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In his paper entitled On the gyroscope^, Professor Osgood has reduced to

the utmost simplicity certain important aspects of the theory of the motion

of a rigid body which is dynamically symmetric about an axis through the

center of mass. The present study derives its inspiration from his article.

A fundamental rôle is there played by the geodesic curvature of the trace

on the unit sphere with center at the fixed point, or at the center of mass,

of the point where this sphere is cut by the axis of symmetry, and this

fact suggests that it might be desirable to have on hand more information

about the intrinsic properties of spherical curves.

Accordingly, the first part of the present paper is devoted to the development

of a number of such properties. The subject, however, is not without interest

for its own sake, and suggests numerous extensions and related problems; for

instance, a systematic study of the relationships of certain properties of the

curvature as a function of the length of arc with the corresponding geometric

properties of the curve. One such property which has already received

a good deal of attention is the "four vertex theorem" (Vierscheitelsatz)

for plane ovalsj. Among other questions that might be raised are such

simple ones as the following: what functional character of the curvature,

in addition to periodicity, insures a closed curve on the sphere? When is

a plane, or spherical curve, asymptotic to some closed curve? What inter-

esting comparison theorems are there for pairs of curves whose curvatures

stand in simple relationships of equality or inequality? And there is the

further question to be considered of curves on more general surfaces.

The second part of the paper makes application of the results of the first

part to the theory of the gyroscope. While some apparently new facts are

there brought to light, mention should be made of a new way of establishing

* Presented to the Society, April 28, 1923.

t These Transactions, vol.23 (1922), pp. 240-264.   This paper will be referred to

hereafter by the initial 0.

\ See, for instance, Blaschke, Vorlesungen über Differentialgeometrie, vol. I, 1921, p. 16.
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some classical results. It will be recalled* that certain theorems on the

sense of precession of the gyroscope, and inequalities on the longitudinal

motion of the spherical pendulum, have hitherto required the use of the theory

of elliptic functions, or of Cauchy's integral theorem, for their establishment,

while others depend simply on the appraisal (Abschätzung) of definite inte-

grals. It turns out that exactly those results which have previously required

tlie less elementary methods are simple consequences of our present geometric

theorems.

In addition to the applications mentioned, there will be found in the

second part of the paper certain further results and formulas which may

well be of use in connection with problems on the gyroscope.

PART I.   ON CERTAIN INTRINSIC PROPERTIES OF CURVES

1. Plane curves whose curvatures approach limits as the arc

lengths increase indefinitely. The need of care in the study of qualitative

properties of curves is illustrated by a loose statement in the authorized

German translation of Cesàro's excellent book on intrinsic geometry.t In the

discussion of plane curves the following sentences appear, in which g is the

radius of curvature, and 5p the angle between a fixed line and the tangent at

the point corresponding to the arc length s: "Nur wenn s zusammen mit f

unbegrenzt zunimmt, kann es vorkommen, daß q sich einem von Null ver-

schiedenen Grenzwerte a nähert. Alsdann windet sich die Kurve, anstatt sich

um einen Punkt herumzuwickeln, asymptotisch um einen Kreis vom Radius a,

und zwar innerhalb oder außerhalb desselben, je nachdem der absolute Betrag

von q sich oberhalb oder unterhalb seines Grenzwertes halt." The following

example shows that from the knowledge that q approaches a limit as s becomes

infinite we cannot infer that an asymptotic circle exists.

Let sn denote the sum of the first n terms of the harmonic series, s» = 1

+ 1/2 + 1/3+ ••• +l/n. We describe about each point (s», 0) of the

x, y-plane, a circle of radius a. We then erase the upper halves of these

circles, and unite the lower halves to a single continuous curve, with continuous

curvature, by joining the two most distant extremities of each pair of succes-

sive semicircles by an arch of an ellipse with transverse axis along the »-axis,

so chosen as to make the curvature continous. Thus, the first arch has its

major axis terminating in the points (1 — a, 0) and (3/2 + a, 0), the second,

in (3/2 —a, 0) and (11/6 +a, 0), and so on.

* See 0, p. 260, end of page, and Appell, Traité de Mécanique Rationnelle, vol. I, Paris,

1902, p. 501.
t Vorlesungen über natürliche Geometrie, Leipzig, 1901, p. 12.
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Here the curvature is seen to approach the limit 1/a, but no asymptotic

circle exists. The example can evidently be modified to bring out a numbei

of different facts. For instance, the initial set of circles may be taken with

their centers on a closed curve, say a large circle. We shall then have

a bounded curve exhibiting the same lack of an asymptotic circle.

A statement that can be made, hoAvever, is the following:

THEOREM I. If a plane curve has curvature, K, which is a continuous

function of the arc length, s, and if as s becomes infinite, K approaches

a limit different from 0 while always increasing or always decreasing, then the

curve has an asymptotic circle, approached from without, or within, respectively.

As the proof of this theorem is analogous to that of a later one on spherical

curves (p. 509), it will not be given. Instead, we shall prove a theorem which

is essentially broader in its hypothesis, and whose analogue for spherical

curves is neither so simple of treatment, nor so interesting from the point of

view of dynamics :

THEOREM II. If there exist two constants, a >» 0, and s0, such that for

s0<s< oo, K(s)>a, and if K(s) is of bounded variation, then the curve

defined by K = K(s) has an asymptotic circle.

A consideration of the total variation, t(s), of K(s), makes it ob-

vious that K(s) must approach a limit, k. Moreover, if t(s) is the angle

which the tangent to (£, the curve under consideration, makes with a fixed

direction, then K is also of bounded variation when considered a function of %

I t(s) = I  K(s)ds\.  Now the coordinates, a;(s),2/(s), of P, on©, referred
0

to appropriate axes, are given by

C cosr  . Ç sinr   .
X=jKÏ)dr'       "=Jz&)d*'

o o

From these formulas it is not difficult to show that the successive maxima and

minima of x and y approach limits, and that the mean of these limits for x,

and the mean for y, give the coordinates of the center of an asymptotic circle.

