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1.

In the classical non-euclidean geometries of space of n dimensions, distance

as well as angle has a projective definition, and equilong transformations are

the dual of conformai transformations by polar reciprocation in the absolute.

In euclidean space the projective definition is lost, but while the preceding

duality breaks down, Schefferst exhibited a perfect analogy in the euclidean

plane by the use of the dual numbers of Study. We know that for any function

of the complex variable

fix + iy) — Xix, y) + iYix, y), i% = —1,

where X and Y satisfy the Cauchy-Riemann differential equations

az _ . rY_      dX_ dY
U dx dy'       dy dx'

the point transformation

(2) X = Xix, y),    Y = Yix, y)

is directly conformai. Scheffers proved that if u and v denote the Hessian

normal coordinates of an oriented line iv the distance parameter), for any

function of the dual number

fiu + ev) =  Uiu, v) + eViu, v), e* = 0,

where U and V satisfy the differential equations

(3) !£ = ^~       ^ = 0
w du dv '       dv '

* Presented to the Society, December 27, 1922.
f Mathematische Annalen, vol.60 (1905), p. 491.

469



470 B. H. BROWN [October

the oriented line transformation

U = U(u, v),    V = V(u, v)

is directly equilong.

Since the conformai group in non-euclidean as well as in euclidean three-

space is a ten-parameter group, the equilong group in non-euclidean three-

space depends on ten parameters. But the equilong group in euclidean space

contains arbitrary functions* In space of more than three dimensions, the

conformai euclidean group, and the conformai and equilong non-euclidean

groups contain a finite number of parameters, but Coolidget has shown that:

The most general equilong transformation of a euclidean space ofn dimensions

depends on the most general conformai transformation of a space of n—1

dimensions and an arbitrary function of the direction parameters. The distance

parameter enters linearly.

The above theorem is true for n > 3, but the last statement is also true

for n = 2, since the integration of (3) gives

(4) U = U(u),        V = U'-v+Ux(u).

This fact leads to a hitherto unnoticed analogy between the conformai and

equilong transformations in the plane, and to a sharpening of the contrast in

higher spaces. The functions X and Y of (1)" satisfy Laplace's equation.

Again in Study's formulation of the conformai (and therefore equilong) trans-

formations in the Eiemannian and Lobatschewskian planes, the functions of

hypercomplex variables are separable into functions satisfying either Laplace's

equation or the hyperbolic form

dx* dy*   ~ °'

* This remarkable theorem was first enunciated, without proof, by Study, Sitzungs-

berichte der Niederrheinischen Gesellschaft für Natur- und Heilkunde, Dec. 5,

1904. In 1908 Coolidge gave the first published proof of this theorem, and a correct

explicit form for these transformations in these Transactions, vol.9 (1908), p. 178. An

incorrect derivation leading to a ten-parameter group was given by Loehrl in his Würz-

burg dissertation (1910). A demonstration, independent of Coolidge's, was given by Blaschke,

Archiv der Mathematik und Physik, vol. 16 (1910), p. 182. The final form of these

transformations is, however, incorrect with respect to a distinction of signs. This error has

never, to our knowledge, been corrected. In 1916 Coolidge in his Treatise on the Circle

and the Sphere, p. 419, changing the correct form of his 1908 paper, reproduced Blaschke's

incorrect form.

fLoc. cit., p. 182.
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equations which are not essentially distinct for complex solutions. Finally

the functions U and V of (4) satisfy the parabolic equation

<» 0 - o-

But while the functions in the equations of an equilong transformation in

n-dimensional euclidean space are non-trivial solutions of (5) (v denoting the

distance parameter), the analogy is completely lost in the other cases.

In this paper we give in Section 2 a new demonstration of the fundamental

equations for equilong transformations in euclidean three-space. The main

portion of this paper is then devoted to a discussion of groups of these trans-

formations which leave invariant various differential expressions and equations.

