the

result :

If there exists limff (Cn i¡) (a) = a, then there exists \va\„ (7J„ i¡) (a) = a (»).

From (17), (7J), and successive applications of Lemma 5, we obtain the

result:

If there exists limff(7J»^)(a) = a, then there exists lim0.(C»^)(a) = a(n).

Our theorem is therefore established.

University of Cincinnati,
Cincinnati, Ohio.