The maxima, x'ú, of x occur for r = (2n + \)n, and the minima, x'n, for

t —(2n + f)?r. If the interval of integration in the expression for x% be

subdivided at these points, we may use the law of the mean in each sub-interval,

and write

85*
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Xn

(2»+D* T (í+í)*
//> t'=2n—1 /»COST   , I     COST .       v> I COST   ,ZÜ)dr=J    Tiö^+Ä J J^

(<+*)«

2 « 2 f-+        2
K(r0)       #(*,)   '   #(*,)   ' '   tf(*2„)

1

■ff(*o)
2 {[l/JT(*i ) - l/*(*i)] + [UK(rs) - 1/K(tt)]

+ ---+[llK(rin-i)-HK(T2n)]),

where r9, %u ..., r2n are appropriate mean values of t.

Now, since K(r) > a >0, 1/äT(t) is of bounded variation with K(t), for

| l/XXo)— HK(a) | <c | -K"(o) — K(a)\la*. Hence the terms in the braces are

the first n terms of an absolutely convergent series. Accordingly, x% approaches

a limit, x". Similarly, x'n, y'ñ smdy'„ approach limits, x', y", andy'. Let us

denote by a and b the means, (x'+x")l2 and (y'+y")l2, of these hrnits,

„, . a"* and I  „   . ¿V,

taken over any interval whose end points correspond to successive integral

multiples of nl2, approach r, or —r, according to the interval selected, we

see that the points of (£ of maximum abscissas, maximum ordinates, minimum

abscissas, and minimum ordinates, approach (a + r, b), (a, b + r), (a — r, b)

and (a, b—r), respectively. Let rx be a number, corresponding to a given

e>0, such that for tr^xx, the differences between these four variables and

their limits are numerically less than e, and also that | HK(r)— llk\<.e.

This means that for r ~> rx, the extremes of the coordinates of (£ differ by less

than s from the corresponding extremes for the circle C: X — a+ r sinr,

F= o — r cosr.   From this we infer that for any point of & for *>*i,

\x(t) — X(t)\^£+ J \[1/K(r) — Ilk] cost-|dzr<2f,

where the interval of integration is from the greatest multiple of n/2 less than r,

to t. A similar inequality will hold for y(r)— Y(t). Thus S ultimately

lies entirely in any region containing the circumference C in its interior;

that is, (£ approaches C in the weak sense. It is easily shown, however, that

the approach has also the stronger sense, namely, that the difference of the

direction angles, r and %' of (£ and C, at two points, one on each curve, also
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approaches 0 has x increases indefinitely and the two points approach coin-

cidence. This is because of the constant curvature of C, which has as conse-

quence the finite distance apart of any pair of points at which the directions

of C differ by a finite amount. The required inequalities may readily be

supplied, and the proof of the theorem thus completed.

2. Spherical curves and spherical evolutes. The most convenient

analytical tool for the present study appears to be the vector. We shall denote

vectors by Clarendon letters, a,b,P, etc., and employ the Gibbs notation, a ■ b

for the scalar product, a x b for the vector product, and (a,b,c) = a-(bxc)

for the triple product. The vector algebra required goes little beyond the

distributive laAvs, and the expansion formula ax (bx c) = (a-c)b — (a-b)c.

Primes will be used for one purpose only, namely, to denote derivatives with

respect to the arc-length, s, of (£. Unit vectors along the coordinate axes will

be denoted by i, /, k, and their senses we shall assume fixed once for all, and

so related to the definition of vector product that (i, j, k) = + 1. The

magnitude of a vector will be denoted by the corresponding italic letter.

Let the curve (£ lie on the unit sphere, S, and let a variable point of (£ be

characterized by the unit position vector, P — xi + yj+ zk, with origin at 0,

the center of S. We shall restrict ourselves to curves such that x, y and z

have continuous derivatives with respect to s of the first three, and, in some

cases, the first four orders.  From P are derived the tangent vector

(1) T = F

and the curvature vector

(2) K = T' = F.

For these we have the relations

(3) P«-l,

since (£ is on the unit sphere, and

(4) P=l,

since (P')*=(ds/ds)2 = l.

Furthermore, by differentiating these relations, we find

(5) P-T=0,

(6) TK = 0,
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and by further differentiation,

(7) PK = — T* = — 1,

(8) P-IC= — TK= 0,

(9) TK' = —K*.

The unit principal normal vector, N, of £ will coincide in direction with K

We shall give it the same sense, so that

(10) N=KIK=QK,

where K and o are the curvature and radius of curvature of (£.  Formula (7)

shows that K always makes an obtuse angle with the position vector, and that

its magnitude, the curvature, is never less than 1.

The unit binormal vector is defined as

(11) B = TxN.

If the initial point of B be placed at 0, its tip will mark a point, Q, on S

which is the spherical center of curvature of (£ for the point P (the tip of P).

We define the quantity R, 0 < R < n, by the equations

(12) sinJB = q,       cosR = P-B,

and call it the spherical radius of curvature. The same term will be used

occasionally for the great circle arc, QP, of which it is the length. If, with Q

as center, and with spherical radius R, a circle be described on the sphere,

this will be the osculating circle of © at P.

As P moves along (£, Q will, in general, trace a curve, Ge, the spherical

evolute of (£. The point diametrically opposite Q will trace a symmetric curve,

similarly related to (£. But the particular evolute here defined is selected by

the sense given to the binormal vector. A reversal of the sense of increasing

s on E would interchange the evolutes.