The equation

..... «4-t; iiu — v)     ,   1 — uv xo
(6) T-TT^r*-   i.....   y + TÄrr-g =1+uv 1 + uv 1+uv 1+uv

represents an oriented plane such that the direction cosines of its oriented

normal are the coefficients of x, y, and z, and such that the distance from the
w

origin to the plane is —-¡-—. Then u, v,wa,re Bonnet* tangential coordinates

of this oriented plane. Exceptional cases occur when: (a) 1 + uv = 0 (minimal

plane) ; (6) the spherical representation of the plane is a point on a ruling

through the south pole. The point of contact of a plane and any envelope

which touches the plane is given by the equations

iu + v)x — ¿(m — v)y + (l — uv)z — w,

(7) x — ly— vz = — = j?,

.   . dw
x-j-ty — uz = —— = q.

y dv        *

The square of the distance between two points of a plane is

(8) ipi—Pi) iqi — q»)-

♦Liouville's Journal, ser. 2, vol. 5 (1860), pp. 153-266.
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In any plane transformation

U = U(u, v, w),

(9) V = V(u,v,w),

W = W(u,v,w),       J$0,

corresponding points of two corresponding planes are protectively related.

To find the equations of the equilong transformations we simplify the form

of (9) by imposing the necessary conditions that the collineation be

(a) affine;

(6) directly or indirectly conformai.

Blaschke has shown that under these impositions the once-extended trans-

formations are

Direct:  U = U(u), Indirect: U — U(v),

V = V(v), V=V(u),

W = W(u,v,w), W = W (u,v,w),

D 1   IdW        dW\ D 1   IdW        dW\
P==lf\-*w-i}+-Ju-)' P=vr\Tw~q+^v)>

„ 1   IdW     .   dW\ - 1   IdW dW\

It is now necessary and sufficient to impose the condition that

(ft —J>2)(ïi~ 2a)

be an absolute invariant.  In either case we have

1      ldW\2
(pi—pi) (Qi—Qt) = -jjTyr \-^-j (Px—p2)(qx—q2) — (ft-ft)(?i—g2).

Hence
dW = VWY
dw
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We thus have as our fundamental equations

Direct: U = Z7(w), Indirect: U = Uiv),

(10) V = V(v), V = V(u),

W =VWYTw + Fiu,v);        W=VWWw + F(utv).

Blaschke, and subsequent writers, incorrectly insert a ± sign under the

radicals of (10). For such transformations the plane projectivity is either

directly conformai and indirectly equiareal, or indirectly conformai and directly

equiareal.  In neither of these cases is square of distance preserved.

3.

We state, without proof, the fundamental formulas in the differential geometry

of a non-developable oriented surface w = wiu,v). The coordinates of

a point of tangency are given by

,   . uw — pu* + q

" 1+uv

(11) x-iv= vw-Zv% + 7>
U1; x     ty 1 + uv       '

w — up — vq

1 + uv

d*w _ d*w d*w
du* ~r' dudv ~s'  dv1

Let -—s- = r,-= s, -r—<r = t: then the three fundamental forms are

(12)

ds* = riz + s)du*+{(z + s)i + rt} dudv + t(z + s)dvi,

r      ,,     2iz + s) j   ,           t ,
-du-—-¡-dudv ——¡--■ dv',

1 + uv 1 + uv 1 + uv

, . A-dudv
da* =  —-r--rj-,

il+uv)'

The total curvature is

(13) il + uvfirt — iz + s)*}
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the mean curvature

(14) _4(g + s)_■

K   ' (l + uv){rt—(^ + 8),)'

the lines of curvature are given by

(15) rdu'—tdv' = 0;

the radii of principal curvature by

MCs                     p        — w + up + vq—(l + uv)(s + Vrt)
(lb) it =-■-r-,

and the centers of curvature by

X+iY= q — u(s + Vrt),

(17) Z—*F = j»—»(s + VTi"),

„       w — up—vq—(1 — uv)(s + yrrt)

The differential equations of minimal curves and of asymptotic curves follow

from (12). The differential equation of minimal surfaces is

(18) z + 8 = 0,        rt £ 0;

of spheres (oriented, non-null spheres)

(19) r = t = 0,       z + s £ 0;

of points, which are not to be excluded on the score of the discriminant of the

first quadratic form vanishing, but which are proper envelopes of oo» planes,

and may be regarded either as minimal surfaces or as spheres,

(20) r == t — e+8 = 0.

4.

Among the indirect equilong transformations, the analogue of the identity

is that one which merely reverses the orientation of a plane, without changing
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its position. This transformation we term the "pseudo-identity". It is clear

that every indirect transformation is the product of a direct transformation

and the pseudo-identity.  The twice-extended form of the pseudo-identity is

J_
v '

1_
u'

w

uv '

w — vq

u      '

w — up

V        '

v't

u   '

up + vq—w — uv8,

u9r

V

It will be observed that the equations and expressions (11) to (20) are

invariant (invariant except for sign) under (21) as they have geometric signi-

ficance independent of (dependent on) orientation. The differential geometry

of oriented surfaces is the interpretation of the differential invariants of the

extended pseudo-identity. A surface whose equation is invariant under the

pseudo-identity is obviously one-sided.  We have then the

THEOREM. A necessary and sufficient condition that a surface w — fiu, v) be

one-sided is that f satisfy the functional equation fiu,v) = —uvfl-,-J.

