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1. Introduction. The first part of this paper is intended as a systematic

general account of the geometry of paths and is largely based on the series

of notes by Eisenhart and Veblen in volume 8 of the Proceedings of the

National Academy of Sciences. The general theory is carried far

enough to include an account of a series of tensors defined by means of normal

coordinates, and also a series of generalizations of the operation of covariant

differentiation. We then turn to a special problem, the investigation of the

conditions which must be satisfied by the functions r in order that the

differential equations of the paths shall possess homogeneous first integrals.! We

first solve a still more special problem for first integrals of the nt\\ degree (§ 15).

This includes as a special case the problem solved by Eisenhart and Veblen in

the Proceedings of the National Academy of Sciences, vol. 8 (1922),

p. 19, of finding the conditions which must be satisfied by the Ps in order

that the equations (2.1) shall be the differential equations of the geodesies of

a Riemann space.

Finally we solve the general problem for the linear and quadratic cases;

that is to say, we find algebraic necessary and sufficient conditions on the

functions r in order that (2.1) shall possess homogeneous linear and quadratic

first integrals. The method used will generalize to homogeneous first integrals

of the nth degree. We leave unsolved all the projective problems which corre-

spond to the affine problems which we have solved. For example, the problem

remains open to find what condition must be satisfied by the P's in order that

one of the sets of differential equations which define the same paths as (2.1)

shall have a linear first integral.

2. The geometry of paths. Consider an n-dimensional region the points

of Avhich can be represented by coordinates (x1, x2, ..., xn). Also consider

a set of differential equations

* Presented to the Society, October 28, 1922, and April 28, 1923.

t Our problem is distinguished from the problem of the existence of first integrals in

dynamical systems (studied by Staeckel, Painlevé, Levi-Civita, and others) by the fact that

the dynamical problem presupposes the existence of the integral corresponding to the

fundamental quadratic form. Cf. Ricci and Levi-Civita, Méthodes de calcul différentiel

absolu, Mathematische Annalen, vol. 54 (1901), p. 125.
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in which

(2.2) rjk = ri).

In these expressions the subscripts and superscripts take all integer values

from 1 to n and the convention is employed that any term which contains the

same index twice, once as a subscript and once as a superscript, represents

a summation with respect to every such index. Thus the second term represents

a quadratic form in dx*/ds. The coefficients are arbitrary analytic functions

of (x1, x,..., xn). The condition (2.2) is no restriction on the differential

equations (2.1) because the coefficients of any quadratic form can be written

so as to satisfy (2.2).

Any curve

(2.3) x{ = xpi (s)

which satisfies (2.1) is called a, path and the theory of these paths is what we

call the geometry of paths.

The geometry of paths is a natural generalization of the euclidean geometry.

For the differential equations of the straight lines in an n-dimensional eucli-

dean space are

,72 ri
(2.4) *£ = o

when referred to a cartesian coordinate system.  An arbitrary transformation

of the coordinates

(2.5) x* = f> (y\ y2, ..., yn)

transforms (2.4) into a set of differential equations of the form (2.1) in the

variables y, in which

dy*     d2xa
(2.6) rjk =

dxa   dyj dyk

Hence the system of paths defined by (2.1) has the properties of the straight

lines of euclidean space whenever the functions r are such that (2.1) can be

transformed by an analytic transformation into (2.4). This transformation is

possible if and only if

(2'7) -^-^+/^-/^==0'
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as can easily be proved. The left member of this equation is denoted by B]u

and is called the curvature tensor.

The paths defined by (2.1) are the geodesies of a Riemann space in case

the Ps are such that there exists a quadratic differential form

(2.8) ds2 = g„p dxa dJ

such that

(2.9) j$--9**lfk-gJar& = 0.

In this case the paths are the geodesies of the differential form (2.8).

The geometry of paths reduces to a Weyl metric geometry if the r's are

such that there exists a linear form t/>K dxK and a quadratic form gBß dx" dx?

such that

(2.10) gak rv = - [-^r + -j£— jg-J + - (gik 9j + g.k fi - «¡r.. 5^)

(cf. H. Weyl, Baum, Zeit, Materie, 4th edition, p. 113).

In the general case (no restriction on the r's except (2.2)) the geometry

of paths is equivalent to the geometry of infinitesimal parallelism as developed

by Weyl, in Baum, Zeit, Materie (4th edition, p. 100). For any system of r's

which appear in the differential equations (2.1) can be used to establish

a definition of infinitesimal parallelism according to which the paths defined

by (2.1) are geodesies in the sense of Weyl.

3. Transformation of the dependent variables. Consider an arbitrary

analytic transformation of the coordinates

(3.1) x* = f (x1, x2, ..., xn)

Avhich may also be written

(3.2) x* = g*(ßl, x*, ..,, xn).

By substituting (2.3) in (3.1) we obtain

(3.3) x* = «*(«)

as the equation of the path represented by (2.3).  Since

,    . dé_        dx{   dx"

^    ' ds  ~ dx"    ds

39
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and

d*x¿ 9'a*      dx"   dxß   ,    ox1   d2xa

' ds*        dxttdxP    ds     ds       sx"    ds*

we find that this path satisfies the differential equation

in which

<o 7Ï pi  -   **L (   dix"    _l r« M M.
Kó,i) }k~     dx"  \dxJdxk't   & dx>   dxk

Thus the form of the equation (2.1) persists under a transformation of

coordinates. It follows from (3.7) that the functions r behave like the com-

ponents of a tensor under linear transformations with constant coefficients

but not under more general transformations. It is seen by an easy computation

that the functions E]ki defined in § 2 are the components of a tensor. It follows

at once that the equation

(3-8) Shi - Bm - -jrj—J-f

defines a tensor which is skew symmetric.   This tensor is identically zero in

the Riemann geometry.  It also follows that

(3.9)        Rjk = 0},« = ^-- ^4+r% n¿ - r% n
dx{       ace*

ak

is a tensor. This we shall call the Ricci tensor because it reduces to the

tensor studied by Ricci* for the case of the Riemann geometry. It is symmetric

if and only if Sy = 0, as is obvious on comparing (3.8) and (3.9). Further

properties of these tensors are to be found in a paper by Eisenhart in the

Annals of Mathematics (vol. 24).

For convenience of reference we put down here the following formulas

about transformation of coordinates in general :

*G. Ricci, Atti, Reale Istituto Véneto, vol. 63 (1903), pp. 1233-1239.
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f* im dxi   dX"   — A*

(3-10) is? w - *

d*xl dx" d*xa      dx1 dxk _

1 "    } dx" ox? 99       99 dx*   dx" dx# ==    ;

%*& dx"  dx? d2x" dx*  =

' 9¿"8a* 9âV   9**      dxi dx*- dx" ~ =    '

9s«*        9a;c  ,       9*.«*        9V    gâT*   , d*x"       dx* dxk dx1
a~— a-u:_   _   ""   a_ "__

dafdxPdx* 9x¡       dafdafi  %x->dxk dx*      dx>dxkdxl dx" ga^ ga/

(3.13)
9'g" dtxi      dx^     JV_ _8^__aV_ _

+ 9^'9«fc    dx"dxT   dx?      dxJdxk   dx"   dx^dxT

dixi dx"   9^ d'x* d*x"     , 9-V        9a:* 9a;*
ITI T'

dx"dxPdx> 9äV   9*z       9a;"9a^   9x1 dx1       9a;J 9a;fc 9a;'  9a;« 9a^

(3.14)
9»a;" 3V      9a;fc  9a/         9aa;c         d2xk      dx1  dx? _

^ %9 9x* dafdxT   dx? "dx1       dxJdxk   93ft 9x?   dx" 9xl

98a7''        9ar* 9a^ 9*3?       9V     9a/ 9^

9^93^90/   99 9aTfc + 9iC« g^/9 9äV aäT1   9Ü* dxr

(3.15)
9V      9'a^    9af 9a;*   .        98a;"       9a;* 9a;'   .     9»af      d*x*   _

dx"dxt 9«fc3^ dxJ ■dxT d9dx*dxl dx" da/      d9dxk dx"dxT ~~   '

ds9        dx"  dx? dx?  ,      d29       92a;"     dxP
W'    fl-y*    fl<yí     'dafdx^dxT  99 dxk dx1^ 9af9a^  dxi dx1   dxk

(3.16)
d*9      d*xß   dx" _J^*L___teii     9"a;c      8V    daß _

aafga^ 9âT*9âTi aâV gâV gä7k gaT' gx«      aaVaiz* 9a;a9a;'s 9aTJ "

4. Transformation of the independent variable.   If we make an

arbitrary analytic substitution

(4.1) 8=f(t),

(4.2) t = g(s),
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in the equation of a path (2.3) the latter becomes

(4.3) é = y* (<).

For this path we have

d*oe-        d*^ ¡dt\* ,  dot d*t
dt   ds*

d*xi        d*^ /«H\8 .

(4-4) -dT = -cW [Is) +

On comparison with (2.1) we see that the equation (4.3) satisfies the differen-

tial equation

(4.5)

dV  .    i  d^_do¿_ dH_
dt* +   °P dt    dt ds*

dx>

dt m
Hence the differential equations

(4.6)

d*xi  >j4   d^_ dx?_ ¿V j. W  — —

dt* +   "f dt    dt dt* +   "P dt    dt
dx1 dxJ

lit "dT

are satisfied by the equations of the paths and are such that they continue to

be satisfied if the independent variable in the parameter representation (4.3)

of any path is subjected to an arbitrary transformation.

From (4.5) it is evident that the differential equations (2.1) will continue to

be satisfied if the independent variable in the equations of a path (2.3) be

replaced by t where

(4.7) t = as + b,

a and b being constants.

The differential equations (4.6) are due to J. L. Synge, who has pointed out

that the system of paths defined by them is no more general than that defined

by (2.1). For, suppose that (4.3) satisfies (4.6). Let ®(t) be the function of t

obtained by substituting (4.3) in any of the expressions whose equality is

asserted by (4.6). The following equation is satisfied by (4.3):

d*xi  .    j   dx"  dx?

IF
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Substitute (4.2) in (4.3), obtaining

x1 = xp(s),

an equation of the paths which must satisfy

(4.9)

d'a*        i   da?_ d^_ d*s^

ds* +   "ß ds    ds 0(t) dt*

dx*

ds

ÉL /ás_\* '
dt \dtj

Now if

(4.10) s = f(t) = A + B í JiKmdt,

A and B being constants, (4.9) reduces to (2.1). Hence the equations of any

path defined by (4.6) may be written as solutions of (2.1).

5. Projective geometry of paths.*  Let us inquire under what circum-

stances a set of differential equations

(5>1) ^ + ^^^7 = 0

can represent the same system of paths as (2.1). Suppose that a curve

(5.2) x* = xpi(t)

is a path both for (5.1) and.for (2.1). The functions f'(t) are not necessarily

solutions of (2.1) or of (5.1), but they are solutions of Synge's equations (4.6)

and also of the corresponding equations determined by (5.1), i. e. of

,     ,   dxJ_ ¡d*xi   ,    j   ds?_ doA        dx*  /dV j   dx?_ dx?\

(-}   dt   \dt* ^A«t dt    dt)~   df\dt*  +A"i> dt    dt)'

* The discovery that the same system of paths arises from (5.1) as from (2.1) when (5.5)

and (5.8) are satisfied is due to Weyl, Göttinger Nachrichten, 1921, p. 99. See also

Eisenhart, Proceedings of the National Academy of Sciences, vol. 8 (1922), p. 233,

and Veblen, ibid., p. 347. In the latter paper in equation (2.6) the final t should be omitted

and dxydt, ..., daf/dt should be evaluated at the point q; also the integration signs are

missing in (4.2).
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Between (5.3) and (4.6) we can eliminate the second derivatives, thus obtaining

(5.4)
(Kß-Aß) d^d^^ (riß — ̂ iß) dx" dx?

dx1 dt    dt                dx->           dt    dt

~dt ~~dt

Let

(5.5) Kß-Aß-Kß
and

(5.6) -^ 0\ß = toß.