The Frenet formulas take the form
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where 1/r is the torsion of (£. From the third Fren et formula, and equations

(12), (10) and (7), we see that the torsion is the negative of the derivative

with respect to s of the spherical radius of curvature,

(14) it =      —.

The torsion may be positive or negative ; if the axis system is a right hand

one, the curve, at a point where t > 0, deviates from its osculating circle by

bending to the left as one follows (£ in the sense of increasing s, with head in

the direction in which P points.

The geodesic curvature, x, is simply related to R. The great circle tangent

to (£ at Phas, as unit normal, the vector PxT, and the absolute value of x

is the magnitude of the derivative Avith respect to s of this vector, that is,

by (2), V(PxK)*. This reduces, with the help of (3) and (7), to Vk%—1.

In terms of R, this is | cot R \. It will be convenient to give x a sign, so we

shall identify it with cot B*,

(15) x = cot R.

Thus, if a right hand system of axes is postulated, x > 0 when (£ turns toward

the left of its tangent great circle.

Combining (14) and (15), we have anew Professor Haskins' result (0, p. 248) :

3. Spherical curves. Osculating and asymptotic circles. For the

purposes of applications to problems in dynamics, where coordinates are, in

general, analytic functions of the time, and of arc length of paths, it will

be adequate to consider curves whose curvatures are, in given intervals,

either always increasing, or always decreasing functions of s. Accordingly

we shall assume in this section, unless the contrary is stated, that in the

open interval considered, s0 < s -< sx, K' is either always positive, or else

always negative.  The fact that K is never negative permits the inequality

K' > 0 to embrace two symmetric types of curves between which it is
_

* See 0, p. 248. The a on the page referred to is the spherical radius of curvature of

the intersection of the cone with the sphere.

tan-
r
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desirable to distinguish. We have, indeed, p'<0, but the first equation (12)

shows that cos RR'< 0, so that R! ^ 0 according as R ^ ixl2. A similar

situation obtains with respect to üT'<c 0. Greater clarity will be attained when

it is possible to think of the spherical center of curvature as the nearer of the

two points which may play the rôle, so that in case_B;^7r/2 for the arc

s0<.s < sx, of (£, we shall replace S by the curve symmetric to it with respect

to some diametral plane. The vectors P, T and K will thus go over into

symmetrically placed vectors, but ß will go over into the symmetric vector

with sense reversed, so that the sign of cos R will be changed. It will be

noticed that the hypothesis that K' is always positive, or else always negative,

on an arc precludes the possibility of an osculating great circle at an interior

point of the arc.

The third Frenet formula (13) becomes, with the help of (14),

(16) B' = R'N.

Accordingly, if a represents the arc length of Ce, increasing with increasing s,

the equality of magnitudes and directions in this vector equation yields the

result, for the case R'< 0:

THEOREM III. The tangent to the spherical evolute 6c atQ has, for direction,

the initial direction of the shorter great circle arc from Q to P, and the

differential of arc ofQiis given by

(17) da — — clR.

Thus, if a flexible inextensible string be unwound from a metal guide having

the form of the curve 6c, the string being kept taut and in contact with the

sphere, one of the points of the string will trace the curve Ê, so that in this

sense the name evolute for 6c is appropriate.

The following property of the evolute will also prove useful.

THEOREM IV. No arc o/6c on which R' is always positive, or ahvays negative,

is an arc of a great circle.

Suppose, contrary to the theorem, that Gc, for s'<cs<s", is an arc of

a great circle. Then, if A denote a constant vector perpendicular to the plane

of this arc, we have A • B = 0. If this equation be differentiated, the result

reduces, by (16), to A.N = 0, since R' :+- 0. But A.N =■ 0 and A.B = 0
imply that T is parallel with A, a constant vector, which is impossible for

a spherical curve.

We may now infer some properties of a given spherical curve, 6c. The

first is
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THEOREM Y.IfQi is an arc of ever increasing curvature, K' > 0, s' < s < s",

any osculating circle Ct(s = s2) lies entirely within any osculating circle

Cx(s = sx) for which s'<sx<:s2<s". Here "within" means in that one of

the two open regions, into which the circle divides the spherical surface, with

the less area.

The theorem is an immediate consequence of equation (17), which, inte-

grated from sx to Si, yields aXi = Bx — Rt, where axi is the total length of @

between the points characterized by sx and s2. Here the vital significance of

the hypothesis of monotonie change in R (or K) appears, for a is always

changing in the same sense. Without the hypothesis, © would have cusps,

and aXi, instead of representing the total length of the arc GÈ12, would give

the algebraic sum of lengths between cusps.

Now Rx andi?2 are less than 7?/2, and, therefore, so is <r12. The latter, not

being the measure of a great circle arc, by Theorem IV, must be greater

than cia, the length of the geodesic joining the ends of the arc Gcx2. Hence

Cx2 <c Bx — Ri. But Bx and Bs are the spherical radii of the osculating circles Cx

and Ci, and c12 is the spherical distance between their centers, so that the

inequality just derived is the necessary and sufficient condition that C2 lie

entirely within Cx.

A more general, though less intuitive, statement may be made with a different

sense of "within" and the use of the geodesic curvature, so that osculating

great circles are admitted. The curve (£ must cross each of its osculating

circles if the geodesic curvature has a derivative different from zero at the

point of osculation. If "within" means in that region into which (£ enters

with increasing s, we may state the theorem: if for s'<s*<s", x'is either

always positive or always negative, the later osculating circles always lie within

the earlier ones. It will be seen how this folloAvs from the theorem as first

stated when it is observed that the arc consists at most of two pieces, on one

^f which K'>0, and on the other of which K'< 0.