5.
We shall next prove the

THEOREM. Any oriented non-developable surface may, by each of two and

only two distinct, direct equilong transformations, be transformed into any

other oriented non-developable surface, and that with an arbitrary analytic

directly conformai mapping of their spherical representations.

This theorem was suggested by Study in his 1904 paper, but he stated,

incorrectly, that there was one and only one such transformation.

(21)

U

V

w

p

Q

B

8

T
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Let us consider two surfaces

W = /, iU, V),

w = ft(u, v),

and let us assume that the spherical representation of the first (U, V) is con-

formally mapped on the spherical representation of the second (u, v) by the

directly conformai transformation

U= U(u),

V = V(v).

The theorem is proved if, in the group of transformations

U = U(u),

V = V(v),

W = Vu'V'w + Fiu,v),

we can determine two and only two functions F(u, v) such that the first

surface is transformed into the second.  This means that

VWv'w + Fiu,v) =fx(U(u), Viv))

must be identical with

w = f2(u,v),

which is true when and only when

F(u,v) =fx(U(u), V(v))-VU'V'Mu,v);

hence there are always two distinct transformations.   We should note that

there is no exception when/2 = 0.

6.

The twice-extended form of the general direct equilong transformation may

be written
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U = U(u),

V = V(v),

W = VWVw + FW, V),

2U'2 U'2

(22)

wU'^V"       qU'ï
Q — -j-I-r~ + b v'

27'T t/'2

i. A i_
wV'2U'"       3 wU"2V'2       rV'2   ,  „

B —-j-—-y-1-8- + ¿crrj,

2J7'2 U'2 U'2

wU"V" pV" qU" s
« —-t-\-p~X"i-1—¿H-—r + ^pv,

4(tT7')2       2?7'2F'2       2F'2Z7'2       (£/"F')2

i ¿ -L
u;íí'2F'"       3  w7"2^'2    .   W2,  _,

T = —--6-—-,-h—T + Fvr.

27'2 y'2 7'2

It is proposed to discuss the invariance of the equations and expressions (11)

to (20) under (22).

First, under a direct transformation, a necessary and sufficient condition

that spheres transform into spheres is that B vanish with r and T with t.

This requires
2U'U'"—3U"2= 0,

(23) 2V'V'" — 3F"2 = 0,

Fuu — Fyv — 0.

The first two of (23) recall the Scnwarzian derivative.  Integrating, we have

jj _  au + ß _    a'v + ß'

yu + â ' "  y'v + Ô"

(24)
F = AUV + BU+CV + D.



478 B. H. BROWN [October

We may and shall choose ratios so that

ad — ßy = a'a'—ß'y'= 1.

We have then

±w + auv + bu + cv + d
(25) W = iyu + o)iy'v + d')

(24) and (25) giving the equations of the well known Laguerre group. We might

just as easily have found these by imposing the condition that lines (more

properly strips) of curvature go into lines of curvature.

It is easy to verify that translations are given by

(26) Ü = u,      V = v,      W = w + aiuv — l) + bu + cv;

reflection in the origin by

(27) U = u,        V = v,        W = —w;

dilatations by

(28) U = u,      V =■ v,      W = w + aiuv + 1);

rotations by

(29)    Î7 = ^±A,      F-    dv~C   ,      W-
cu + d' ~ —bv+a' icu + d)i—bv + a)'

where ad — be = 1.   Other transformations involve Laguerre inversions.