If we subtract from (3.7) the corresponding equations for the functions A the

result shows that tolttß is a tensor.  Hence toß is a vector.   The equation (5.4)

now becomes

In this we put

«i*   dx*      0¡   dxi\ dx"  dx?       n

°^^ü~°^^t) ~dT^f-°-

dx1 ti dxr        ,    dx-i t; dx?
<L ——-   and   —r— = oí

dt r at dt r dt '

and obtain

,5.7, {<fó^<s?É£É£^ = (l.

Since the derivatives dx"ldt may be chosen arbitrarily this gives

<ß 0Í> + Vßr ôi + ®r« êfi = <ß ôr + < d« + °U 4-

If we set .y = y in this equation and sum with respect to y, we obtain

nKß + 0%+0^ = to],ß + (n+l)toßoi + (n+l)tott6ß.

Hence

(5-8) <?=<»« 4+<V-

Hence, if the equations (5.1) and (2.1) are to determine the same system of

paths, the functions r and A must be related by (5.5) and (5.8).
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Conversely, let <Z>« be any covariant vector and let the tensor ®aß be defined

by the equations (5.8). Then any two sets of differential equations (2.1) and

(5.1) will define the same system of paths, provided that (5.5) is satisfied.

For consider any path with respect to the T's.  Along this path we have

(Kß-Aß) dx" dJ
dx1 dt     dt

It

Hence (5.4) is satisfied. But if (5.4) is added to (4.6) the corresponding

equations in A are obtained. Hence every path with respect to the /"'s is

also a path with respect to the A's.

A system of functions rKß determines a definition of infinitesimal parallelism

in the sense of Levi-Civita and Weyl. It is therefore appropriate to designate

the body of theorems which state those properties which are determined by

a particular set of differential equations (2.1) as an affine geometry of paths.

In like manner the body of theorems which state properties of a system of

paths independently of any particular definition of affine connection (i. e. of

any particular set of differential equations (2.1)) may be called a protective

geometry of paths.

For example, the theory of the curvature tensor belongs to the affine geo-

metry of paths. For if the curvature tensor determined by (2.1) is denoted

by B*ttßr as in § 2, the corresponding curvature tensor determined by (5.1) is

(5.9) B\tßy~oi d>ßr + ôa OrJ-dß (Dßir + 4 0Ktß-oß Oa Wr + 4 ©„ Oß.

In this expression Oa ß denotes the covariant derivative (cf. § 10 below) of ®B

with respect to the functions raß.

The Ricci tensor PK/S becomes

(5.10) Iiaß-rnOatß-0ß:Ci + (n-\)Oa ®ß,

and the skew symmetric tensor 8aß becomes

2©„
dx"

dt

^A      O/00       ddC-

Kß~dT ~dt

dx1

IT

(5.11) Sttß-(n + l)((t>ajß-®ßttt).
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Comparing these three expressions, it is evident that a tensor which is the

same for the A's as for the r's is defined as follows:

W.
i        erR«ß     ölßBar     _J_ ,¿ Ai K8ßy

This is what Weyl (loc. cit.) calls the projective curvature tensor, and its

theory belongs to the projective geometry of paths. It can also be written in

the form

0}
^aßy — &«ßy + n*_i (w R«y + Bya)

— wi_! (nBBß + Bßtt) + n + 1  (Bßr — Brß).

In the rest of this paper we shall be concerned entirely with the affine

geometry of paths, to which we now return.

6. Equations of the paths. A unique solution of (2.1) in the form (2.3)

can.be found which satisfies a set of initial conditions

(6.1) (/ - t (0),

(6.2) r = A^(0),

where a1, a2, ..., qn and S1, Ï*. ...,!" are arbitrary constants.   For if we

differentiate (2.1) successively we obtain the following sequence of equations:

~~d~sT + "ß~dT~dT      '

,¡. r.-. dV   .   ri    dx" dx? dx?

(6,3) "dT- + ^IT Hi Hi = °'

d^x?   .     i      dx" dx? da? dx

dsi +1«ßra-d-f~dV~dV~dV '
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in which

(6.4) rU = lp(^_r^-F¿iTS) - |^(^--2^iis)

and, in general,

ri 1      p/ 9«jJrf...TO rt rC ,.<. „K   \
1jkl...mn —   ~/\f      \       jT~n takl...mljn       "•       / jkl...« * mnj

(6.5)

= lyPl—frrL—(N—i)r»jk...irnn\

where A" denotes the number of subscripts, and the symbol P denotes the sum

of the terms obtainable from the ones inside the parenthesis by permuting the

set of subscripts cyclically. Thus the functions /}»...*■» have the property of

being unchanged by any permutation of the subscripts.* The equations (6.1),

(6.2), (6.3) determine immediately the following series for xp* in terms of s:

(6.6) é = g* + ? s - jy riß (q) r ^s*-^ Kßr (q) ? ? V 8«-.

In this expression r^,,./1(q) represents the value of raß ß obtained by

giving xi the value q\ In general we shall use x to represent (x, x*,..., x11),

Ï to represent (j?1, ?*,.••, ?M), and so on. Fpr any point q and any "direction" ?

we have a unique path determined by (6.6). These equations may be abbrevi-

ated in the form

(6.7) x* = q* + n(q,ïs).

The jacobian of the equations (6.7) is equal to unity. Hence for values of

x sufficiently near to q the equations can be solved, giving

(6.8) ?' s = é — (f + sP (q, x — q),

where A* is a multiple power series in (xl— g*), beginning with second order

terms.  Hence there is one and only one path joining q to x.

* We have changed the notation used by Veblen in the Proceedings of the National

Academy of Sciences, vol. 8 (1922), p. 192, in order to introduce this symmetry.
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7. Normal coordinates.  Let us now put

(7.1) t =  &8.

The equations (6.7) and (6.8) become

(7.2) x* = gi+ri(q,y)

and

(7.3) f = x* — q* + jfi (q, x — q).

These equations may be regarded as defining a transformation from the coor-

dinates (x1, x2,..., x") to a neAV set of coordinates (y1, y2,..., yn) which we

shall call normal coordinates because they reduce to Kiemann's normal coor-

dinates in case the geometry of paths reduces to a Riemann geometry. This

transformation changes the differential equations of the paths (2.1) into

(7.4)
¿V   ,ni   dy^d£
ds2  +   «<*  ds     ds '

where C„ß are functions of y defined by the equations

y -0' ^k  dy"  ' '  dyJdy* ~*~   & dyj   dyk

These coordinates have been so chosen that the curves defined by (7.1) are

the paths through the origin. If we take any point y there is one and only

one of the paths (7.1) which passes through it. Substituting (7.1) in (7.4)

we find

(7.6) ciaßr& = ot

and hence on multiplying by the square of the value of s determined for the

point y by the equation (7.1) we obtain

(7-7) <^V = 0.

Let us now consider the effect of a transformation of the variables x of

the form (3.1). This changes the equation of a path (2.3) which satisfies (2.1)
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into the equation (3.3) which satisfies (3.6). It also changes the initial con-

ditions (6.1) and (6.2) into

(7.8) qi = ipi(0)=fi(q)

and

(,9) r.^.^ij^

respectively, the subscript q indicating that the derivative is evaluated for

x = q. For any point p, not too far away from q, there is a unique path

and thus a unique set of values (y1, y*,..., yn). From these we determine

£* and s so that yi = I* s. Then (3.3) gives the equation of the same path in

terms of the coordinates x in such form that the point p is determined by the

parameter s.  Hence by (7.9),

(7.10) f-d-sD.

/ dx*\
In this formula the coefficients l-r-^J are independent of the particular path

\ OX   I q
and dependent only on the point q and the two coordinate systems. Hence

when the coordinates x undergo an arbitrary analytic transformation, the

normal coordinates determined by the coordinates x and a point q suffer a linear

homogeneous transformation (7.10) with constant coefficients. In other words

the normal coordinates are transformed like contravariant vectors. They are

not vectors, however, in the narrow sense, but are the components of a "step"

from the origin of the normal coordinates to the point at which the coordinates

are taken. An arbitrary step (AB) determined by the points A and B can be

represented by the coordinates of the point B in the normal coordinate system

associated with the point A.

8. Alternative treatment of normal coordinates. The identity (7.7)

can be used as the definition of the normal coordinates.  For by (3.12)

(81) C\- ir* dyi 8V   1 dxJ »**
(8.1) C«P-\rJkdxr      dxJdxk)dfdyß

so that (7.7) becomes

\jk dx?       dx>dxkl By"  %y*y *



564 O. VEBLEN  AND   T. Y. THOMAS [October

The differential equations (8.2) uniquely determine a functional relation

between the a:'s and the y's when taken in conjunction with the initial

conditions

(8.3) t = 0 when xl = q\

(S 4) Q£- = d) when x* = q\
dxJ J

For Avhen Ave differentiate (8.2) repeatedly and substitute these initial con-

ditions, making use of the formulas at the end of § 3, we find

Xi = qiA-yi-A-riß(q) f i/-^nßr(q) y" y? y?

(8.5)

~^rißriy"y?yry«-

and

yi = xi-qiA-j-jißiq){x«^q«)(xS--qß)

(8.6)

+ jï4tfir(xtt-qa)(xfi~qfi)(x?-qr)+...

Avhere the r's have the meaning given them in § 3 and the A's are such that

¿jk =   Ijk,

¿ja = r)kl-\-P(Attj rkt) = Y^xvà—/,«í//«)»

A)klm =  Fmm + P(Aaj Fklm + A«ß 7}k TL + Aajk O»

If the general solution of (8.2), regarded as a differential equation for y in

terms of a-, is denoted by y Avhen only the initial conditions (8.3) are imposed,

then

(8.7) y1 = altt y"
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where the att are arbitrary constants, and y is the solution determined by the

initial conditions (8.3) and (8.4) which is given by (8.6). This last theorem is

proved by observing, first, that the function y defined by (8.7) satisfies (8.2)

and (8.3) and, second, that if there were any other solution for which

y* = O and ]£ = «j

when x* = ql, the solution (8.6) would not be uniquely determined by (8.4).

In order to show the tensor character of the normal coordinates let us now

consider the effect of a transformation of the variables x of the form (3.1).

We inquire what are the normal coordinates determined by xl, x*, ..., x*.

These normal coordinates which we shall denote by y1, y*, ..., yn are

solutions of

m) V^-dx^-JxTo^j Yy" W J   V

If we substitute into this the value of /$ from (3.7) we obtain

[(

,t d^_d^_dxP_       d*x*    dxv\ oyl        d*yi   I dxJ dxk-a-ß

qr OX¡    dxk    dX*  + Yx->  dxk   dX*}  dxP BXJ dxk\  Qy"   Qyßy    V

or

(r* M _   9V \ M_ 1*L y« yß
\  qr dx*       dxfldx?) Qy«   dyß '

(8.9)
,  /    d*x*     dyl d*yi d*yi     dx?  dxT\ dx->  dxk -„ -ß_

+ \®X~Jdxk     dx*       '   dX->dXk+   dxfidaf     dX-i    dXk)   Qy«   QyßV     V

The parenthesis in the second term is identically zero.   Hence (8.9) is the

same differential equation as (8.2).