An immediate corollary of Theorem V is

THEOREM VI. Under the hypothesis of Theorem V, the arc sx < s •< s2 of (£

lies entirely within Cx and entirely without d. More generally, an arc o/(£

on ivhich x is always positive, or always negative, lies to one side of its osculating

árele at either extremity of the arc.

For if (£ cut an osculating circle, or touched it, at a point other than the

point of osculation, there would exist íavo osculating circles with a common

point.  This is contrary to Theorem V.

One more step yields the analogue for spherical curves of Theorem I:

THEOREM VII. If & be supposed to be infinitely long, and if, from some

point on, K' > 0, (E approaches an asymptotic circle or point, according as X

is bounded or not.   If K' < 0, (£ approaches an asymptotic circle.
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We may assume R < n/2, as indicated previously. Then as s increases

indefinitely, R, whose sine is 1/K, and which therefore changes monotonely,

must approach a limit, a, 0<a<n/2. Accordingly, by (17), ff approaches

a limit. Hence the center of spherical curvature, Q, of 6c approaches a limiting

position, and as R approaches a, it follows that 6c approaches the asymptotic

circle which has for center the limiting position of Q, and for radius, a. This

circle may reduce to a point if K is increasing, or to a great circle if K is

decreasing.

We close this section with the establishment of one more fact, which we

shall need in what follows.

THEOREM VIII. If the projections, x, y, z, of P have four continuous

derivatives with respect to s, 6c bends, with increasing s, to the same or the

opposite side of its tangent great circle as 6c, according as R is less than or

greater than n/2.

To see this, we compare the triple products (B, B', B") and (P, P', P"),

by expressing them in terms of the orthogonal set, T, N, B. We start by

differentiating the third Frenet formula, B' = — N/x, and simplifying by

means of the second:

B„ = Nx'      N' = TvY      B       T
X* X X* X* QX'

so that

(B, B', B») = (B, -4,X) « -1.(7; N, B) - -^

On the other hand, (P, P', P") — (P, T, K) = (P, T, N)/q, by (1), (2),
and (10). But P must be expressed in terms of T, N, and B-. P — (P-T)T

+ (P-N)N + (P-B)B, or, by (5), (10), (7) and (12),

(18) P = — qN+cosRB.

Hence (P, P, P") = cosR/q, and we have, finally, x* cosR(B, B', B")

= (P, P', P"), an equation of which the theorem is a qualitative translation

into words. It will be noticed that the hypothesis of differentiability precludes

the vanishing of the denominators o and x in the above reasoning.

4. Curves with monotonie co-latitude. In a number of dynamical

problems connected with the sphere, the motion is limited by two parallel

circles. This section will be devoted to a curve, 6c, on the sphere, bounded by

two such circles, the distance of E from the plane of one of the circles being
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ever increasing, or ever decreasing, and its spherical radius of curvature

having the same property. We shall suppose that this curve passes from

tangency to C0 at P0 for s = s0 to tangency to Cx at Px for s = sx (sx > s0).

The subscripts 0 and 1 will be used generally to distinguish quantities or points

connected with the beginning and end, respectively, of this arc of (£. The

direction of the common axis of C0 and Cx, with the sense from the plane of

C0 to that of Cx, we shall call north, and take it for that of the z-axis. The

«-axis of our orthogonal axis-system we take inthe ^n'wie meridian, throughP0.

The y-axis we take so as to form with the others a right hand system, or

eastward as seen by an observer at P0. For the sake of definiteness we shall

suppose that (£ runs initially eastward, a restriction to be removed later.

Fig. l.

THEOREM IX. Let e be a curve on the unit sphere, S, whose position vector,

P, has four continuous derivatives with respect to s on the closed interval

s0<s<sx, and let C0 and Cx denote two parallel circles on S, neither of them

point circles. Let <£ pass from tangency to C0 to tangency to d running

initially eastward, under the following conditions on the open interval s0<cs<s1:

(a) the point P, of (E, corresponding to the arc-length s has ever increasing

distance from the plane ofC0: z'>0,

(b) the spherical radius of curvature, R, of&, is ever decreasing: R'^0-

TJien the longitude of Px, measured positively to the east, exceeds the longi-

tude of P0.
It will be noticed that the hypothesis does not eliminate the possibility of

an osculating great circle, for R may exceed nl2. It is for this reason that

the spherical radius of curvature is more appropriate for the present purpose
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than the curvature, K. The particular evolute here used is that defined

previously (p. 506).
An intuitive notion of the proof of the theorem may be gained from Figure 1.

We compare the longitude, xp, of P, on 6c, with the longitude, <r, of Q, on 6c.

Initially xp = f = 0, but xp increases initially more rapidly than f, and

remains greater, while f is always increasing. Hence xp is positive at Pi.

What follows is merely an examination of the details.

We begin with an analytic formulation of the hypotheses:

for s = s0, s = Sx, T-k = 0,

fors = so, T = j,

(19) forso-^s^Si, R'^0,

— l^z0^P-k^.zx< + l,

(P.k)'= T-k^O.

The identity connecting the direction cosines of k with respect to the ortho-

gonal set T, N, B will also prove useful:

(20) (T.k)*+(N.k)*+(B.k)* = 1.

Finally, it will be convenient to employ two vectors in the equatorial plane

with the same longitudes as P and Q,

(21) p-      P-ÍPW *-    B-(B.k)k

Vl-(P-k)* ' VT=Tß.fc)2 '

in which the denominators do not vanish for s0<s<sx because of the

relations (194), and (195), respectively, with (20).