On account of the simplicity and frequency of occurrence of the expression

z + s, we next consider the transformations under which minimal surfaces

transform into minimal surfaces.  It is clear that any transformation

U = u,     V = v,      W = w+fiiu,v),

where / is a solution of z + s = 0, will carry any minimal surface into

a minimal surface, for the sum of two solutions of a linear homogeneous partial

differential equation is itself a solution. To this group of transformations we

may, from geometric considerations, adjoin (27) and (29). It turns out that

these are the only such transformations; we term this group the "minimal

group".
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To prove this statement, if we impose Z+ S = 0 on z + s == 0 we must

have

IV\jj'2 7'2 _|r/y'2 u» _ * VU>2 V" + \ U" 7" + ■j U" V" U' V']

+ p[— UU' V'2 + y U' V" + y 17 77' 77"]

(30) f g — W U'2 + -J- 7 U" + 4- 77' 7777"

+ *[i7' r+77777'7']

+ (U' 7')2 [F - UFv - VFv + ( 1 + UV) Fur]

U'V'(1 + UY)
1 + uv

{w — up — vq + (\ + uv)s}.

Hence it is necessary that

777        1 V"
S.fi ~l+C77"fT7r

717     ,   1  77"

M

l + MV

(32) 1 + UV T 2  U' l + uv'

(33)
U"V" U'V        1 1777" 77'+ 777" 7'
ArU'Y'   '   1+177      2

| 777" U" + 777" V \ 1
I    77'7'(l+777)    I : :  l + uv'

(34) F— 77.Fr/— 7FV+ (1 + UV)Fw — 0.

Subtracting (33) from the product of (31) and (32) we have

77'7'U' V _        1

(   } (1+777)»  ~~ (l + uv)*'
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hence we may rewrite (31) and (32) as

UY'2       1 V"■(1+UV)

(36)

TJ'2 y'2  JJ'2

Y Tf 2 1 Tf'

2 8 1

y 2 jjii y 2

Differentiating the first of (36) with regard to v, and the second with regard

to M,

U(1+UV) !-„„„,      3
6_

Y'2

(37)

hence

.J7»'7'_J.F'"j = o,

V^UV)\U"'U'-\U»*) = 0;
U'i

=     au + ß _     ¿V + ß1

° '      yu + ô ' ""   y'V4-d'

are necessary conditions on U and 7. Now if, in (33), we substitute the value

of il + uv) given in (35), and these last values of tfand Y, it is necessary that

a:ß.y.e = S':— y': — ß': a',

and the theorem is proved.

If we examine the form of any one of (12), (13), or (14) we see without

difficulty that any one of them is invariant if and only if the transformation

belongs to both the Laguerre and minimal groups. The actual verification of

this is so much a repetition of the previous proof that it is omitted. Un-

fortunately the only such transformations are the congruent transformations;

for the only non-parallel transformations of the minimal group are rotations,

and of the parallel transformations of the Laguerre group, dilatations carry

a point into a sphere which is not a minimal surface. Our results are then

essentially negative if we impose the condition on all surfaces, but there are

interesting special cases for groups of transformations and groups of surfaces.
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We consider only one such example: the conformai mapping of surfaces

under equilong transformations. The differential equation of minimal curves

on a surface is, by (12),

r(z + s)dut+{(z + s)t + rt}dudv + t(z + s)dvi = 0.

The following theorems follow immediately:

1. Under a transformation of the Laguerre group any sphere and the trans-

formed sphere are conformally mapped.

2. Under a transformation of the minimal group, any minimal surface and

its transformed minimal surface are conformally mapped.

3. The only surfaces transformed into their spherical representations with

conformai mapping by equilong transformations are spheres and minimal

surfaces.

4. A minimal surface may be transformed into any sphere with conformai

mapping, and conversely.

7.

Since the solutions of linear homogeneous partial differential equations

possess the additive property, we may associate with every such equation the

surfaces that are solutions thereof, and a corresponding group of direct

parallel equilong transformations

U = u,    V = v,     W = ±w+f(u,v),

where/is itself a solution of the given differential equation; under this group

of transformations the surfaces are permuted among themselves. Obviously

we shall be most interested in differential equations invariant under the

pseudo-identity. For such differential equations there is a sub-group of trans-

formations which will permute the one-sided surfaces of the group among

themselves, for the solutions of the linear homogeneous functional equation

f(u,v) = -uvf[-\, —jL)

possess the additive property. Thus, for example, the double minimal surfaces

are permuted among themselves by the appropriate subgroup, for they are the

only one-sided minimal surfaces.

Let us consider a solution of (18), a minimal surface whose equation may

be written

w = 2v/(t») + 2«/1(t;)-(l + Mi;)I/'(t*) + /î(t;)].
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We may associate with this a two-parameter family of minimal surfaces [A, B]

w « 2vAf+2uBfx-(l+uv)[Af+Bfi],

where [ A, A ] are expansions of the original surface, and [ A, 11 A] its continuous

deforms;* and we may also associate therewith the two-parameter family of

parallel equilong transformations of the minimal group which permute these

among themselves.