By definition the normal coordinates must satisfy the initial conditions

y* = 0 when x{ = <p',

and

3t7' —       —
a) = —% when x* = q\

dx>
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Hence we must have

dy* d9     .      -,       _,
J9 = J9 When X  = 9-

The value of d9/dxj when 9 = q* is determined by (3.1). Let us call

it aj. Then by the theorem regarding the formula (8.7),

(8.10) y* = ai y"

is a solution of (8.9) determined by the conditions

9 V£
«' = 0    and    —í=? = ô) when x* = a1.
J dxJ J H

Hence when the coordinates x undergo an arbitrary transformation (3.1) the

normal coordinates undergo a linear transformation (8.10) the coefficients oí

which are given by

^ - 4

9. The normal tensors. Since C% is symmetric in j and k and tl is

entirely arbitrary it follows from (7.6) that C% vanishes at the origin of nor-

mal coordinates, i. e.,

(9.1) (C%\ = 0.

Hence the power series for C]k takes the form

(9.2) Cjk = AUr+jfAJ^y" yfi + ^A^y" y^/+ -■-

in which the A's are the derivatives of C]k evaluated at the origin, i. e.,

4-- - (Ä
The equation (9.3) can be taken as defining 4/fc«...r as a set of functions of

(x1, x*,..., xn).  At any point (p,p2, - - - ,pn), Ajka...T is equal to the right
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hand member of (9.3) evaluated in the system of normal coordinates having

(pl,P, • • •, Pn) as origin. The functions so defined are tensors. For consider

a transformation from x to x and the transformation which it produces from

y to y.  By (3.7) we have

(94) ml±-Ci^-^-
^A) tjk dy"  ~ Lfr dyJ   dyk

and from (9.2)

i■   9j¿dyr_ _      i     d¡¿dyT   d      1     ,      dy? 9yT   â

Lí>r dyJ  dyk ~ Ato* dyi  dyk V + 2! **** dyJ  dykV V  + ' ' ' *

Hence

r" 13L - Ai   °j¿lil_ *yä ™
Ljk  dy"  ~ A^ dyJ   dyk  9yP V

A.±ÁiU¿ULl£lÉ.^a»A....
f 2! Aßyas d-j 9-k 8p d~v y y i-     -

Comparing this with the equation

C\ = A^y* + ±I¡my»W' + >--

Ave have

T«        M- —  a" _9/_9£._9j¿ d£_
AjU...m   a-«   --   Aflr¿...e   d-j   d-k    9yl'"  dy-m-

If we make the substitution

f - (£),
then

i-QAA J« 1*L        a" d^_9x¡^93¿_ diï_
W-*>) Ajkl...m   g-«   —  *ßra...e   d~J    9-fc    j.^1  •••  d~m,

where A is regarded as a function of (as1, x2,..., a?1) and A. as a function of

(9, x2,..., àT"). This shows that A]u...m is a tensor which is contra variant

in i and covariant in jkl • - ■ m. We shall call it a normal tensor because of

its definition in terms of normal coordinates.
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By their definition (cf. (9.3)) these tensors are symmetric in the first two

subscripts and also in the remaining ones, i. e.,

(9-7) Ajtatß.    .T   —   ^Jcj«/J...T>

(9.8) AjkKß   T — Ajkrg   a,

where yd ... a is intended to represent any permutation of aß... x.

If we multiply (9.2) by ¡p yk and sum, the left member is zero by (7.7) and

the right member is a multiple power series the coefficient of each term of

which must be zero.  It therefore follows that

(9.9) Aika + AU + Aijk^ 0,

(9.10) Ajk„ß + AJttkß + Ajßak + Atojß + AkßJn + AaßJk = 0,

and in general

(9.11) S(A%aß.„T) = 0,

where 8(  ) stands for the sum of the A7(A7—1)/2 terms obtainable from

the one in the parenthesis and not identical because of (9.7) and (9.8).

The tensors A are expressible in terms of the functions r)k and their

derivatives. If we differentiate (7.5) we obtain

dC%   dx1        a    d*x*    =        d*xi

dy1    dy" "*"  Jk dy" dif " dyj dif dxf

(9.12)

.   °r)r dx? dx? dxâ        i     d*x?    da?   .   „¿   docP_   d*a?

dxd   xlyj  d^ dy1 + 'to dyJdy1 dtf +   to dyj difdy1'

Substituting the values of the partial derivatives of x with regard to the y's

as computed from (6.6) or (8.5) for the origin of normal coordinates, we find

(9.13) aU = típ—ijl_r¿ij-.ijit.
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If we differentiate (9.12) again we obtain

Ai    ._    d*r)k     ri        Brjß r$      dr}k rg     drjß
1 Sx'Sa:"1 Jklm       dx1     km        dé     Jm       dxm    kl

(Qiâ.\ —     ßk rß — drjk rß _r '  rß  — r¿  rß
(y.l4j — d^m irt—     ^ ilm     ljßlülm — ißkiJlm

+ Afkl rßm + Afkm r;t + r;r rß rrm + rlr r¿ qr

It is evident that a continuation of this process will determine the explicit

formulas for any number of the A's.

10. Co variant differentiation. Covariant differentiation is a process by

which from a given tensor there may be formed a new tensor with one more

covariant index. Let Tijn;,kn be any tensor referred to arbitrary coordinates

(a;1, x*, ..., xn) which is contravariant in (I, m, ..., n) and covariant in

(i,j, ..., k). Let ty.'.'.jt" be the components of 2$?.V¿" in the normal coor-

dinate system (y1, y*, ..., yn) which is determined by the x-coördinate system

at the point (q1, q*, ..., qn). The equation

(a Jm. ..n \

dylr-jo

defines a set of functions of x which turn out to be the components of a tensor.

In the Riemann geometry this tensor is the same as the covariant derivative

of T according to the definition of Ricci and Levi-Civita. Hence we shall

call it by the same name in the general case. The subscripts arising by

covariant differentiation will be separated from those originally present in the

tensor by a comma.

Let us now prove that the functions Tí¡n'.'.knp jictually are the components

of a tensor. Let the functions T and t become T and t respectively under the

arbitrary transformation (3.1). This gives the equations

jg,,,„ dx1   dxm        1^1 1^_ 1^_        dxY

(10.2)     TT-'.'k1 =1aß...r %xd   dxs dxv    9^¿   oxJ  " ' dxk '
mlm.. .n

A...»   9y*   8y"> dy-   dy"   dy* df
dO.dj tij...k — tUß,„r dy3 d^ dyV dyi dyj dyk

,lm...n

40
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Since the derivatives in (10.3) are constants we obtain by partial differentiation

,ds... v

(10.4)
dtf.:;kn _     9taß\\\r   dy1   dym        dyn   dy"   dy? dy*   dy"

dyp dyw      dyd   dtf        dy"   ^yi   QyJ        9yk   9yP'

and, hence, at the point q we have

-im...n à*--.»     9âT'   dxm        dx*_  dx[_   do^_        d^ 9a^_

(10.5) Tij.:;k,p = T„ß^rtu dx¡   9^e ■  ■ ^   9-<   d-j ■  ■ g-fc   d-p •

Since the point q is arbitrary, 2$re.*.'¿,'p is a tensor which is contravariant

in (l,m, ..., n) and covariant in (i,j, - - -, k, p).

Let us next evaluate 2$?.'.*,* in  terms of the  Pa  and  the original

tensor T$?.".fc"   To do this we differentiate the equations

non      M..n_ Vs-v   9y*   dy™ dy-  dx"   dx? da?
UU.b) tV...k       -     lttß...Y    dxö      dxe dxV       dyi       dyj dyk>

obtaining

8<ÎT::i* =   dTí.:.y   dy1 dj£_d¿^        do?   dx"

dyp        '      dx'     dxs " ' dx"   dy*  " *  9/  dyP

Jt...v      ay      dx" dy*   dx" dx?
(10.7) + T

m"'r dxd dx" 9yv da?   *tf 9^ n

.  T»...v   9-y1 dy*   dx" d2a?

tt-r'dxJ'"JxV9yi'"dykdyP-

At the origin of normal coordinates

cm«,    1É. - W - - já 9V    -        d'xi    - frí i
UU-8'      dy¡  —   d9  ~ °J'        d9 dx*  - " dyi dtf — (  jk)o'

as follows directly from (8.5) and its inverse (8.6).   The substitution of (10.8)

into (10.7) then yields

Srplrn, ...n
J-ij...k      |   j-,1    rp"m...n  i   rm   rnk*■ ■ ■ »   i

J-ij...k,p — T-J \- l«p J-ij...k    ~r l ftp ■!■%/...k   T * * '

(10.9)
1 «P -*■$...k ■* tp -icy... ft        -* y# i¿«,.,ft ' * '        * /cj> -i y... a  •
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By using the tensors

(10.10) z£}-/.: = «£ ôaT o"ß. - - ô: + ô; <£ ôbT - - - 6nv + - - - +èav àl dß - -. ônT

and

(10.11) EZt.: = àlôlèi...ôl + oiolèl-..dl+...+èvaôlô{...Sl,

the formula (10.9) may be written in the form

mlm...n   _    dTjj..\'k      !   rT   _«/9...;-     <rtm...n
J-ii...k,p —   —rr-¿       \-iapiij...k   JJatß...r

(10.12)
_ ra rpl™--n v<**ß-r

*xp J-aß...y ^aij.-.k •

The covariant derivatives of the sum and of the product of two tensors

with the same number of covariant and contravariant indices are formed by the

same rules as hold in the differential calculus. That is, if

iir\io\ rT1lm...n ilm...n   ¡    -r,lm...n
(10.13) Tv...k   = Aij...k +Bij...k

then

nt\ 1 a\ rr¿m ...n AVm...n    i    rdm ...n
(10.14) J-ij...k,p = Ajj...k,p-\- &ij...k,p,

and if

(10.15) ïf.ji" = A\::\t. bï;::ï

then

(10.16) Tij.;;k,p = AiW'.s • Bt.'.'.k,p + A{, \\s,p • Bt..'k.

These formulas follow without difficulty from (10.1).

11. A generalization of covariant  differentiation.   By repeated

differentiation of (10.3) we obtain

8r tt::?_    __     °r t«ß::Vr      dy*   dy™

dy* ... dy* dy"... dyT    dyd   dys '"

(11.1)
dyn   dy"   dyß dy*   dy" dyr

' ' '  dy"    8y*    8^ ' " ' dyk   9y~P '" dy«

40*
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This shows that a set of tensors Ty.;;k?p...q are defined by

/     flr ,lm...n    \

(11.2) 2fc*v... = (8^;;^)o       (r = 1, 2, 3,...),

where the derivatives on the right are evaluated at the origin of normal

coordinates. For r = 1, Tijn;;knp...q is the ordinary covariant derivative

that we have just considered. The tensors Tj".'.'¿^...3 form a group of tensors

that may be derived from a given tensor. We shall refer to the general

tensor of this group, namely, 2$n.7¿,,p...a, as the rth extension of T¿j".'.'¿re,

r being the number of indices p, ..., q. By its definition this tensor is sym-

metric with respect to the indices p, ..., q. The operation of forming the

extension of a tensor may be repeated any number of times. For example,

Tij,pq,r,stu is the third extension of the first extension of the second extension

of Ta.
The rth extension of the sum of two tensors which are of the same order

in their covariant and contravariant indices is equal to the sum of the rth

extensions of the two tensors, i. e.,

(11.3) (A + B)ij.;'k,p...q   =  Aij.'..k,p...q + Bij.'.'.k,p...q-

This follows directly from the character of the tensor transformation. The

formula for the covariant derivative (first extension) of the product of two

tensors does not apply, however, for the case of the rth extension (r>-l).