Our first task is to see that the initial longitudes of P and Q may be taken

as 0. The first, j/'o = 0, is a matter of definition, and is implied in the term

"prime meridian". As Q is always in the plane through P normal to 6c, Q0 is

in the same meridian plane as P0, and, by the definition of 6c, lies to the

north of P0. But the important point is that Q0 is not separated from P0 by

the pole (the north pole is meant here and in what follows) on the shorter

meridian arc connecting these points. This is because the osculating circle,

C, of Gc at P0 cannot go south of C0 without carrying Gc with it, which is
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contrary to hypothesis (194). Hence Q0 is either at the pole, or on the prime

meridian. In the latter case, its longitude is an integral multiple of 27r, which

may be taken as 0. If Q0 is at the pole, i. e. if C coincides with C0, we shall

define <r0 as the limit of <¡p as s-*sa- It will presently appear that this limit

exists, and is 0.

We next show that y is always increasing. To do this, we recall that the

magnitude of the derivative of a unit vector is the rate at which it is changing

direction, i. e. that \f' | = V(b'y. A little reckoning is required to compute

this quantity, but it is straight-forward, and need not be set down. One starts

with (212) and uses the relations (1), (16) and (20), obtaining

(22) 9>^=lLllKl
{¿¿) 9       i-(B-k) 2 •

in which the sign is determined as follows. Because of (19x) and (198), t/ never

vanishes for s0 < s <: sx, and so, being continuous, keeps its sign. By

Theorem VIII, @ bends in the same sense as (£, or in the sense opposite to

that of E, according as R ^ W2 ; hence © bends to the left. Moreover, by (16),

Ge runs initially southward, being tangent to the prime meridian, so that it

bends to the east, and y is initially increasing. The equation (22) then shows

that (f is always positive, and <¡p always increasing, as stated. The same

considerations show that <p approaches 0 as s •* s0, even if Q0 is the pole.

It remains to show that (p — c/>>>0. To do this, we note that by the

definition of vector product, bxp — k sin ((p — <¡r). Hence sin («/> — y)

= (b, p, k). Another brief reckoning, involving (20), (18), and the fact that

B x N — — T, gives the result

(23) sin ((p-f) = Q{T'k)
Vi — (P-kyVi — (B-ky '

This shows that the angle (p — <p, which is continuous, and which starts at 0,

has a positive sine until Px is reached, so that tpx ̂  <px > 0, as was to be
proved.

More, however, may be inferred from the above developments. The

formula (23) shows that as s-+sx, (p — <p-*■ 0 or n. Now, since R<n, the

latter case can occur only when the terminal spherical radius of curvature,

which must lie along a meridian, lies across, or terminates in, the pole. This

means that the final osculating circle, C, contains Cx (within that region in

which Qo lies), or coincides with Cx. Also, ip — y increases toward n, and y>
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is always increasing, so that xp is increasing at Px. The result is that for this

case Gc touches Cx still running eastward. If i^ — V -* 0, as s -* Sx, the terminal

radius of curvature cannot lie across the pole, and C", with spherical radius

less than the polar arc to Pi, must lie south of Cx, and 6c then touches Cx

running west.  We accordingly infer

THEOREM X. If to the hypotheses of Theorem IX, we add (c) 6c touches both

circles C0 and Cx running eastward, then the difference in longitude of its points

of contact with these circles exceeds n.

It remains to consider the case R' >■ 0 (see Figure 2). As before, we may take

xpo = 0, and Q0 is certainly between P0 and the pole. For the former argument

Fig. 2.

shows that Q0 is not beyond the pole ; and no more can Q0 coincide with the

pole, for from (16) we infer that — cosec8 RR' = x', so that x' would be

negative, i. e. x decreasing, and £" would have to bend to the south of C0,

contrary to hypothesis. As to 6c, (16) now shows that it runs northward, and

hence to the west, by Theorem VIII. As R' > 0, formula (22) is valid without

change, and f, initially 0, continually decreases. But by (23), sin(xp — 9p)

is positive, and it approaches 0 as s -» sx.

If xp — f -*• 0, the terminal spherical radius of curvature cannot cross the

pole, so that the spherical radius of C" is less than that of Cx. Hence, as C"

cannot lie north of Ci, its center also lies south of Cx. As f is decreasing, and

V — f approaching 0 through positive values, we infer that xp is decreasing,

and that in this case Ë touches Ci running west. We have here, xpx^fx^cO,

and the result is merely Theorem IX with the rôles of C0 and Ci interchanged,

and Gc replaced by its reflection in the prime meridian.
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But itxp—y->-7r, the terminal radius of curvature lies across the pole, and

we infer that E is still running eastward at Px, so that we may state

THEOREM XI.   If in Theorem IX we replace the condition (b) by

(6') the spherical radius of curvature o/£ is always decreasing, R'<0,

and add the condition (c) of Theorem X, it then folloivs that the difference in

longitude of the points of contact o/E with the circles C0 and Ct is less than n.

Finally, we consider the removal of the restriction that E run initially

eastward. If E runs initially westward, we may consider its reflection in the

plane of the prime meridian. The proofs of the corresponding theorems remain

the same, except that the other evolute from the one we have been employing

must be used. Or, we may use a left hand system of axes, which will produce

the same effect.  The three last theorems may now be stated as follows.

Let E run from tangency at P0 to Co, to tangency at Px to Cx, the distance

of the moving point, P, on E, from the plane of C0 having a positive derivative

with respect to the arc length s for s0^.s< sx. Let R be the spherical radius of

curvature of E which is measured initially toward P0 from the side of C0 on

which Cx lies.   Then

(1) î/i?'<0, or if R'"> 0 for s0 *c s < sx, that one of the points P0, Px, for

which R is the less, has the greater longitude, measured in the sense of increasing

arc length at P0 ;

(2) if B'<0 for s0 < s <: sx, and the longitude of P is changing in the same

sense at P0 and at Px, the difference in longitude of these two points exceeds n;

(3) if R >■ 0 for s0<.s<Si, and the longitude of P is changing in the same

sense at P0 and at Px, the difference in longitude of these two points is numer-

ically less than n.

