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Introduction

To fit frequency distributions, several functions or curves have been used,

most of which are generalizations of the so-called normal or Gaussian or

Laplacean probability function

^      „- Waf — 1 p-a?/2 ff2

Vn aV2n

The differential equation satisfied by this function was generalized by Karl

Pearson.t Gram,j Charlier,§ and Bruns|| used the normal function and its

successive derivatives, with constant coefficients, to form a series, of which,

in practice, only a few terms are used. JergensenH developed a logarithmic

transformation, in which x is replaced by log x. Associated with the Law of

Small Numbers is the Poisson exponential function e~* Xxlx\ for which Bort-

kiewicz** gave a four-place table, and Sopertt a six-place table. The Charlierfj:

* Presented to the Society, April 28, 1923. The word varíate will refer to any of the

particular values which a variable may take on ; e. g., the height of some specified soldier

in a regiment, — the greatest varíate here would be the height of the tallest soldier in

the regiment.

f Contributions to the mathematical theory of evolution, II: Skew variation in homo-

geneous material, Philosophical Transactions A, vol.186 (1895), parti, pp. 343-144.

% Über die Entwicklung reeller Funktionen in Reihen mittelst der Methode der kleinsten

Quadrate, Journal für die reine und angewandte Mathematik, vol.91, pp.41-73.

§ Über die Darstellung willkürlicher Funktionen, ArkivförMatematik, Astronomi

och Fy8ik, vol. 2, number 20.

|| Über die Darstellung von Fehlergesetzen,  Astronomische Nachrichten,  vol.143.

^[ See Arne Fisher, The Mathematical Theory of Probabilities, I (2d edition), pp. 236-260.

** Das Gesetz der Kleinen Zahlen, 1898.   See Arne Fisher, loc. cit., p. 266.

ff Pearson's Tables for Statisticians and Biometricians, pp. 113-121.

ît Meddelanden frân Lunds Observatorium, 1905. Vorlesungen über die Grund-

züge der Mathematischen Statistik, p. 6, 79- 85.   See also Arkiv, loc. cit.
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P-Series, for integral variâtes, makes use of the Poisson function and its

différences. The Makeham* life function is well known in life insurance.

Dealing only with the normal function itself, Bortkiewiczt determined

mean and modal values for the interval of variation, i. e., the difference

between the greatest and the least of n variâtes. For this same problem there

remains to be considered the median and the asymptotic value of the interval

of variation. The asymptotic value is a function of n which, with a probability

converging to certainty, gives the interval of variation with a relative error

small at pleasure. To make the problem broader, we shall consider the greatest

and the least varíate individually, and shall set up six general classes of

functions which include as special cases the frequency functions in common use.

These six classes of functions are distinguished as follows. Apart from

a factor tp(x) satisfying certain inequalities, the probability-function for large

values of x is, respectively,

(1)   0;      (2)   x-1-«;     (3)   g^;      (4)   ga°e'x/;     (5)   /;      (6)   x~*;

with a>O,y>l,O<0<l, c> 1. The first represents a finite interval;

the second is involved in Pearson types; the third, with a = 2, is the normal

probability function; the fourth leads to logarithmically transformed functions;

the fifth, to the Makeham life function; the sixth to the Poisson exponential

function.

1. DEFINITIONS

Definition 1 : Probability function. The function y (x) is a probability

function for specified variâtes, if for each varíate

O(x) =  I (p(t)dt

X

is the probability that the varíate will take on a value equal to or greater

than x.

Even when the statistical material must be given in integers, it is custo-

mary to think of f(x) and to(x) as continuous, especially when the number

of variâtes is large. When it is desirable to provide at the same time for

* Journal of the Institute of Actuaries, 1860. See Institute of Actuaries' Text

Book, Part II, Chap. VI.
t Variationsbreite und mittlerer Fehler, Sitzungsberichte der Berliner Mathe-

matischen Gesellschaft. Jahrgang 21, Sitzung am 26. Oktober 1921.
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continuous and discontinuous probability, the Stieltjes integral* may be

used.