For let the tensor T be equal to the product of two tensors as in the

equation (10.15). If T, A, B become t, a, & in a normal coordinate system

(y\ y2, ..., yn) we have in this system

/-. *   a\ Jm...n I...U    ,v...n
(11.4) tij...k    =  Oi...s ■ h...k-

The formula for the rth extension of Tis obtained by carrying out the differen-

tiation indicated in the following equation:

„r Jm...n „r
mt-\ 0   Hj...k 0 ,   J...U    j«...n\

•5) 9yv...d^ =   dyP...dyiai-''ht-k)-

This formula has 2r terms.

Any tensor 2«?.'.'*,^...^ may be expressed in terms of the r"s and the

original tensor T^y.k1 by the same process that we have used for the case
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of the tensor Tjf^'.k'p. That is we have to take the successive partial deri-

vatives of both members of (10.6) and substitute in these equations the

equations (10.8) and

(11,6)      WWW = " {rjl"l)°'        dxid&da* = (^°'

and so on. It is evident that formulas for extensions of all kinds can be ob-

tained by this process. Instead of giving the general formulas, however, we

shall set down the first extensions of the first four kinds for the covariant

vector and the covariant tensor of the second order. In these formulas 8 is

used to indicate the sum of all distinct terms which can be formed from the one

in the parenthesis by replacing the given combination of the subscripts p, q

or p, q, r or p, q, r, s by arbitrary combinations of these subscripts.   Thus

l_^Ti_      \ __     d*Tj d*Tj   ra d*Tj   fa
6 \ dxf dxP    «7 dxa dxP    vr ̂  dxK dx<¡    Pr ^ dx" dxr    pi '

(11.7)      Ti,p   —  ga^       Ta IiP;

(X x  q\ rp _       8    Ti STj      a_q I d Tg      a\ _ rn   r«   .
(11.»)      lilPq -  dxPdx<¡   -daflPi     ^[sxp1^      laliP^

Ti.
dsTi _/   d*Ti

hvqr    '  dxPdxfldxr

(11.9)

„ ¡     d    Tj     ra\ ç, /    9    Tg a\
b\dx-dxP  qr)    b\dxPdx"lirj

dTg       a     ß\ 0¡d Tg   r« \ _ 9 Tj rct „       a
daf     P   qTl U«"       'I       dx«   pqr      laliP"^

= d*Tj _    /       d*Tj «\ _    /      93 Tg «\

J-i,pq>s        dxPdx* dx'dx3 \dx"dxPdx'i   rsl XdxPdx'idaf    "

(11.10)

VTj ,      ß\ I    d*Tg

dx"dxß   P9   rS!+b\3x^dxpi-s L".*^"«r*7«)~~s \dx«dxPFqrs)

&   -r-„ I'irs] + S I-— r%p I\rs) + 8 I--r Pipq «%■«)

O /'8 Tg   ra    \ d lj        g rp    j.g
' dxP    iqrsj       dxa    ipqrs ipqrs'



574 O. VEBLEN AND T. Y. THOMAS [October

(11.11)    Ti/, p   — ~fcjj¡p        Taj fip       Tía rjp ;

_      92 Tjj 9Tjj      a I g Tgj      a\ ¡9Tja      a

(11.12)

+ í7«/? # (ftp rjq) — Taj ripq ~ Ti" Fjlq i

m 3   T^/ _ ~ /   3    Tg;        n\ _ „ l_9_Tia_ „a
•  vdx*da?      b\dxPdafl    ir)     b\dx*dx*   *,V,P9 dxPdxidxr

>dx"dxP   «7       da/        ip   qr'      dx?

9 §■ ̂ V + ^ *(r£ 7P + T^ s(irpq rp
dx"

Ti     pa       _/TT     r>«
oy L ipqr        ±itt l jpqr ,

rp.. __   _9     ?fr_„ / 9     Tgj v\  _       / 3     Tjg pt\
V,pqrs dxPdXldXrdXs \dXß> daß dXr      */ \dxPdXldXr     •>'»/

s(-J¡^ '■"•)+*(■£& rt r4+slJ^-
8

ÍÜÉ_ r« r/»\ -i- ñ i
dafidxP   iq

_|_ .<? ¡_d_±ia_ fapß\ _ o /   3    Tjg        „ \ _     l_d_J£v__ pit \
\da^dxp   jq   rsl [da? daß   Jrs] \9a;«9a^   H

I      o /     3     Tj;      ̂ «  ^,yj\ _ „ /    8     Tgj a\  _       / 3 Tgj        „     \

\ga;"3a;'s   OT   r7 \aa^ga^    <"»/ \ ga;*    *W

<»•">  +*(^^í3!)+s(i|Líí.^)+s(l^rí t)

921«,s ™   „*   „v\   ,   „ldTg¡  „«  „. \       J3E— ó'í—^r? r£ r^+tf "¿_pa pß   \ _ o / ° x w pa

dxß      IV     qrs¡ \  dxp      jqrs

i     p | 3 Tjg       tt ß\    . Id Tjg   pg pß   \ dTjj      a
\dxf>     jpq    rsl \dxf>    Jp   H       dx"    pqrs

- ^j npqrs + Tttß S(r?pqr rfs) + s( Taß r«g rp

I     íTI       cr/ ptt  pß    \ _ rp     pa
\    J-aß °\    ip     jqrs' -1 ig     jpqrs'
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(12.3)

12. Formulas for repeated covariant differentiation. In this section

we write down a few special formulas relating the tensors obtained by

successive covariant differentiation to the higher extensions and the normal

tensors. In each case the formula is obtained by computing the covariant

derivative in question according to the formulas of §10 and evaluating at the

origin of normal coordinates:

(12.1) Tipg = Tipq—TaA"pq;

rp = T      _TA"   _TA"  _T     A"
MOO"* *'P<Q,r i,pqr i,tt    pqr g,p    iqr g,q     ipr

_ rp A«    _ T    A"      -
a,r     ipq a     ipqr '

rp = T       _T      A" _T      A" _T      A"
i,P,q,r,8 i,pqrs »,pq     irs a,pr     iqs a,ps     iqr

_ rp A<*    _ rp Aa    _ rp ta    _ rp ta
a, qr     ips <*,qs     ipr a, rs     ipq i,ap     qrs

_ rp A«    _ rp au    _ rp ta     _ rp id

i,aq     prs i,ar     pqs i,as     pqr a,p    iqrs

_ rp A*      _ rp ta      _ rp        ta      _ rp        ta
a,q     iprs a,r     ipqs a,s     ipqr i,a     pqrs

— T (A"     — A"   A?  —A"   A?.   — A". A?
av    ipqrs ßpr    iqs ßps     iqr ßir     pqs

— A". A?   —A"    A?  —A".  A?   -A" „A? );
ßis     pqr ßpq      irs ßtq     prs ipß     qrs'

(12 A-) T        = T      _T   A"   _T   A"  ■v    " ' ii,p,q ii.pq        «j    ipq        »'«   jpq'

rp = T       _T      A"  _T     A"   _T     A"
V,P,q,r V,pqr aj,p ■^iqr aj,q     ipr aj,r     ipq

(12 5) _T      A"  _T      A"   _ T      A"   _T      A"
K     '   '                                              i",P     jqr ia,q     jpr ia,r     jpq ij.a     pqr

_ rp      Aa      _ rp      ta     .

«j    ipqr        i*   jpqr '

rp __   rp _TA"       _ TA"
Vii'iï.»',» ii.pqrs aj     ipqrs ia    jpqrs

(12.6) —t.   At   —T.   A"   —T.   At
«U.Í     tprs aj,r ^tpqs aj,s     ipqr

_rp Aa     _rp ta     _rp ta
to, g     jpr s ia,r     jpqs ia,s     jpqr



576 O. VEBLEN   AND  T. Y. THOMAS [October

T.     4«    _j>.     ¿«    —t..    A"
aj,p      tqrn ia,p     jqrs lj,a     pqrs

.'P J«    __ rp A«    _rp Aa
ctj.qr     ips aj,qs     ipr tej,rs     ij

(12.7)

tpq

_ rp i«    _ rp A tl    _ rp A a

itc, (¡r    jps i«, qs     jpr in, rs    jpq

rp Aa   _rp <c;   _rp \g

aj.p,q     irs gj,p,r     iqs aj,p,s     iqr

rp Aa   _ rp ta_rp ig

ia,p.q     jrs ia,p,r     jqs i«,p,s     jqr

p J«    _ rp ¡g     _rp ak

%},<*,<! ' P'i's ij,a,r    pqs ij,a,s     pqr

T 1"    '
lj,p,a      qr.1'

rplm,..n rplm...ii      ¡   rp'<m..-i'    ,!■        i i   nilm..a   , »
J-Ü...k,p,q  —   J-'j ..k,pq T" J- ij...k     Aapq-T •'• T"-t,j'...fc    ¿inpq

r,.lm...n    ,u       i i    rpliii...n    ¡a
Laj...k    Aipq -\~  • • •  -f- ij/...«    Akpq•

13. A generalization of the normal tensors. If we transform the

equations (6.3) to a system of normal coordinates and make use of (7.1) we

obtain the following sequence:

Uß   f   f    =    0,

&aßr f s" f = o,

(13.1)

- a fly ...ac\     f $ß f- ..f = ol-gßY...a S    s    » S v,

where the C's denote the corresponding functions r in normal coordinates.

Cgßy   a is symmetric in the indices aßy ■ ■ • a. The functions C%aß are related
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to the /"s by (7.5) and there are similar equations of transformation for the

other C's.   Thus

d*xi i    dxf  dx?_ da?_

dy" dyP dtf       "w dy"   dif   dtf

dxfdy"    ßr      dy^dyt   r"      dy^dyT   "ß'

Since the £'s are entirely arbitrary at the origin of normal coordinates it

follows from (13.1) that

(13.3) (Cgßr...a\ = 0,

where the left member denotes the value of C at the origin of the normal

coordinate system.

We may define a set of functions ij^,^,,^, of (x1, x*, ..., x") corre-

sponding to the normal tensor A^p   q defined by (9.3) by the equations

<1M 4».*....- (0^1

in which the derivative on the right is evaluated at the origin of normal

coordinates. By a method similar to that employed in § 9 we can show that

A\aßr. ,.a)p...q possesses a tensor character, but this fact may also be inferred

by observing that A\aßr,, .a)P...q «s expressible in terms of the normal tensors.

The tensors A^ttßr ,,c)p,„q thus constitute a generalization of the normal tensors.

They are symmetric in the indices aß y --a and p ---q. In case A^„ßr ,,a)p.,,q

contains only two terms in the parenthesis it is a normal tensor and we shall

then omit the parenthesis for simplicity.