In the above statements, the geodesic curvature, x, might have been used

instead of R, but it would have necessitated a subdivision of cases according

as x ̂  0, or else a modification of the convention as to the sign of x. Neither

seems desirable.

Part II. Some points in the theory of the top

5. Osgood's intrinsic equations. Notation. Some familiarity on the

part of the reader with Professor Osgood's paper will be assumed in what

follows. His intrinsic equations, however, will appear here with a change in

a sign, and a slight change in notation.*  We write them as follows:

* The change in sign is áue to a different convention as to the senses in which certain

quantities are measured. In justification of a departure from Professor Osgood's well con-

sidered conventions, 1 can only plead that I have felt surer footed in employing conventions

to which I have been accustomed. Since there is little agreement in the literature on the

subject, the departure will cause the reader little inconvenience.
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ÍV-d7=T'

(24) Av2x — Crv = N,

nÈL= 8.

Here C and A are the moments of inertia of the top about its axis of dynamic

symmetry, and a perpendicular to the axis through the fixed point, respectively.

The magnitude of the velocity of the point P, where the axis of the top (on

which a positive sense has been arbitrarily fixed) pierces the unit sphere, is

denoted by v, the geodesic curvature of Gc, the path of P, or the "bending"

of the cone swept out by the axis of the top, is denoted by x; x is positive

when Gc swerves to the left of an observer walking on the sphere and following

the top axis. The sense of the positive unit tangent vector, t, to 6c, is that of

the motion, and that of the normal vector, n (here tangent to the sphere, and

not to be confused with the principal normal vector, N, of Part I), is to the

left of the above mentioned observer. Thus a curve with positive x bends

toward the positive normal. The component of the applied moment, along

the axis, or the spin moment, is denoted by 8. The remaining component of

the applied moment may be regarded as due to a force tangent to the sphere

and applied at P. We denote the components of this force in the directions

of t and n by T and N, respectively. In Professor Osgood's notation, this

force has components Tand Q along the tangent and negative normal vectors

associated with 6c, but his normal vector points to the right, so that his Q and

the present N are identical. Here, a positive moment or rotation about an

axis would force a right hand screw forward in the positive sense along the

axis. Thus our 8 and r are opposite in sign to the corresponding N and r of

Professor Osgood'_ paper. The only change in sign resulting from these

differences is in that of the term Crv in the second intrinsic equation.

6. The energy integral. This is obtained, in case it exists, from equations

(24i) and (24s), and may be written

(25) yCát;"+cV) = jÍT+8v^\ds + h,

provided the integrand is the derivative with respect to s of a function of

position, as it is, for instance, in the case of the heavy frictionless top with

fixed peg (0, p. 256, (i)).
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7. The heavy top with fixed peg. Initial sense of change of

latitude. The equations of the motion may be written (0, p. 258, (6) and (iv),

p. 256, (i))

(£)"- *<«>•

d(¡> _     e + y (up — u)

ds   '"      v(l — u*)     '

(26)

v2 = v20 + a (u0 — u).

Here u — cos 8, 8 being the co-latitude of P; */> is the longitude of P,

positive when measured eastward; m0, Vo> %> an¿ Vo> are initial values,

corresponding to some moment when 8 (= d8/dt) = 0; e = (1 — u2) ip0;

v2 = sin2 80 tpl = (1 — u\)(pl; v is the constant value of r; y = CvlA;*

a = 2MghlA, where if is the mass, and h the distance of the center of mass

from the fixed point. The function P(u) is given by

(27) P(u) - (l-*i2) K+a(«0— »)] — li + rK-«)]*.

The motion takes place between two parallel circles, C0 and C, which may,

in special cases, reduce, one or both, to point circles. We shall disregard

such special cases in the present study.

The first question that arises when the initial conditions include 0O = 0,

as at present, is, does the top begin to rise, or to fall, or, is the initial limiting

circle the lower, C0, or the upper, Cx? To answer this, one compares the

initial value of x, or

(28) *o = ^^[rii-j%}>

* We shall assume v, and hence y, to be positive, or when so specified, zero ; never

negative. It will be recognized that this restriction merely involves, in some cases,

reflecting the motion in a mirror.

30
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with   the  geodesic   curvature,   xc,   of   the   initial   limiting  circle.    But

sgn % cot 0 = sgn % °      , or, as v0 = V 1 — u20 sga xp0 xpo,
1/   1 ti-VT -H,"0

xcv% = u0(l— u20)ipl* Hence

(29) (*o~*e)% = -¿Mo'-^o + f

If x0^xc, Gc bends more rapidly to the left than the initial limiting circle,

i. e. if running east, S rises, and similarly for the other cases, the sign of

(x0 — xc)xp0 being decisive. The function in brackets is the quadratic whose

roots give the longitudinal velocities of steady precession in the circle of lati-

tude 6 = 60. If u0>0, (x0—xc)xp0 is positive between the roots of the

quadratic, and if î<0<0, the opposite is the case. If u0 = 0, there is but

one root, and (x0— xc)ip0-^0 for xp0 greater than this root. Hence we may

state

THEOREM XII. If, at any instant, the path of P touches a circle of latitude,

it will curve away from, or toward, the equator according as its longitudinal

velocity at the instant does, or does not, lie between the longitudinal velocities

for steady precession in that circle. If the circle is the equator, the path curves

northward or southward according as the longitudinal velocity does, or does not

exceed the single longitudinal velocity for steady precession on the equator. If

the spin is so slight that the precessional values are coincident, or imaginary,

the top always falls.
It is, of course, understood that the initial longitudinal velocity is not

a precessional value in the statement of the above theorem.