Definition 2: Asymptotic certainty. An "event" dependent upon n variables

or variâtes is asymptotically certain if for any positive i¡, small at pleasure,

it is possible to determine an n' so that when n>n', the probability that the

event will happen is greater than 1 —1¡.

2. THE ASYMPTOTIC VALUE OF THE GREATEST VARL4.TE

THEOREM I.   If the probability function f(x) = 0, for x>x2, and if
X,

I f (x) dx =j= 0 when x-<xt, then it is asymptotically certain that the greatest

X

of n variâtes will differ from Xt by less than any preassigned positive e.

Proof. By hypothesis,

x,

( f(x)dx = ôjzO.

x,—s

Then the probability that all the n variâtes will be less than Xt — e is ( 1 — d)n,

which approaches zero with increasing n.

A similar statement can be made for the least varíate. In fact, in all the

theorems which follow the treatment of the least varíate will be omitted as

obvious. Of course, x will often be replaced here by \x\.

THEOREM II.  If for positive x, the probability function isi

f(x) = x-1-a-xp(x),

with a, kx, ks, positive constants, and kt ■< xp(x) < k2, then it is asymptotically

certain that the greatest of n variâtes will be

„(MV)/«,

where \e'\ <: s, small at pleasure.

* See R. von Mises, Fundamentalsätze der Wahrscheinlichkeitsrechnung, Mathematische

Zeitschrift, vol. 4 (1919), pp. 1-97.
fHere, and in the following theorems, if ^(a;) has the indicated form merely when x is

greater than some given constant, the theorem remains valid.

87*
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Proof. By hypothesis,

00 00

I y (x) dx <: ki   I x~

X X

^dx = ^-x~a.

Hence, if with e > 0 small at pleasure, we set

X  =  „(!+•)/■

it follows that
00

I (f (x) dx <
«B1+! '

Thus, the probability that a specified varíate will be less than this x is

greater than

««1+* '

And the probability that all variâtes will be less than this x is greater than

h_*L_y

But this approaches unity as n approaches infinity.  And thus, with i\ > 0

small at pleasure, it is possible to find n' so that if n > «', the probability

that all variâtes will be less than n^1+e)/a is greater than 1 —\n.

Similarly, using

^■oo \ an       I
lim

n

it can be shown that the probability that all variâtes will be less than

w(i-«y«

is less than \i¡ for n greater than some n".
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Thus, for large enough n, the greatest varíate will lie in the interval

from n{-l~e^a to n^^£^a, unless all variâtes are less than n^~*^a, — for

which the probability is less than \f¡, — or unless some varíate surpasses

n(.1+*)ia! —for which the probability is likewise less than £ i¡. Hence, by

Definition 2, it is asymptotically certain that the greatest varíate will lie in

the interval from n11-^* to «(1+e)/a.

THEOREM HI.   If the probability function is

y(x) = g3ft-xp(x), with x~ß< ip(x)<.x?,

where a, ft, g are positive constants, and g<l, then it is asymptotically certain

that the greatest of n variâtes will equal

(—\0ggnyia(l + s'), with \e'\<e,

small at pleasure.

Proof.  Let

00

çTtfdt,        v = g*,       u=—,-.
y a logée;

x

Then, integrating by parts,

OO

1= Cgx*xß-a+1+C(ft—a + l)Jg*ltlt-adt;       C=   g      *-r->0.

X

Thus,

I< Cer*° a¿-a+1

provided ft—a +1 <0. But, even it ft—a + l>-0, the process performed

k times will put into the numerator ft—ka + 1, which is ultimately negative.

Hence

KfM-F(x),

where F(x) is a sum of powers of x with constant coefficients.
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Suppose, now, that

* = (-log^n^d + O,

e > 0, small at pleasure.  Then,

where 1 + 2^ = (l + «)a, *i>0.  But, for large enough n, F(x)<.ntl.

Then

Hence, the probability that the n variâtes will all be less than x is greater

than

for n > some n'.

Now, let J be the result of replacing ß by —ß in I. If, after integrating by
parts, — ß — a + 1 >0, then

J>Cgx"x-P-a+1.