The oo* points, one from each of these surfaces, with properly parallel

tangent planes (planes with the same u and v) may be obtained by expanding

at the origin the conic which is the path-curve of the point of the original

minimal surface under the continuous transformation which gives the asso-

ciated surfaces. These points are coplanar, as the plane of the conic contains

the origin. The tangent planes are not, in general, coincident with this locus

plane. Under a parallel equilong transformation any aggregate of oo8 planar

elements with (properly) parallel planes are rigidly translated as a whole

(Study and Blaschke) so that an equilong transformation of the group effects

a translation of this plane. In this plane associated minimal surfaces are

represented by points of a conic which is one of a one-parameter family of

homothetic conies. A transformation of the group will translate this conic,

the transformed conic cutting the original conic and each of the oo1 homo-

thetic conies in two points (since the axes of the conies are parallel). Hence

under any transformation of the group only two associated surfaces of a given

minimal surface will transform into associated surfaces; the other associated

surfaces will, in general, be transformed by pairs into associated minimal sur-

faces of. the oo1 expansions of the given minimal surface.

This discussion may obviously be extended to any system of surfaces whose

equations are

(38) w = A2fi(u, v)F^(u) + B^gi(u, v)G™(v),

except that the surfaces [A, 1/A] are not generally continuous deforms.

As an example we have certain surfaces of Goursat,t for which the sum of

the radii of curvature at a point is proportional to the distance from the

* Although not coextensive, we shall use the expression "continuous deforms" as

equivalent to "associated surfaces". This is proper, since a continuous deform is an asso-

ciated surface, or can be made to coincide with one by a congruent transformation.

t American Journal of Mathematics, vol.10 (1887-8), p. 187; Baroni, Giornale

di Matematiche, vol. 28 (1890), p. 349.
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origin to the tangent plane at the point.  From (6) and (16) the equation of

these surfaces is

(39) il + uv)s—up—vq + w 1 +     2tk       = 0,
L       1 -+- uv J

the ratio of proportionality being 2k.   Goursat proved that when (and only

when) m defined by

im + l)im — 2)

is integral, the solution of (39) may be obtained free from quadratures, and,

indeed, in the form (38). For these values of k the preceding discussion holds,

with deletion of the expression "continuous deforms".

Two special cases are worthy of note:

(a) If k — 0, (39) is the differential equation of minimal surfaces;

(6) If k = — 1, (39) is the differential equation of Appell* surfaces for

which the projection of the origin on every normal is midway between the

centers of principal curvature.

In the papers of Appell and Goursat, we find three classical transformations :

(a) A transformation of Appell which carries a particular minimal surface

into an Appell surface.

(6) A transformation of Appell which carries a particular Bonnett surface

into an Appell surface;

(c) A transformation of Goursat which carries a particular Goursat surface

into another Goursat surface with change of k. These transformations are

equilong, and, in fact, special cases of Study's theorem where the mapping of

the spherical representations is the identity, and the upper sign for the radical

is used.

The general methods of this section are applicable to a large class of sur-

faces defined by some relation involving their radii of curvature. One further

group of transformations, defined by a linear non-homogeneous partial

differential equation, merits attention. From (16) it follows immediately that

(40) il + uv)s — up — vq + w = —2k

* American Journal of Mathematics, vol. 10(1887-8), p. 175.

t Paris Comptes Rendus, vol.42 (1856), p. 119, Note sur les surfaces pour lesquelles

la somme des deux rayons de courbure principaux est égale au double de la normale.
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is the differential equation of all surfaces for which the sum of the radii of

principal curvature is a constant 2k. Such a surface is, for example, the "inner"

surface of a sphere of radius k, center at the origin

(41) w = — k(l+uv).

Thus knowing one particular solution of (40) we obtain all the other solutions

by adding to the right-hand side of (41) the general solution of the differential

equation for minimal surfaces. Hence the direct parallel equilong trans-

formations

U — u.    V = v,    W = w+f(u, v),

where/(w, v) satisfies (40), carry minimal surfaces into the surfaces we are

considering, and carry surfaces the sum of whose radii of principal curvature

is 2kx into surfaces the sum of whose radii of principal curvature is 2 (k + kx ).

Dartmouth College,
Hanover, N. H.