The following equations express a few particular cases of the relations

between the tensors Al^r _^p__q and the normal tensors. These equations

are obtained by differentiating the identities (6.5) referred to normal coor-

dinates and evaluating at the origin. The symbols P and 8 have their previous

significance (cf. § 6 and § 11) except that P operates only on the letters aßyöe

and 8 only on the letters p, q, r:

(13.5)   A\ttfr)p   = -g-P(Alßrp);

C,«ßr

(13.2)

8 xl

df
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(13.6) A^ttßy\pq  = —P iAaßyPi    2 o (Avap Aßyq) J ;

(13.7) A^aß^pgr = -g-P [A%aßrpqr— 2 S (Ayapq Aß/r) — 2 S (Alap Afrqr)] ;

(13.8) A\aßY^p = — P (AtaßfiAp);

(13.9) A\aßrS)pq = —P [A\ttßr)gPq— 3S (A\vap/P Ayâq)] ;

(13.10) A\apr¿¿)p= -^P(Ataßrdep).

By differentiating the equations of the type (13.2) and evaluating at

the origin of normal coordinates we may express these tensors in terms of

the functions r.   For example

9 r*
a       ._pi      i       «ßr     pi   p&_pi    pf- __pi    pt1

Aiaßy)p Iaßyp~T     r.   p IftaßI1'p       l pay Â ßp       ' fißy * ap

(13.11)

+ F/ia Aßyp + rßß Ayap + r^ Aaßp .

The generalized normal tensors appear in some of the formulas of

extension which generalize the formulas of § 12. We here write down

only the following four particular cases :

(lo.l¿)     -Li,p,qr   == J-i,pqr       -la,qAipr       l«,r-flfj       J-a^ipqr',

(lo.lo)     -li,pq,r   == J-i,pqr       J-i,a A-pqr       ía,pA.\qr       La,qA.ipr       iuA.(ipq)r\

^ij,P,qr == J-ij,pqr      J-aj,qAipr      ±aj,rAipq      ±ia,qAjpr      J-ia,r Ajpq

(13ll4) -TtAl   -T-  A?   ■
J-aj ¿i-tpqr t« Ajpqr,

^ii,PQ>r — i%j,pqr       J-i},a Apqr       laj,p Aiqr-±gj,qAipr       J-ia,pAjqr

(13.15) « «
J-ia,q Ajpr       1 gj A.(îpq)r       1 ia A(jpq)r-
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The generalized normal tensors satisfy the identity

(13.16) S(4aßr...«)P...q) = O,

where 8( ) denotes the sum of the terms obtainable from the one in the

parenthesis which are not identical because of the symmetric properties

of A\aßr., <r)P...q- This identity may easily be proved by the method used for

the corresponding theorem about the normal tensors in § 9.

14. The curvature tensor.   The normal tensor A)m is related to the

curvature tensor by the equation

(14.1) Bjki = 4ki-A}ik

which is immediately evident on comparing (2.7) with (9.13). The tensor

character of B follows from that of A. From the definition it follows that

(14.2) Bjki = - B}lk.

From (9.9) it follows that

(14.3) Bijkl + Bkij + B¡jk = 0.

Also by solving the equations (14.1) and (9.9) for the A's we obtain

(14.4) 4« = -i- (2 Bju + 4k)

or

(14.5) 4« = y(4u + P^).

If we write (9.13) in normal coordinates, differentiate, and evaluate at the

origin we obtain

(14.6) Ajkl,m  =  Ajklm — A(jkl)m-

From this and (14.1) it follows that

(14.7) Bjkl,m  —  Ajklm      Aßkm.
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The equations (14.7) and (9.10) may be solved for the A's giving

(14.8) Ajklm =  ^(àBkjl,m + ^B\kj,m. + 3Btljm,k+2Bmlk,j + B1mkj,l).

If in (14.7) we permute the indices k, l, m cyclically and add the three

resulting equations we obtain the identity of Bianchi,

(14.9) Bjkl,m + Bjim,k + Bjmk.l  = 0.

From (14.7) there also follows the identity,

(14.10) PgM + Btaj + Bfkjj + Bkk = 0.

From (12.7) there follows the important identity of Ricci and Levi-Civita,

Tilm...n rplm...n      _   mam...n -r>l     _!_ i_ rpl'^---tx t>*^
ij...kyptq        -*-ii**-ktqtp   —   J-ii.-.k      -Btcpq ~T ' ' ' ~T -*y.. .fc     -Bapq

(U-n) im     n      a Im    n      aT\im...n -r.a rp^rn...n j^a
aj.. .k    -tiipq        • • • J-ij...tt    -tikpq •

Using the tensors D and E (14.11) becomes

C1A19Ï   rp^.-.n      _     lm...n    _      aß...r     r       aim. ..n _     lm. .n fí<r    ^arß.-.y
\l'k.lij)   J-y,..k,p,q        -Li¡...k,q,p        -«y...Je    -"apq^arß.. .y       -Laß...y ■DTpq-Cjaij...k   '

This identity may be generalized by combining identities of the type (13.12).

For example,

(14.1o) ¿i,P,(¡r       J-i,q,pr ==   J-a,pAiç[r       -Lg,qAipr        -la,r Bipq        la -Dipq.r •

15. Homogeneous first integrals. A homogeneous first integral of the

ftth degree of the differential equations (2.1) is an equation of the form

,.- ... dx"   dxP       dx?
(15.1) ^.y__-— - constant

which holds along every path. From the equations for the transformation of

dx*/ds it follows that the functions aaß..,r are the components of a covariant

tensor.  We shall now derive some general theorems about the conditions
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under which a tensor aaß_r gives rise to a first integral.   The first of these

theorems is given by Ricci and Levi-Civita for the case of the Riemann

geometry in Chapter 5 of their Méthodes de calcul différentiel absolu.

If we differentiate (15.1) with respect to s we have

daaß...r dx"   dx¡>        dxr d2x"  dx?       dxT

ds       ds     ds ds        "P'r   ds2    ds ds

At the origin of the normal coordinates this equation becomes

dy"    *  S S '

owing to the equation (7.1).  We may also write

(15.2) a*...*.?* — **' = 0

where attß_rais the covariant derivative of aaß . r. The substitution involved

in obtaining the last equation is permissible on account of (10.1) which holds

at the origin of the normal coordinates.  The identity

(15.3) P(agß...yi<T) = 0

where P indicates the sum of the terms obtained from the one inside the

parenthesis by cyclic permutation of the subscripts, is therefore a necessary

condition for the existence of the integral (15.1). Owing to its tensor

character (15.3) has validity in all coordinate systems.

To show that (15.3) is also sufficient for the existence of the first integral,

let this equation be satisfied by the symmetric tensor Oij...k, and express it in

its expanded form

PldOij...k         ra                     ra rg \
I--T-j-* a ClaJ...k — l}l (Ha...k-JkiOy'...aJ   = 0.

If we consider this equation referred to a normal coordinate system and

multiply by (dy*/ds) (dyiIds) ■ ■ ■ (di/'/ds) (dyt/ds), we obtain

ds        ds     ds ds
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on making use of the equation (7.6).   Since the derivatives dyilds in (15.4)

are constant along any particular path, it follows that

dy"   dyP        dy?
a„a   y. —-f-f— ■ ■ ■ —?— = constant

aP-r   ¿is     ds ds

along any particular path.   In consequence of the tensor character of Oij...k,

we have in general coordinates

dx"   dx? da?
ttga   v —î-'-,— • • • ~~,— == constant.

KP-r   ¿g     di ds

Hence, A necessary and sufficient condition for the existence of a homogeneous

first integral of the kth degree is that a symmetric covariant tensor of the kth

order Oy...k exist which satisfies (15.3).

If a symmetric tensor by...k and function f(x1, x2, ..., xn) exist which

satisfy the equations

(15.5) P(V..M> = Pty...**),      »i = |5-.

where by...kii is the covariant derivative of &</...*, a function xp can be chosen

so that the equation

(15.6) P[(fba...k)i] = 0

is satisfied.   The bracket contains the covariant derivative oîipby,..k with

respect to xl.  In fact, we have

P[(ybij...k)i]

= P(fibij...k+fby...k,i)

**K.. hi*+-&)].
Hence (15.6) is satisfied if we put

rp = e~f.
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Therefore if (15.5) is satisfied a first integral exists which is given by e~t by.. .k.

That (15.5) is a necessary condition is immediate, for, as we have seen, if by...k

furnishes a first integral (15.5) is satisfied with f = constant.

Hence, A necessary and sufficient condition for the existence of a covariant

tensor ay.. ,k which satisfies (15.3) is that a covariant tensor by.. ,k and function f

exist which satisfy (15.5). If the tensor by...k and function f exist, then

ay...k = e~f by...k.

A particular case of (15.3) is

(15.7) aij...k,i = 0,

where ay...k,i is the covariant derivative of Oij...k. In a manner similar to the

above it can then be shown that

(1&-8) V.M = hij-kfv fl = -J-J

is a necessary and sufficient condition for the existence of a first integral

which satisfies (15.7), and that this integral is given by ay...k = e~~* by...k.

Hence, A necessary and sufficient condition for the existence of a covariant

tensor ay...k which satisfies (15.7) is that a covariant tensor by...kund function f

exist which satisfy (15.8). If the tensor by...k and function f exist then

Oij...k = e't by...k.

The equation (14.12) provides a new statement of this last theorem. If the

tensor by...k satisfies (15.8) we obtain by covariant differentiation

°y...k,l,m  ~   °y...k,m 9l'<>y...k Vl.m

= hy...k  (ViVm + Vi,«.)-

Hence,

%...k,l,m       "y...k,m,l =  ®-

From (14.12) we then have

(15.9) baß...rBcrlmE%:kr = 0.
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Conversely, if the tensor b¡. _ fc and vector e/>, satisfy (15.9) and

(15-10) h-Ki=h.-*9i>

where bij...kj is the covariant derivative of by...k, we have

bij...k,l,m  =   biJ...k   (VlVm+Vl,m)>

and

"ij...k,l,m      °ij...k,m,l ==  "ij...k   ^l,m      »m,«)"

Since bij...k satisfies (15.9)

°ij...k,l,m.      %.../c,m,i  ==  ">

so that

or

3y¿  = 3yw

dxm 9a;'

and this last equation is the condition that <p¡ be the gradient of a scalar

function <f(xy, x2, ..., xn), i. e.,

9w

Hence, ^1 necessary and sufficient condition for the existence of a covariant

tensor a^ k which satisfies (15.7) is that a covariant tensor b¿. k and vector yl

exist which satisfy (15.9) and (15.10). If the tensor b{j k and vector ffl exist,

then

Oy...k = e-vbij...k.

16. Algebraic condition for existence of first integrals of a par-

ticular class. We shall now derive a condition on the functions r for the

existence of a homogeneous first integral of the feth degree which satisfies the

particular condition (15.7). The condition is to involve only the algebraic

consistency of a set of tensor equations formed from the functions r.   If the
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covariant tensor of the Zcth order ay...k satisfies the condition (15.7) it follows

by (14.12) that ay...k will satisfy a sequence of equations of the form

«*ß...yD&::iL = o,

T\aß...y _  (\
aaß...y ^/y...kim,n u>

aaß...yl>y>..klm,ri,r,  =  °>

(16.1) .

a«ß yVij■.::&*,*,*....,rn — °»

where

L)y...klm—  JSTlm-Z(rij...k

and -D^; ¿fm nr„...,r represents the nth covariant derivative of D"P ;¿fm. The

algebraic consistency of the equations (16.1) is a necessary condition on the r's

for the existence of the homogeneous first integral of the fcth degree which

satisfies (15.7).
The algebraic solutions of the equations (16.1) possess a tensor character.