8. Reversals in sense of the longitudinal motion. Equation (262)

gives the value of u for which the longitudinal motion changes sense: u¡ = u0

+ sly. In order, however, that this value of u shall correspond to a real point

in the motion, it is necessary first, that it lie in the closed interval (—1, +1),

and secondly, that P(ui) > 0. As P(u) < 0 if u < —1, these conditions may

be stated as follows:

%<■
1 + Mo'

(30)

(1-ulf   .
Pirn) = -^xp^xpo+jfr;) (^-^o-2o) :>o,

* The function sgn« is the familiar function signumz,  defined as follows: for 2<0,

sgn« = —1, for-« = 0, sgn« = 0, and for «>0, sgn« = +1.
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where ô = a/2 y is the value of the longitudinal velocity for steady precession

on the equator.
9. Points of inflection. The curve E has a point of inflection at P when

its projection on the plane tangent to the sphere at P has a point of inflection

at P, or, when E crosses an osculating great circle. A necessary condition for

this is x = 0; it is sufficient that x change signs. Equation (26s) gives, as

the only value of u for which this can occur, ut = u0 + (2 v\la)—(sly). Here,

the conditions that ut correspond to a real point in the motion may be given

the form

Fi(%) = (p2-dtp0
2(1 +Mo)

^o,

4(1 —uî)'   .     .
(31)     P(ui) =--s-?- tp0((p0-ô)((p0-2Ô)

x
[<*-«>(*-t£í)+t^*

>0.

The factorization in the value of P(uj) has been carried as far as possible in

the domain of rationality (a, y, u0, Vl — u2). This may be verified by con-

sidering the special rational values a = 16/5, y = 4/5, ô = 2, u0 = 3/5,

Avhich reduce the cubic factor to the form x'i—2xi+2x+2, a polynomial

evidently without rational roots.

10. Monotonie curvature. For the application of some theorems of

Part I, we need assurance that x' keeps its sign between the limiting circles.

This derivative, obtained from (268), may be reduced, without excessive

trouble, to

(32)
ay 3at■      a , v

^T + T(mo-w)

Striking is the fact that like the curvature, x, and the longitudinal velocity,

ip, this derivative is dependent for its sign on a linear function of u. The

derivative, u', of u, keeps its sign betAveen the limiting circles. The value

of u for which x' vanishes is uu = u0 — (3e/y) + (kv2Ja), and the conditions

that it characterize a real point in the motion may be given the form
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(33)     P (uk) = ^ (1-uir xp\ (xp0 - J- dj (</,„ - 2 Ó)

The cubic factor is, in this case also, irreducible in the domain (a, y, u0,

V\ — ul ), as may be seen by using the special values a — 24, d = 2, u0 = 0.

11. Applications of the geometry of spherical curves. It is not

the purpose of the present paper to enter into a detailed discussion of the

various cases of motion of the top which may present themselves, although

the materials gathered above permit new distinctions between types.* We

shall rather content ourselves with the enunciation of certain typical results,

following the customary cases (0, p. 258).t

Case I. The longitude is always increasing (0, Figure 3,1). In this case, it

is usually assumed that the path of P has points of inflection. The illustrations

of the most current text books show such a curve.+ It should be noticed,

however that such is not necessarily the case, and that in the present type

of motion both paths with inflections and paths xvithout inflections can occur.

Thus, for a = 2, d = y~l,u0 = l/2, with i/'0 near to 1, the condition (30x)

for a change in sense of the longitudinal motion is not fulfilled, so that the

longitude is always increasing. The condition (310 for a real point of in-

flection is fulfilled, while the condition (312) takes the form xp0 —1<0 for

xp0 near 1. Thus, with xp\ slightly less than 1, we have a path with a point

of inflection on each arc between the limiting circles, and with xp0 slightly

greather than 1, we have an inflectionless path.

If the spin be stopped (y = 0), the top becomes a spherical pendulum.

The longitude always changes monotonely, (262), and x reduces, by (268) to

— ael2vs. Thus the path of the spherical pendulum never has inflection points.

The use of the intrinsic equations has rendered extremely simple the proof

of a well known fact.

* Mr. A. H. Copeland, of the Graduate School at Harvard, is undertaking such a dis-

cussion in connection with his candidacy for the doctorate.

f Case I is the wavy curve without cusps or double points, Case II is the curve with

cusps, and Case III, the curve with loops.

Î Professor Osgood has also overlooked the necessity of imposing the conditions (31)

on <fi0 in order to secure a path with inflection points (see 0, p. 259).
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Another fact about the spinning top that seems hitherto to have escaped

explicit mention is the following: there exist cases in which the longitude of P

increases by more than n between two successive contacts with the limiting

circles*

Sufficient conditions for this type of motion are (see Theorem X) : the

longitude is always increasing, the top is rising fromM = w0, andP'<0

(the definitions of R in Section 2 and Section 4 coincide in the present case, and

we find from (15) that the last condition is equivalent to *'>• 0). An example

showing the compatibility of these conditions is the following: a; = 1, y = 1,

u0 = 0.4, % = 1.44312. We find «i = 0.5, s = 1.21222, v2 = 1.74938.

The condition (30x) for a change in sense of the longitudinal motion is contra-

dicted, while tp is initially positive; x' is seen from (32) to be initially positive,

while the value uu (p. 519) for which x' changes sign is found to be greater

than 1, and so does not correspond to a real point on the path.t

CaseH. Here ^0 — 0, and by. (32), x' can vanish only for u = u0. We

infer, from Theorem VI, that an arc of the path of P between two successive

contacts with the limiting circles lies entirely within the osadating circle at the

extremity of the arc at which the curvature is finite.