But if — ß — a +1 -< 0, a second integration by parts yields — ß — 2a + 1,

which is again negative.  By combining the two results,

J>Q(x).g*,

where 67 (x) is a sum of powers of x with constant coefficients.  If, now,

x = (-loggn)l/a(l-e),

then for large n,

nl-2«, wl-«,
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where 1 — 2e8 = (1 — e)a, es > 0.  Thus, the probability that the n variâtes

will all be less than x is less than

when n > some n".

THEOREM IV.   If the probability function is

f(x)=gaoe^.xp(x),

with x~P-< xp (x) < xr, where c, g, ß, y are positive constants, 0<j<l,c>l,

Y~^l, then it is asymptotically certain that the greatest of n variâtes will equal

c ,

with I *' I <c s, small at pleasure.

Proof.   The proof follows the same general course as in the preceding

theorem, with

00 00

Upon integrating I by parts, the new integral contains the same integrand

multiplied by a factor which is increased if the negative portion is dropped,

and t is replaced by x. Thus

!<*(*) +«*)•/,

where, indeed, Ç(x) < 1 when x is large and where the principal factors

of £0*0 are gaog'x)r and powers of ». As for J, we may first take ß > 1, and

again in the new factor set t = x.

Now, setting

9a°e°x)Y = ^       9aoe'x)r^T=-^,

it follows that

(logcxY = —mloggn,        (logcxf+xloggX = — m'loggn.
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By division,

,   Tlogca;-loggc        m^

(logcccy *» '

Hence, since y >• 1,

lim — = 1.
¡r-í-oo Wt

Thus, asymptotically, the effect of xT disappears when combined with ga°e,^.

Now set

X = ¿-log,n)

Then

(logcxY = (-iog(7«)1+«>(l + e)(-logi,»),

provided « is large enough. Thus, since g *c 1,

aoetx)r<     1

y n1+e '

With «x suitably chosen, positive and less than «, the probability that all

variâtes will be less than x is greater than

(-;£)•■

which approaches unity as a limit.

THEOREM V. If the probability function is

(p(x) = go*--(p(x), with b~x<./(p(x)<bx,

where b, c, and g are constants, 0 < e; < 1, 2> > 1, c>l, then it is asymp-

totically certain that the greatest of n variâtes will equal

[loge (—loggn)](l + e'), with \s'\ < e,

small at pleasure.
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Proof. The proof follows the same general course as in Theorem HI, with

00 00

v = g*\   I =  \ vVdt,    J =  ( vb-*dt,    bx =

Then, upon integrating by parts, we find

¡fb* b
I< ,    .       *-r- if—<1.

(—loge7)(logc) c

At all events, -¡¡r < 1, for large enough k, so that by repetitions of the process,

Kg*.F(x),

where F(x) is a sum of terms such as bx with constant coefficients. Likewise J

can be proved greater than a similar expression, noting that log (b c) > 0. By

first setting x = [logc(—logffn)] (1 + «), and then x = [logc(—logffw)] (1 — e)

and noting that for large n, (—loggn)<n¿, ô>0, small at pleasure, the

required inequalities can be obtained.

THEOREM VI. If the probability function is

y(x) = x~x- tp(x), with b"x< ip(x)< Ve, constantb>l,

then it is asymptotically certain that the greatest of n variâtes will be

X(l + e'), where Xx = n, with \s'\ < e,

small at pleasure.

Proof.  Set
00 00

v = f*t       I =   I vVdt,       J =   I vb-*dt.
X X

Integrating by parts, dropping a negative term, replacing t by x, we obtain

1
I <c zx~x bx + Iz log b, where z

1 + loga;
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Likewise,

J> zx~x b~x—{zlogb + z*x-1} J.

Moreover, if x* = ny and xxbx = nv , then asymptotically — = —&-,y' = y.
x y

That is, a percentage error in y is controlled by an equal percentage error

in x; and bv, when combined with x00, makes no asymptotic contribution to

the exponent of n.

3.  THE MEDIAN* VALUE OF THE GREATEST VARÍATE

The probability that every one of n variâtes will be less than G is, as is

well known,

ff(t)1—    f(t)dt

where f(x) is the probability function. If, now, we determine G so that this

expression is equal to i, then it is equally likely that the greatest varíate

will or will not exceed G. This median value of the greatest varíate is thus

obtained by finding 67 so that

00

sf(t)dt = 1 — 2-Vn.