For let ay...k represent an algebraic solution of (16.1). Under a general

transformation of coordinates the first set of equations of (16.1) becomes

(16-2) V-r ñf::jL = °>

where D"?'$m is defined by the equations of transformation

(16.3) BJlq:krst
dxk   dxrdxi

dx" dx?   Sxp

dXâ   f,a...ß

~JxTDr-*

41
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and aaß   y represents an algebraic solution of (16.2).   Substituting (16.3) in

the first set of equations of (16.1) we obtain

(16.4)
8 a;"'    dWdxe

dx* dx"   3a;î> 9¡rt      y.-a

If we multiply (16.4) by (dxP/dx1) (dx"/d9) ••• (9a^/9a;m) and sum for

(p,q, .... t), then

ga;e

dxf

dxu
Äi-L. = 0

dx"    iJMm

and a comparison of these equations with (16.2) shows that a solution of (16.2)

is given by

9a;£ 9a;°
nj...k "e...ai    fl-i9a;1 9 a;»

While we have considered the first set of equations of (16.1) a similar result

would have been obtained with regard to any other set. Hence the algebraic

solutions of (16.1) are tensors and it is consequently permissible to form the

covariant derivative of these solutions as we shall do in the later work.

Let us now assume the algebraic consistency of the equations (16.1) and

suppose that the first system of these equations admits a set of fundamental

solutions denoted by b$!..k, p = 1, 2, .. -, s. The general solution of this

system of equations can then be expressed as a linear combination of the

fundamental solutions bif^.k with arbitrary functional coefficients. We next

consider the first and second systems of equations (16.1) and suppose that

these equations have a fundamental set of solutions âf\.k, p = 1,2, ..., t,

, t will furnishin which of course s>t. If s = t then CiP..k, p — 1, 2, .

a fundamental set of solutions of the first system of equations which satisfies

the second system. If s >1 we consider the first three systems of equations,

which we may suppose to have a fundamental set of solutions d\y;..k, p = 1,

2, ..., u, with the condition t>u. In case t = u then dif...k, p = 1, 2,

...,u, will furnish a fundamental set of solutions of the first two systems of

equations which satisfies the third system. By proceeding in this way we

shall finally come to a point where the first N systems of equations of (16.1)

will admit a fundamental set of solutions which satisfies the system imme-

diately following in the sequence. Hence to say that the equations (16.1) are
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algebraically consistent implies that there is a number N such that the first N

systems of equations (16.1) admit a fundamental set of solutions a\f\ ,k, p = 1,

2, .. ., s, which satisfies the equation

a .      D"?-J = 0.
aß...y     ij...klm,r,,r1,...,rK

The general solution of the first N systems of equations is then

(16.5) „„...» = xfWx^lk (« = 1,2, ...,s),

where the expression on the right is summed for a, and <//") is an arbitrary

function of (x1, x*, ..., xn).

Before proceeding further with the general case let us consider the particular

case where the first system of equations (16.1) has a unique solution ay...k

which satisfies the second system, i. e.,

(16-6) V^in-0-

Under these conditions a homogeneous first integral of the ftth degree will

exist whose covariant derivative vanishes. For if we differentiate the first

system of equations (16.1) covariantly we obtain, on account of (16.6),

(16.7) a „        &?-*   = 0,
x ' gß. ..y,r      ij.. klm

where attß...y<r is the covariant derivative of aaß   r.   Since (16.7) possesses

a unique solution ay...k, it follows that

ay...k,i = fiaij...k

in which ft is a covariant vector. The above statement then follows from the

last theorem of § 15.

Going back to the general case let us substitute one of the fundamental

solutions Oif?..k in the equations of the sequence (16.1) through the (A^+l^h.

We may then differentiate these equations covariantly so as to obtain the

following:

41*
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(p) pfß   y     _ nuaß...y,r -uij...klm      —  "»

(p) aß...y        _

aaß...y,r ^ij.. klm,rt —  u>

(16.8)

(p) aß. ..y _

aaß...y,r -L,v...klm,ri,r»...,rir-i —  u>

where a«^ rr is the covariant derivative of a(fß r Since a$\ fcî is a solution

of (16.8) it may be expressed linearly in terms of the fundamental solutions

of these equations.  Hence

(16.9) <$..« = #*><$..*,

where the expression on the right is summed for a, and the Vs are covariant

vectors. Since «$?..* satisfies the first system of the sequence (16.1),

(16.10) °f...k,i,m — af...k,m,l = 0.

If aW k j as given by (16.9) be differentiated covariantly and substituted in

(16.10) there is obtained the following condition on the X'a:

(16.11) -^ - -^ + i!t> tfq) - tf* 4"8) = o.

If we substitute (16.5) in (15.7) we see that it will be satisfied if a set of

functions g>G>>, p = 1,2,..., $ can be chosen so as to satisfy the equations

(16.12) ±£ + ,«jtï* = 0.

Such a set of functions can be chosen, for in consequence of (16.11) these

equations are completely integrable. This set of functions cj>(B) will determine
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according to (16.5) a covariant tensor of the ftth degree ay.. ,u whose covariant

derivative vanishes.

Hence, a necessary and sufficient condition for the existence of a homogeneous

first integral of the kth degree ay...k which satisfies (15.7) is that there exists

a number N such that the first Nsystems ofequations (16.1) admit a fundamental

setofs solutions (s > 1) which satisfy the (N+ l)th system of equations.

17. Special cases. The theorems of the last two sections have some

interesting applications in the linear and quadratic cases. It is natural to

define a field of parallel covariant vectors by means of a set of functions hi

such that

(17.1) hij = 0.

For this means that if normal coordinates are introduced with origin at an

arbitrary point, we have at this point

(17.2) #L = l%Ír = 0.v       ' ds dy"   ds

By the third theorem in italics in § 15, a necessary and sufficient condition

for the existence of a field of parallel covariant vectors is the existence of

a function f and vector Ai such that*

(17.3) Ait} = A, fp
9<¡P

JxJ'

The last theorem of § 15 now shows that a necessary and sufficient condition

for a field of parallel covariant vectors hi is that a covariant vector A* exist

which satisfies the equations

(17.4) ¿ij = A <Pj,

(17.5) ^4 = 0,

where », is a covariant vector and A,, is the covariant derivative of A,. The

theorem of § 16 shows that a necessary and sufficient condition for a field of

♦Eisenhart, Proceedings of the National Academy of Sciences, vol.8 (1922),

pp. 207-212, defines At as a field of parallel vectors, and finds the condition (17.5) for

their existence.
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parallel covariant vectors is that there exists a number N such that the first .¿V

sets of equations of the sequence

Ag Bijk  —  0,

Ag Bijk, i  =   0,

(17.6) Ag Bijk,i,m = 0,

admit a fundamental set of s solutions (s> 1) which satisfy the (AT+l)th

set. In particular a sufficient condition is obtained if the first system of

equations of (17.6) be algebraically consistent and all their solutions satisfy

the second system of these equations.

Going now to the quadratic case we see from the third theorem in italics

in § 15 that the condition on the functions r for the geometry of paths to

become a Riemann geometry is that a tensor g^ exist such that

(17-7) 9ij,k  = 9ij fk>     Vk  =  -gji•

The equation (17.7) without the condition that the vector e/fc be the gradient

of a scalar function gives the geometry upon which Weyl bases his electro-

magnetic and gravitational theory, for this equation is equivalent to the

equation (2.10). By the last theorem of § 15, the condition (17.7) can be

written

(17-8) !hj,k = 9ij 9k,

(17-9) ^^« + ^^1 = 0.

This shows furthermore that a necessary and sufficient condition for the Weyl

geometry to become the Riemann geometry is that the tensor g{j satisfy (17.9).

The theorem of § 16 shows that a necessary and sufficient condition for

the geometry of paths to become a Riemann geometry is that there exists

a number N such that the first iV" systems of equations of the following sequence
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admit a fundamental set of s solutions (s>l) which satisfy the (Ar+l)st

system of equations:

9gj I>ikl,m   I   ffia Bjkl,m  ==  ">

(17.10) 9« *&,*,. +9**^^ = 0,

In particular* we have that a sufficient condition for the geometry of paths

to become a Riemann geometry is that the equations

ggj Bm + gia Bjkl  =  0

be algebraically consistent and that all their solutions satisfy

ggj P¿M,m + .Çia P/W, m  =  0.

18. The homogeneous linear first integral. From the first theorem

of § 15 it follows that a necessary and sufficient condition for the covariant

vector hi to furnish a linear first integral,

(18.1)

is that the equation

(18.2)

be satisfied, i. e., the covariant derivative hij must be skew symmetric in the

indices ¿ andj. The equations (14.12) show that

(18.3) hij,k —hi,kj. = haBikj.

*Eisenhart and Veblen, Proceedings of the National Academy of Sciences,

vol. 8 (1922), pp. 19-23.

dx"
hg —:— = constant,

ds

hi.j + hjti = 0
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By (18.2) these give rise to

hi,j,k + hk,i,j  =  ha Bikj,

(18.4) hk,i,j + hjtk,i = haBkji,

hj,k,i + hij,k = ha Bjik-

If we add these three equations we obtain

(18.5) hi,j,k+hjykti + hk,i,j = 0.

Combining (18.5) with the second equation of (18.4), we have also

(18.6) hi.j,k = ha Bkij.

These are integrability conditions obtained by consideration of second deri-

vatives. In order to obtain those involving third derivatives we use (13.12),

which with (18.2) gives

•H,pqr   i   hptiqr  =   ¿ha,q A,pr -f- ¿ tla,r Aipq -j- 2ha Aipqr.

(18.7) hqApr'T iHtqpr ==   ¿ ha,p Aqir +■ ¿ Ha,r Aq%p -f- ¿ha Aqip,-,

hp, qir ~T hqtpir ==   ¿ha,i Apqr -\~ 2ha,r Apqi -\- ¿ha Apgir.

If we add the first two of these equations and subtract the third, we obtain

hi,pqr ==   Ha, p Aiqr +■ ha, q Aipr       /l«, i Apqr

(18.8)
T íí«,r (Aipq -+■ Aqip       Apqi) -\- ha (Aipçpr -\- Aqipr        Apqir).
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Now interchange the indices q and r and subtract the resulting equation from

this one.   We obtain

(1 o.")    ha, i -Dprq + ha,P Biqr + lia, q Brpi + ha, r Bqip + ha ( Bqip, r + Brpi, q ) == O.

If we collect the terms in the equation (18.9) we have

(18.10) haCa + hatßDaß = 0,

where

C°  = B;âei;i(ôrkôÎôjdf + 6Ujôi^),

D*ß = B;â£ (âUjôfôi+ñjüi&dt + ôUUUi + *f ¿tâ à').

C" is a tensor which is contravariant of the first order and covariant of the

fourth, D"ß is a tensor which is contravariant of the second order and

covariant of the fourth. The covariant indices of these tensors have been

omitted for simplicity.  If we differentiate (18.10) covariantly, we obtain

h„ica + httci;i+haißtiDaß+hatßD';f = o,

and this becomes

(18.11) htt,i C + ha C" + hr B\aßDaß + ha,ß P"f  =  0

when we make the substitution (18.6). This equation may be written in an

abbreviated form as follows:

(18.12) ^ + ^^ = 0.

