THE GEOMETRY OF PATHS*

BY

OSWALD VEBLEN AND TRACY YERKES THOMAS

1. Introduction. The first part of this paper is intended as a systematic
general account of the geometry of paths and is largely based on the series
of notes by Eisenhart and Veblen in volume 8 of the Proceedings of the
National Academy of Sciences. The general theory is carried far
enough to include an account of a series of tensors defined by means of normal
codrdinates, and also a series of generalizations of the operation of covariant
differentiation. We then turn to a special problem, the investigation of the
conditions which must be satisfied by the functions I’ in order that the
differential equations of the paths shall possess homogeneous first integrals.t We
first solve a still more special problem for first integrals of the nth degree (§ 15).
This includes as a special case the problem solved by Eisenhart and Veblen in
the Proceedings of the National Academy of Sciences, vol. 8 (1922),
p. 19, of finding the conditions which must be satisfied by the I'’s in order
that the equations (2.1) shall be the differential equations of the geodesics of
a Riemann space.

Finally we solve the general problem for the linear and quadratic cases;
that is to say, we find algebraic necessary and sufficient conditions on the
functions I' in order that (2.1) shall possess homogeneous linear and quadratic
first integrals. The method used will generalize to homogeneous first integrals
of the nth degree. We leave unsolved all the projective problems which corre-
spond to the affine problems which we have solved. For example, the problem
remains open to find what condition must be satisfied by the I”’s in order that
one of the sets of differential equations which define the same paths as (2.1)
shall have a linear first integral.

2. The geometry of paths. Consider an n-dimensional region the points
of which can be represented by cotrdinates (z!, 2%, ..., ). Also consider
a set of differential equations

* Presented to the Society, October 28, 1922, and April 28, 1923.

T Our problem is distinguished from the problem of the existence of first integrals in
dynamical systems (studied by Staeckel, Painlevé, Levi-Civita, and others) by the fact that
the dynamical problem presupposes the existence of the integral corresponding to the
fundamental quadratic form. Cf. Ricci and Levi-Civita, Méthodes de calcul différentiel
absolu, Mathematische Annalen, vol. 54 (1901), p. 125.
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a2t i da® daf

. X Lt LY
2.1) ds® + “8 ds ds 0
in which

2.2) rj, = Ij.

In these expressions the subscripts and superscripts take all integer values
from 1 to » and the convention is employed that any term which contains the
same index twice, once as a subscript and once as a superscript, represents
a summation with respect to every such index. Thus the second term represents
a quadratic form in dx?/ds. The coefficients are arbitrary analytic functions
of (Y, 2% ..., z*). The condition (2.2) is no restriction on the differential
equations (2.1) because the coefficients of any quadratic form can be written
so as to satisfy (2.2).
Any curve

(2.3) at = P (s)

which satisfies (2.1) is called a path and the theory of these paths is what we
call the geometry of paths.

The geometry of paths is a natural generalization of the euclidean geometry.
For the differential equations of the straight lines in an %-dimensional eucli-
dean space are
d?xt
when referred to a cartesian codrdinate system. An arbitrary transformation
of the codrdinates

(2.5) =gy ¥ .., Y

transforms (2.4) into a set of differential equations of the form (2.1) in the
variables y, in which

i 0y 0%a”
(2.6) I = ax” ayj ayk :

Hence the system of paths defined by (2.1) has the properties of the straight
lines of euclidean space whenever the functions I' are such that (2.1) can be
transformed by an analytic transformation into (2.4). This transformation is
possible if and only if

ol oL}

(.7) ool — g T IR Iy—TIf Ty = 0,
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as can easily be proved. The left member of this equation is denoted by B}kz
and is called the curvature tensor.

The paths defined by (2.1) are the geodesics of a Riemann space in case
the I's are such that there exists a quadratic differential form

(2.8) ds® = gg da* da’
such that

9 g o
(2.9 %‘ik—v_yia I —gje Tk = 0.

In this case the paths are the geodesics of the differential form (2.8).

The geometry of paths reduces to a Weyl metric geometry if the I'’s are
such that there exists a linear form ¢, d=* and a quadratic form Jop A" daf
such that

1 (99 8yjk ag..) 1
(2.10) {lakri‘;f = _§‘(axf + Py awz +'2_(9ik q’j‘l'.ij ¢ 9y 95)

(cf. H. Weyl, Raum, Zeit, Materie, 4th edition, p. 113).

In the general case (no restriction on the I's except (2.2)) the geometry
of paths is equivalent to the geometry of infinitesimal parallelism as developed
by Weyl, in Raum, Zeit, Materie (4th edition, p. 100). For any system of I'’s
which appear in the differential equations (2.1) can be used to establish
a definition of infinitesimal parallelism according to which the paths defined
by (2.1) are geodesics in the sense of Weyl.

3. Transformation of the dependent variables. Consider an arbitrary

analytic transformation of the codrdinates

3.1) i = fi(x!, 2% ..., a")
which may also be written

3.2) = gz, 2%, ..., z").