While a median, mean, or modal value for the greatest varíate may be more

difficult to compute than the asymptotic value, in the foregoing theorems, the

former will, in general have more significance in practical problems. However,

even here, the asymptotic value may be useful for a rough simple check.

4. THE NORMALt PROBABILITY FUNCTION

If, in Theorem III, we set

h* = Yd* = ~ l°ëe9'       a = 2'

*In the theory of errors, the so-called "probable error" is the median of the absolute

values of the errors. Thus, it is equally likely that an error, taken positively, will or will

not exceed the probable error.

fRietz, in his article Frequency distributions obtained by certain transformations of

normally distributed variâtes, Annals of Mathematics, ser. 2, vol. 23 (1922), pp. 292-300,
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then
_ „-*•**gx*= é -iP/iir2

Hence, under the normal probability law, it is asymptotically certain that the

greatest varíate will be, apart from the factor (1 + e'),

(—log^n)1'« =-j*— er V2 loge n.

These results hold also for a Gram series with but a finite number of terms,

since the polynomial factor has no asymptotic influence.

On account of the symmetry of the normal function, an average value for

the variation interval is obtained by doubling the corresponding value for

the greatest varíate. The following table compares the median and asymp-

totic values of the variation interval, computed by the formulas of this paper,

with the modal, mean, and restricted mean ("bedingte . . . mathematische

Erwartung") values obtained by Bortkiewicz.* Bortkiewicz, indeed, after

noting that his mean determination is very close to the average of the other

two, gives examples from anthropometry and roulette in which the actual

variation is close to his mean value.

TT ,        . Variation Interval   „ . .       ,.   . .
Values of-for n variâtes subject to

1 -af/io2

V2n

Number of

variâtes

n

100

1,000
10,000

100,000

Modal

value

(Bortkiewicz)

4.76

6.23
7.47

8.55

Median

value

(Dodd)

4.92
6.39
7.62
8.69

Mean

value

(Bortkiewicz)

5.04
6.48

7.70
8.70

Restricted

mean value

(Bortkiewicz)

5.30
6.73
7.92

8.95

Asymp-

totic

(Dodd)

6.07
7.43

8.58
9.60

Asymptotic

Median

1.23
1.16

1.13

1.10

The asymptotic value of the interval of variation is thus about 23 % too

large when n = 100, and is still 10% too large when n = 100,000.

considers in particular the transformation x" = kxn, which would, for example, give the

distribution of volumes of similar solids — "oranges" — if the "diameters" are normally

distributed. In such a case as this, where x" is an increasing function of x, the asymptotic

value of the greatest "volume" can be found by finding first the asymptotic value of the

greatest "diameter".

*Loc. cit.   See also Nordisk Statistisk Tidskrift, vol. 1, pp. 11-38.
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5. The Pearson frequency types*

The Pearson frequency types are given below with the asymptotic interval

of variation for each, and the number of the theorem involved.

Asymptotic interval of variation for the Pearson frequency types

Type

number
Frequency function Interval of variation

Number

of theorem

I

n

m

IV

V

VI

VII

2/o

y*

2/o

x\v&

y0x~sé~r¡x,  x>0

y0 (x — a)q'x~9', x>a

y0e~x7/2a2

a + ß

2a

« +
lOgett

2nl/(2m-«     w>£

n1«*-«,  s > 1

^/(ft-ft-i) — „„ qx > q» +1

2aV2logen

i, m

n

i, n

i, ii

in

6. Other frequency functions

1. Jergensen function. The Jergensen function is of the formt

i riogx-fi«

ke   *l    d    J,

where k, £, and ô are constants, and x > 0. It can be written

where

l°ëe g = -g^F,       ß' = -p,      k' = constant.

* Certain special and limiting cases have also been designated as "types"

t See Arne Fisher, loc. cit., p. 241.
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Then, by Theorem IV, the asymptotic value of the greatest varíate is

e^21°8.n(l + e'), with |/|<»,

small at pleasure.