Covariant differentiation of (18.12) will give rise to a new equation which

can in its turn be abbreviated to the form (18.10), this process requiring the

use of (18.6) to eliminate ha^¡r. Continuing in this way we obtain an infinite

sequence of equations. For the purpose of convenient reference we shall

write this sequence with the equation (18.2) as the first member:
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K,ß + hß,a   =   0,

KCa + htt,ßDaß = 0,

haCx+hgtßDa/ = 0,

(18.13)

KCl+haJD7 = 0,

The algebraic consistency of this set of equations, regarded as equations

for the determination of hi and fuj, is a necessary condition for the existence

of a first integral hi. Hence as in § 16 there must be a value of JSF such

that the first N+1 sets of equations admit a fundamental set of solutions

hiP\ hif) (p = 1, 2,..., s) each of which will satisfy the system of equations

next following in the sequence (18.13). This necessary condition turns out

also to be a sufficient condition.

Before proving this in general, let us consider the special case in which

N = 1 and s = 1. In this case (18.2) and (18.10) are consistent and

possess a unique algebraic solution consisting of a set of functions hi,

i = 1,2, ..., n, and a set of functions Juj, i, j = 1, 2, ..., n, which

satisfy (18.11). It may now be shown that the solutions hi and hj are tensors,

so that it is possible to substitute these quantities in the equation (18.10)

and differentiate it covariantly. Doing this we obtain

(18.14) haJ C" + K Cj + hBßii D"ß + haß D"? = 0.

If we subtract (18.14) from (18.11) with htj replacing fnj, we obtain

(18.15) (hai - K,i) Ca + (hr Briaß- haßti) Daß = 0.
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In (18.15) the coefficient of D"P is skew symmetric in the indices « and ß.

By hypothesis, the solution of (18.15) and (18.2) is unique and consequently

the solution (hUi — ha¡i), (hyB^ß — h„ßti) can only differ from the solution

äk, httß by a factor of multiplication.  Hence

(18.16) hy-hij = (fjhi,

(18.17) ha Bty — hi,j,k =  fk hy,

where xpi is a covariant vector. H we differentiate (18.16) covariantly,

obtaining

hy, k — hi, j, k =  (pj, kh+xj>jhi,k,

and from this form the expression

(<Pj,k — xpkj) h = hij,k — hikj + hi,kj — lu, j,k + xpk hj — xpj 1n,k,

we find on substituting the equations (18.16) and (18.17) in the right member

of this equation that it vanishes identically. The functions hi are not all

identically zero, for if so it would follow by (18.16) that the functions hy are

also identically zero, contrary to the assumption that (18.2) and (18.10) are

algebraically consistent.   Hence

fj.k — fkj = 0.

The vector xpi is therefore the gradient of a scalar function q>, i. e.,

dq>

Vi ~~ Yx1'

Now we shall have a first integral if a function xp exists such that

(18.18) (xphi)j = fhy,
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where (*pJu)j denotes the covariant derivative of rphi. For if this equation

is satisfied, rphi will be a covariant vector satisfying (18.2) and hence will

give a first integral.   Expanding (18.18)

o if.

jhi+iphij = fhy,
dxJ

or

(18.19) hy-hij=  Wjh,

where

9 V
Vj = ~dxl and qi == lo^-

The gradient Vj is a covariant vector and consequently (18.19) will be satis-

fied if we put

W = if.

Hence, a sufficient condition for the existence of a linear first integral is

that (18.2) and (18.10) be algebraically consistent and that they possess

a unique solution which satisfies (18.11).

Let us now return to the general case and assume that there is a value

of N such that the first N+l systems of equations (18.13) admit a funda-

mental system of solutions h\p), h$\ p = l,2,..., a, each of which satisfies

the system of equations immediately following in the sequence. By the same

argument as before, h\p) and htf* are tensors for all values of p. The general

solution of the first N+1 systems of equations is then

(18.20) hf = y(tt) hf\

(18.21) hv = ,W hf,

where the terms on the right are summed for a from a = 1 to a = s. If we

differentiate the equation

(18.22) hfca + hfßDttß = 0
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covariantly, and subtract it from the equation

(18.23) h?Cttx+h$Dttxß = 0,

we obtain

(18.24) (ti*-h%)Ctt + (h?Eriaß-hTß,i)Daß = 0.

If we next differentiate (18.23) covariantly and subtract it from the equation

immediately following in the sequence, we have

(hai—hati)C   +(hy    Biaß — KßJD       =0.

Continuing in this way we obtain the equations

(C-O^^^-O^ - o.

(h(:)-higpi)cttx+(hi;)^-h{a%)Df - o,

(h„i  —ha,i)Cn+(hr    B'igß — haßJDn    =  0,

The term (hy Briaß — h„ßti) is skew symmetric in the indices a and ß, and

we may therefore express the quantities (h„i —hati), (hy B%aß—h*ßi) as

a linear combination of the particular solutions A„ }, h^ß, p = 1, 2, ..., s:

(18.25) h^-hf = ^hf,

(18.26) Aíft-tó» P£> = 4^ ^
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To determine the condition which the covariant vectors AjP must satisfy we

differentiate (18.25) covariantly, «btaining

7 (ft)      _   7 (ft)     iiMiW   i   ¡WiW
'H,p,q   -   'liv,q -\~ Aptq  Hi    -f- Ap      iH,qi

or

(18.27) hf     = h{k) B". + X(ktt) A(e) + A(ta) titt) + im) (h(tt) + ti"® A^).
^ '      l,p,q a        qip   •      q tp    '      p,q     I       '      p      " iq    '      q t    '

If we interchange p and q in (18.27) and subtract these two equations we

find that

(18.28) A("' a(kft) — ¿(te) + iM ft«) — ¿(*0 ¿03«)) = 0.
\ ' *      v   p,q q,p    '      p q q p      '

We next differentiate (18.26) covariantly,

Ä(fc)        _   !,(*)    jf      i   7,W  r>« l    j*«) 7(«)j_ j (te) ,(«)
*Pi9,r  —  ita,r J->qip   \   rig   JJqip,ri   Aq,r   'Hp    I   A4      «y),r>

or

C.r » (C + «*> #) *# + *£° **.r + ̂  Äff
(18.29)

+ lM(*W5Í. + ¿(«/»)/,(/)).
? p        ry>   '      r «p '

Interchanging r and # in (18.29) and subtracting the two equations,

7 («) n(ka) _ ¿(te)   i   l'kß) X{ßa) _ ¿(fc/î) ¿(fia))
ip   \   î,r »•.?''/ *• r q     r

(18.30)

I     J.W  / D«. D« \     I     7,(fc)    p« I     7, (ft)   D«        I     7,(ft)    7/        I     7,(ft)    D«       _ n
-p «e    \JJqip,r       J->np,q) T "«)' -Dgip "r 'laq JJrpi T 'lap JJiqr "T 'lai  JJprq — *J.

This equation reduces to

(18.31) A(°) (A<te> — A(fcß) + A'*« ̂ ") - J,<W ¿0*0) = 0,
x ' tp   v   ?,»• r,a     '      q r r q     ' >

since hi"\ h^) is a solution of (18.9).    From (18.28) and (18.31) we noAV

deduce that

(18.32) iW-iWj-lM ¿O*0_¿(¥) ¿0*0 = o,
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for if (18.32) were not satisfied there would be a linear relation among the

solutions hf\ }$, contrary to the hypothesis that M*0, h^, k = 1,2, ..., g,

is a fundamental set of solutions.

A linear first integral hi will be determined by (18.20) if qp(n) can be chosen

so that the equations

(18.33) (xpw hf\ = xp{a) Ag?

are satisfied, where the term on the left is the covariant derivative of gp(tt) hit\

for the covariant vector Jh = (p(a) h!ia) will possess a covariant derivative Jn,p

which is skew symmetric in ¿ and p. Expanding (18.33)

(18.34) ^/^ + ^5-/$)==0.

From (18.25) we find that the condition on the xp's can be put in the form

(18.35) 1sC + ^«)a(«Ä = o.
v ' dxP P

The integrability conditions of (18.35) are the equations (18.32) and hence

a set of (¡p's can be found which will satisfy (18.33).

Hence, a necessary and sufficient condition for the existence of a linear first

integral (18.1) is that the r's be such that there exists a number N such that

the first N+ 1 systems of equations (18.13) admit a fundamental set of s

solutions (s > 1) which satisfies the (Ar+ 2)nd system of equations.

19. The homogeneous quadratic first integral. A necessary and

sufficient condition for the existence of a homogeneous quadratic first integral

,.„,> dx" dxP
(19.1) 9«ß~~j-T~ = cons<;ailt

such that

(19.2) gy = gji

is that gy satisfy the condition

(19-3) 9ii,p-r9JP,i-r9piJ = 0,
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where gy,p is the covariant derivative of gy.   By differentiating (19.3)

covariantly, we obtain

9ij,p,q~r9jp>i<9~i 9piJ,q = 0>

9V,P,q,r +gjp,i,q,r + gpi,j,q,r  =  0,

9ii,P,q,r,s + gjp,i,q,r,s + gpij,q,r,s  =  0.

By substituting (12.4), (12.5) and (12.6) in these three equations we obtain

(19.4) 9ij,pq+gjp,iq +9piJq  =   Piipqi

(19.5) 9ii,pqr + 9jp,iqr + 9piJqr =   "iipqr,

(19.6) 9ii,pqrs + 9jp,iqrs + gpijqrs —  Pijpqrs,

where

(19.7) Pypq —  2 (gia Ajpq + g}a Ap\q + gpa Ayq),

Pypqr  =   2(gia,q Ajpr + gja,q Aj3ir + gpa,q Ayr

(19.8) + gta,r Ajpq + gjg,r Apiq + gpa,r Ayq

+ gig Ajpqr + g ja Apiqr + gpg Ayqr ),

Pijpqrs = "(gia,qr AjpS + gia,rs Ajpq + gia,sq Ajpr

+ 9Ja,qr Aips + gja,rs Aipq + gja,sq Aipr

+ 9Pa,qr Ays + gpa,rs Ayq + gpg,sq Ayr

(19.9) + 9i",q A-jprs + 9ia,r Ajpqs + gig,s Ajpqr

+ 9ja,q Aiprs + gja,r AiPqg + g ja,s Aipqr

+ 9pa-,q Aijrs + 9pa,r Aijqs + gpa,s Ayqr

+ gia Ajpqrs + g ja Aipqrs + gpa Ayqrs ) •
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The P's are tensors which are symmetric in the first three indices and also

in the remaining ones. Thus

Pijpq   ==   Pjipq      ==   Pipjq,

(19.10) Pijpqr =r  Pjipqr   ==  Pijprq   etc.,

^ijpqrs ==   ¿jipqrs ==   ±ijpqsr etC.

The equations (19.4) can not be solved for gv-yPq but may be solved for the

difference of two of these extensions, namely

(19.11) 9ii,pq       ffpq,ij = ~ö~ ( -* UPI + "ijqp       Pjpqi       Pipqj ) -

We may however solve* (19.5) for gij,Pqr, thus

Slii, POT  ==  ~ir (Pijpqr + Pijqpr + Pijrpq + Ppqrij)

(19.12)

2T (Pipqjr + Pirpjq T~ Piqrjp + Pjpqir + Pjrpiq + Pjqrip) •

Similarly from (19.6)

gH,pqrs == "«" (Py'pqrs ~r Pijqprs ~~r Pijrpqs + Ppqrijs)

(19.13)

_ ~ñ~ (^ipq/rs T" ±irpjqs T" -t^iqrjps ~T Xjpqirs   i   Xjrpiqs T Xjqrips) •

The equations (19.11) and (19.12) constitute integrability conditions arising

from second and third derivatives respectively. By interchanging r and s in

(19.13) and subtracting we obtain the integrability conditions arising from

the fourth derivatives:

( ¿ Pijrqps ~T ¿ Ppqrijs ~T Pispjqr ~+~ Piqsjpr T Pjspiqr "1" Pjqsipr )

(19.14)
— ( ¿Pijsqpr + ¿Ppqsijr + Pirpjqs + Piqrjps + Pjrpiqs + Pjqrips) == 0.