Case HI. The same situation obtains here, where the path has loops. Let

us use E to denote an arc of the path between the limiting circles. Then E

lies entirely within its osculating circle at one extremity, and entirely without

its osadating circle at the other extremity, one of these circles containing the

other in its interior, by Theorems V and VI. "Interior" may here be interpreted

in the narrower sense, namely, the region with the less area.

To justify these statements with regard to Case HI, we must show that for

the looped curve, neither x' nor x vanishes between the limiting circles, i. e.

that the conditions (33) and (31) are both incompatible with the conditions (30),

when the strict inequalities are employed in the first two. We shall give the

proof for the conditions (33), that for (31) being similar, and simpler.

In the first place, it is no restriction to assume that tpo>0, for this merely

means that a proper choice has been made of that limiting circle which is

to be the initial one, inasmuch as E meets the limiting circles running in

* If P(u) has u = 1 as a double root, <£ makes a spiral around the north pole. It

seems entirely plausible that near this motion are others of the type in question, where

the increase in longitude is arbitrarily large. It may also be of interest to note that

a similar situation exists in a very elementary problem, namely, the following: a bead is

free to slide under gravity without friction on a circular wire, which rotates with constant

angular velocity about a vertical diameter. It will be found that the wire makes more

than a half revolution between two successive times when the bead attains its extreme

heights.
fA computation, which I believe to be accurate, gives, to four significant figures,

Wn = 3.428, which is about 9.1 percent in excess of jr.
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opposite senses.   This assumption greatly simplifies (302), reducing it to

ip\ — 2d>*0, so that the conditions for the loopy type of curve become

(34) 2d <</,„<:_£_.

We proceed to show that for t/»0thus limited, the conditions derived from (33),

(35)

^o-f^o-^^0,

;,/;       3 A      a(a — 6diu0)   ;    , a2 ^A

>ri(%—20)- 120*(l-u¡) »»+ 24ff(l-ug) >0'

are incompatible. If the first of these inequalities be multiplied by xp0 and

subtracted from the second, we find a necessary condition on f0 for their con-

sistency which reduces to xp0[3ô*(l + u0) — a] + aâ/2>0. From (34),

recalling that y = al2ô, we have a>4d2(l + u0), so that the coefficient

of xpo is negative, and

qd/2
tf'0< a—3d»(l + «0)-

If from this we form the inequality for x'pj2è, and in it substitute iai(l + u0)

= a(l—x), so that x is always positive, we find as upper bound for xp0/2ô

a function of re whose maximum is 1, whereas, by (34), xp0/2ô must be greater

than 1. Thus the incompatibility of the conditions (33) is established.

We may state further concerning this case, the consequence of Theorem IX :

the general drift of the longitudinal motion is in the sense which it has at that

one of the limiting circles where the curvature is numerically the less. This is

a property whose proof has previously required less elementary methods (see
the reference, 0, p. 260).

If the spin of the top be stopped again, so that the spherical pendulum is

before us, it is known that the difference in longitude between two contacts

of the path with its limiting circles exceeds n!2 and is less than n. The first

inequality is obtained by the appraisal of a definite integral. The second has

required the use of Cauchy's integral theorem, or other less elementary method

(see Appell, loc. cit.). It is readily verified that this second inequality is an

immediate consequence of Theorem XL The hypothesis of the theorem which
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interests us may be given the form ^ox'<:0, for with the definition of B

there employed, the relation (15) is to be replaced by x = sgnV0cotP,

when we consider a rising arc, E, of the path. For y — 0, (32) takes the

form x' = —3aV(l — u2)tp0/4:V5, so that the hypothesis is fulfilled.

12. Asymptotic circles. On page 225 of his article, Professor Osgood

mentions an interesting case of motion* of the symmetric top, in which it

is subjected to a force of constant magnitude, directed always along the

positive tangent to the path, E. He says that x now approaches 0, and "it is

a matter of conjecture as to whether E has an asymptotic great circle".

Inasmuch as it appears rather obvious that it should have, the statement

might seem to be excessively cautious. But the example given in Section 1

shows such caution entirely justified. As a matter of fact, E has an asymptotic

great circle, by Theorem VII.  For, if / denote the magnitude of the force,

f
we find s = -~ (t — tn)2 + v0(t — to), so that the path is infinitely long; also

that x = CvlAv, where v = V v\ -\—j-s, so that x > 0 and x < 0, and

hence K'< 0.  The hypotheses of Theorem VH are therefore fulfilled.

Certain general criteria may be set up for motion with an asymptotic circle.

We shall suppose that from some point (t = t0, s = s0) on, v does not vanish,

and that the functions involved have whatever continuous derivatives are

required.  Then the path will be of infinite length if the integral

-t0=f
ds

y<+ifTds

is real and finite for all s > s0.  This is a first condition.

If we differentiate Avith respect to s the equation (24^, and simplify the

result by means of (24x) and (243), we obtain

ÄV>*>=*ß- + S      T(0rv + 2N>

ds Av*

That the right hand member of this equation, which we assume to be con-

tinuous, should never vanish, is the second of the desired conditions.
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In the case of a purely tangential force, the latter condition takes the

following form : T shall not vanish for s>s0.  If T is negative, the motion
s

comes to a halt unless  I (— T) ds < A v\l2 for all s^-s0.   Otherwise, the

path has an asymptotic circle, which may, however, reduce to a point provided
00

T<<0 and ?;->0, i.e.  I (— T) ds = Av\l2. The asymptotic circle is a great

s,
00

circle if T:>0 and I Tds is divergent.
0
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