2. Poisson exponential function and Charlier P-curve. The Poisson

function has the form

e~lXx

x\

But, by Stirling's formula,

x\ == x* e~x V2tix eel12x,       0<C8<1

For the asymptotic value of the greatest varíate, the only significant factor

here is af. This asymptotic value, by Theorem VI, is

X(l + e'), where Xx = n, \e'\<e,

small at pleasure. The Charlier P-curve for integral variâtes is obtained from

the Poisson function by differencing. But

xx—(x — iy>-1 = xr°

1 \x
1 ——
_x_

x — 1

and this bracket has no asymptotic significance. Hence, if only a finite number

of terms are taken, the greatest varíate, asymptotically, remains that deter-

mined as above.

3. Makeham life function.   The Makeham formula for the number of

survivors at age x from an original group of l0 individuals just born is

lx = ks*?1

where k^O, 0<s<l, 0<cg<cl, c>l. Postulating a stable population

supported by the same number of births annually, and assuming that the

theoretic relative frequency is the equivalent of probability, the following table,
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based upon Theorem V, gives the age of the oldest individual, in accordance

with constants used in the American Experience Table, as makehamized by

Arthur Hunter,* in the Institute of Actuaries Table (HM), and in the McClin-

tock Annuitant Tables, makehamized by W. M. Strong.*

Age of oldest of n individuals

By asymptotic formula logc (— log„ n), where lx = fcs^p*".

Makehamized mortality table

American experience

Institute of Actuaries

McClintock-Male .. .

McClintock-Female..

For population of

one thousand I   one million     one billion

oldest age

95.1

96.3
97.8

100.8

oldest age

101.7
103.9
105.3

108.3

oldest age

105.5
108.3
109.7

112.7

AVhile these results are somewhat crude, it seems surprising that the asymp-

totic formula which dispenses with the factor s* could do so well. The question,

indeed, arises whether any graduation formula can throw much light upon

extreme ages, because of the gross irregularities commonly found at the ends

of biologic series.

7. Summary

The interval of variation is the difference between the greatest and the

least of n variâtes in a distribution. Theorems are here given for the greatest

varíate; corresponding theorems can be stated for the least varíate, using \x\

in place of x when necessary. In the following table which summarizes these

theorems, the letters stand for positive numbers; they are constants except

x, n, and 67.   Moreover, g< 1 ; but o >-1, c> 1, y>l.   For each varíate
00

(p (x) dx is the probability that the varíate will be equal to or greater than x.

With f(x) = fx(x) • xp(x), the two factors are each described below. As n

increases indefinitely, a probability converges to certainty that the greatest

varíate will take on the stated asymptotic value, with a relative error small

at pleasure for the values in Classes I, III, V, and VI, and for lia and 1/y in

Classes II and IV.

* Transactions of the Actuarial Society of America, vol.7, p. 200, p. 289.
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Asymptotic value of the greatest of n variâtes

When each variate is subject to <p • (x) • <p (x).*

Class

I

H

m

IV

v

VI

9>i(x)

0, x > Xi

X

gdOgcX?

9*

x

Conditions

for <p{x)

kx<-(p-<ki

x"ß <<y<xP

x~? <xp<x?

brx < ip <: Ve

b~x <tp<bx

Greatest variatef

XÄ

n1'"

(-loggn)1/"

logc(—\oggn)

G, with GG = n

Applications

5 Pearson Types

3 Pearson Types

I Gaussian Function

| Grams Series (finite)

IJergensen Logarithmic

I Function

Makeham Life Function

{Poisson Exponential

Charlier B-Series (finite)

Asymptotic values have a theoretic importance because of the rigidity of

the determination. Possibly, they may be used unreservedly in problems

where the variâtes are as numerous as atoms; but in most practical problems,

their chief value would seem to be in furnishing a rough check upon mean,

modal, or median values. The latter can be found by determining G so that

s<p(x)dx 1_2-1/».

* Or merely subject when x is sufficiently large.

fApart from the factor (l + s')i with |*'|<C«, small at pleasure.
x,

t Provided     I  y>,(x)*0.

x,-t
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