* The solution is facilitated by noticing that the tensors in the left member of (19.5)

can be regarded as notation for the vertices of a Desargues configuration.

42
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If we substitute the value of PyPqr3 given by (19.9) in (19.14) we obtain an

equation which we may write in the form

(19.15) gttß Uypqrs + gaß,y 'ijpqrs + 9aß,yd "ijpqrs ==  0,

where U, V, and W are tensors.

Let us next consider the identity

(19.16) 9ii,p,q == 9ii,pq     9aJ Aipq     9ia AjtLjpq

(cf. (12.4)). The third covariant derivativegy,p,q>r may be evaluated in terms of

gy and gy,p by setting the value of gy,pqr given by (19.12) in the identity (12.5):

9ii,P,q,r ==  gai,p Ajrq + ggi,q Ajrp + gai,r A]qp + gaj,p Ariq + gaj,q Arip

+ 9aJ. * Aqip + gap, i Aqrj + .Cap, j Aqri + ggp, q Ayr + ggp, r Ayq

+ 9aq.i Arpj + ggq, j -Arpi + g«q,p Ayr + gaq, r Ayp + gar,i A.pqj

(19.17) + gar,j Apqj + ggr,p Ayq + gar,q Ayp — gy,a Apqr

+ gai ( Ajqpr + Ajrpq) + gaj (Aqipr + Arújj,)

+ gap (Ayqr + Aqrij) + ggq (Aypr + Aprij)

+ gar ( Aypq + Apgy ).

If we differentiate both members of (19.16) covariantly and substitute for

gy.p,q,r its value from (19.17), we obtain an equation which we may write as

(19.18) 9ij,pq,r  —  9aßEyPqr~T 9aß,y FyPqr>

where E and F are tensors.   Next differentiate (19.15) covariantly, obtaining

TT-aß   . aß   . TTaßr   I TTaßY

9aß,i U   +gaß Uj+gaß^i y     + gaß,Y y,i

(19.19)
+ 9aß,YO,iWttßYa + 9gß,YaWT=^
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in which we have omitted the covariant indices for simplicity.   When we

make the substitutions (19.16) and (19.18) this equation becomes

(19.20)

9aß,i U" + g«ß U" + (ggßtyi — gaß A°yi — gaa Aaßyi)V
aßy

+ 9aß,y Vt+ (g^E^ + g^F^) W^°+gaß,ya wf = 0

and may be written in the form (19.15) as

(19.21) gaß Uxaß + ggßtY V?» '+ 9ußty. Wxaßv" = 0.

By covariant differentiation of (19.21) and substitution for gtj,p,q and gij,pq,r

from (19.16) and (19.18) we again obtain a system of equations of the form

(19.15). Continuing this process we are led to the following sequence of

systems of equations. As in the case of the linear first integral we add to

this sequence the conditions (19.3) and (19.4) and also the symmetry con-

ditions on the g's for the purpose of convenient reference:

9v,p + 9jp,í + 9piJ = 0;

9a,pq + 9jp,iq + 9piJi ~ * (9i« Ajpq + gja Apiq + gpa Ayq);

.  9a — 9ß'i   9v,p = 9ji,p'i   9a,pq — 9jhPi'i   9a,pt~ 9a,*p'i

9aßUaß + ggß>yV°ßr + gttß!y<,W«ß>"'=0,

9aß Uiaß + ggßty YaxßY + ggß,ya WT = 0,

(19.22)

TTaß . lraßy  . ii7aßy        n
9«ßUn  +gaß)yVn    +ggßiY<rWn      = 0,
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The algebraic consistency of the equations (19.22) is a necessary condition

for the existence of a homogeneous quadratic first integral. As in the pre-

ceding cases there must therefore exist a number N such that the first N+1

systems of equations of (19.22) possess a fundamental set of s solutions o$°;

9yp'i 9tílq (« — 1, 2, ... s) each of which satisfies the (N+ 2)nd system of

the sequence. We shall show that this is also a sufficient condition for the

existence of the quadratic integral (19.1).

We first take the case in which N = 1, and s = 1. The first two systems

of equations (19.22) then possess a unique solution which satisfies (19.20).

This solution possesses a tensor character so that we may substitute it

in (19.15) and differentiate covariantly, obtaining

9aß,i Uaß+9aß Iff +gaßy,i V* + 9ttßy Y?

(19.23)

+ 9aßy<,,iWaß*a+gaßyaW:ßYa  =   *-

Subtracting (19.20), into which the solution ay; gyP\ gypq has been substituted

instead of gy, gy,p\ gy,pq, from (19.23),

(9aß,i ~9aßi) U"   + (gaßy, i—Qaßyi + 9<rß Kyi + 9a« ^ßyi) V" ?

(19.24)

+ \9aßya,i      9fiv ^aßyai      9nvr¡ *aßyai) " —  U-

The solution appearing in (19.24) satisfies the first system of equations (19.22)

in the summed indices and is consequently given by

(19.25) 9ij,p — gijp = 9>p9ij>

(19.26) gyp,q —gypq + gaj A"pq + gia AjPq = q>q gyp,

(19.27) 9ypq,r-9aß ^pqr ~ 9„ßy *g£.   "   % 9ypq-
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The covariant vector a>¿ is the gradient of a scalar function, for if we differen-

tiate (19.25) covariantly,

9a,p,a    ffiip.Q = <Pp,q 9v + Wp 9a,q-

Hence,

(19.28) (<Pp,q    <Pq,p)ga= 9a,p,q   9a,q,p + 9av<p   9ap,9 + <Pt9a,p    fp9a,v

If we substitute the values given by (12.4), (19.25), and (19.26) for the

covariant derivatives in (19.28) we find that the right member vanishes iden-

tically. In the left member of (19.28) gy can not be equal to zero, for if this

were so we see from (19.25) and (19.26) that gvp and gVpq would also vanish,

which is contrary to the assumption that our equations are algebraically

consistent. Hence

<Pp,q — <Pq,p =  0,

or

(19-29) <Pp - |¿.

A homogeneous quadratic first integral (19.1) will exist if a function ip can

be chosen so that

(19.30) (rpgu)v = tpgijp,

where the left member denotes the covariant derivative of ipgv-.   If we

expand (19.30) we find that the condition takes the form

0"» « + », = ».

Therefore (19.30) is satisfied if we put

xp = e-f.

Hence, a sufficient condition for the existence of a homogeneous quadratic

first integral (19.1) is that the first two systems of equations (19.22) possess

a unique solution which satisfies the third system.
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We return now to the general case and assume that there exists a number N

such that the first (N+ 1) systems of equations (19.22) admit a fundamental

set of s solutions tó°; g¡^ ; g[Vq (et = 1, 2, ..., s) each of which satisfies the

(N+ 2)nd system of equations. The general solution of the first (A^+l)

systems of equations may then be written

(19.32) 9y = <Pia)gf,

(19.33) 9V, = ¥»9%,

(19.34) giivo = ?«*>«#>'ijpq t       vijpq,

where the right members are summed for a from a = 1 to « = s. Let us

substitute the particular solution a^>; g{¡9; gW in the equations (19.22) begin-

ning with the second system and ending with the (N+ 2)nd. If we then

differentiate each system of equations through the(AT+ l)st covariantly, and

subtract it from the system immediately following, we shall obtain the equations

/   (Jc) (.k) . TTaß   ,   ,   (Jc) (k)       .      (Jc)    .a      .     (Je)    .a   .   17-aßy

\9aß,i—9aßi> XJ      -r(9aßy,i~9aßyi-r9<TßAayi-r9a<TAßyV   V

J-(„(k)        —¿■k)T?>ÍV J»     jpf"")    \ w"ßYa _  A
"T \gaßya,i       9ßv -^aßytri       9ßvr) -"aßyai > " —  u,

,•   (ft) (Jt) -, TTaß   i   ,   (k) (Jc)       .      {k)    .a       .      (ft)    .a   .   -.raßy

(ffgß,i —9aßi> Ul    + (9aßy,i ~9aßyi + 9aß Agyi + 9aa Aßyi)  Vx

_u <„{k)     _ „w p/4" <fc>   f*""? \ w"*1' _ n
~T \9aßya,i       9ßv -^aßyai       9pvr¡ x aß} aV "1 —   u,

(19.35)

,   (Je) (Jc) .  JTgß      .        (Jc) (Jc) (Jc)     <r (Jc)      <r   .      aßy
\9aß,i ~9gßi> UN-1~T \9gßy,i       gaßyi + 9<aß â-ayi + 9aa Aßai>  VJV-1

,        (Je) (Je)       ßv (Je)     _/£MJ   .      «ft^   _   Q
"T \ggßya,i        gßv ^aßyai       é'/tviy ■* aßyai' AfV-1
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Since the solution which appears in (19.35) satisfies the first (N+ 1) systems

of equations (19.22), it may be written as a linear combination of the

fundamental solutionsgf); gfh gW, k = l, 2, ...,«. Hence
IrJ 'jAr VaW

(19.36) c-c = Ar$\

/•■asTt /,(.k)   —a® 4-a(fc) A"   A- Jk) a"   _ j(fto) ¿tt)
yiz.oi) y%)P<q     "vpq     "oj Atpq\ gia &-jpq — A9     yijp,

/iqqo\ (ft) _   (ft) -çtliv      _    (ft)     „fiinj    _   j(te)     («)
(Lv.óO) 9ijpq,r       9ftv -"aPQr       9tiiir¡ ^ijpqr Ar      ."ypg,

the left members of these equations being summed for a from « = 1 to a = s.

To find the conditions which the covariant vectors A must satisfy we proceed

in the same way as for the linear integral and thus obtain the equations

Aß) n(«A_¿(«A-L¿(«y)¿o'A_ ¡(py)¡(yß)) = o
"v    v p.q        q,p       p      q q      p   ' '

■ »

(19.39) erg (A(«« - ¿£f + ¿J*y) ¿W) - ¿(j'y) ¿W)) = o,

^(^-^ + ^)¿W)_¿(«r)¿W)) = o,

which are summed for ß from ß — 1 to ß = s.   It follows consequently that

(19.40) ¿^)_¿W + ¿^)¿^_¿^)¿^) = o,

for otherwise one of the fundamental solutions could be expressed linearly

in terms of the others.

A homogeneous quadratic first integral (19.1) will exist provided that the

arbitrary functions q> in the general solution can be so chosen that

(19.41) (<p(a)gf)p = f^g^p,
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where the term on the left denotes the covariant derivative of c/>(a1 gff. If we

expand (19.41) we find that the quadratic integral will exist if the cjd's can be

chosen so as to satisfy the equation

(19.42) -^ + 9,(«)¿(«A=0.v       ' ga^ p

The integrability condition of (19.42) is the equation (19.40) so that a set of

c^'s can be found which will satisfy (19.42).

Hence, a necessary and sufficient condition for the existence of a quadratic

first integral (19.1) is that the r's be such that there exists a number N such

that the first (N+l) systems of equations (19.22) admit a fundamental set

of s solutions (s [> 1) which satisfies the (N+ 2)nd system of equations.
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