By substituting (2.3) in (3.1) we obtain

3.3) ' = Pi(s)

as the equation of the path represented by (2.3). Since

d_xf___ oxt dx*
ds ~ 3ax* ds

(3.4)
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Bt ' dxz® dxf | eat dz®

(8.5) ds*  pz%oxzf ds ds oz ds®

we find that this path satisfies the differential equation

Pz | i dz“ dxf

(3.6) ds® Tl ds ds 0,
in which

i 35i 3’1‘“ '3 ax.ﬂ axr)
(3.7 Ty = 5 2® (35}' dxk Pr oz oaxk)"

Thus the form of the equation (2.1) persists under a transformation of
coordinates. It follows from (38.7) that the functions I" behave like the com-
ponents of a tensor under linear transformations with constant coefficients
but not under more general transformations. It is seen by an easy computation
that the functions Bjy; defined in § 2 are the components of a tensor. It follows
at once that the equation

; oIy, oIy

defines a tensor which is skew symmetric. This tensor is identically zero in
the Riemann geometry. It also follows that

ol ol

axt dak

(3.9) Ry = B — + I Ty — I'fi T

is a tensor. This we shall call the Ricci tensor because it reduces to the
tensor studied by Ricci* for the case of the Riemann geometry. It is symmetric
if and only if S = 0, as is obvious on comparing (3.8) and (3.9). 'Further
properties of these tensors are to be found in a paper by Eisenhart in the
Annals of Mathematics (vol. 24).

For convenience of reference we put down here the following formulas
about transformation of coérdinates in general:

*@. Ricei, Atti, Reale Istituto Veneto, vol. 63 (1903), pp. 1233-1239.
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axt ox” __ si.
(3.10) pa Y R 055

3zt 8x"‘+ a%x* axt oxk
dax® oxf 0% | 3w dx* pam §of

3.11)

Pz ba” 02f | 9'a® o
(8.12) 2 oaf 05 95% T 95 05F pgr | O

®zt  9a” 'zt 9% oazk n o%z® ozt ozk oz
da” 0af o 0% | pa® oa® 0W 0K par | 82 0T*BX 5% 5af 9oy
3.13)

I e o .ol T _
029 0T* pa® sy paxf | 0D 0X* ja pafew

szt ax® v + %z 2ax” + ?3a® axt axk
ax® ol 9oy 0%/ 3xt aa®axP 0xdax' ' 02/ 0xk Xt par §af
3.14)

2x® ¥zt oxk oo %" 'zt axt o

+ 0x) 0x* §g® gar 9af 90X 02/ 0xT* P par pa 0! =0
A O e A Al
du® 9P ooy 0% 0x* ' pat gaf 01 8zt 0T* Ho
(3.15)
i 2*af Kol A A o O . S

02" 9P 0* 07! 0% pay | 02 0TF 0T’ ga® gaf | 0B OZF oy |

0% pat oaf b | o't o'a" oaf
oz® 9P oy 02 8x* ax' ' pp® 9a® 0w/ 9x' dx*

(3.16)

I %2 92" %a® ozt | 0" 'zt Baf

92" 98 0Z* 0z 0a) T o sz o5 9x® | 0% 0ZF pafppd 0m' 0.

4. Transformation of the independent variable. If we make an
arbitrary analytic substitution

4.1) s = f(1),

4.2) t = g(s),

89*
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in the equation of a path (2.3) the latter becomes

(4.3) xi - q/i (t).
For this path we have
L A (dt)2 dxt d*t

(4.4) i = ar \as) Tar as

On comparison with (2.1) we see that the equation (4.3) satisfies the differen-
tial equation

@2 | i da da? it

(45) ag¢ " "4t at _ __ds
: T ﬁy :

dt (ds

Hence the differential equations

o Y dz® da® d*ai i da® daf

@8) daf "t dar _ aft % qr at
' da? dxl
dt dt

are satisfied by the equations of the paths and are such that they continue to
be satisfied if the independent variable in the parameter representation (4.3)
of any path is subjected to an arbitrary transformation.

From (4.b) it is evident that the differential equations (2.1) will continue to
be satisfied if the independent variable in the equations of a path (2.3) be
replaced by ¢ where

4.7 t = as+D,

a and b being constants.

The differential equations (4.6) are due to J. L. Synge, who has pointed out
that the system of paths defined by them is no more general than that defined
by (2.1). For, suppose that (4.3) satisfies (4.6). Let @(¢) be the function of ¢
obtained by substituting (4.3) in any of the expressions whose equality is
asserted by (4.6). The following equation is satisfied by (4.3):

&P | i da® dof
4.8 ar e g 4 — o)
3 dx‘ _ .

at
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Substitute (4.2) in (4.3), obtaining
@ = Y(s),

an equation of the paths which must satisfy

d2a i d2® dif dis
“s) P T T O
' daxt - ds (ﬁ)"
ds dt dat
Now if
(4.10) s = f(t) = A+BfJ““”‘dt,

A and B being constants, (4.9) reduces to (2.1). Hence the equations of any
path defined by (4.6) may be written as solutions of (2.1).

5. Projective geometry of paths.* Let us inquire under what circum-
stances a set of differential equations

'

i da® dof
(6.1) F‘i'/fap ud =

a5 ds 0
can represent the same system of paths as (2.1). Suppose that a curve
5.2) ¥ = ¢i(t)

is a path both for (5.1) and.for (2.1). The functions ¢*(¢) are not necessarily
solutions of (2.1) or of (5.1), but they are solutions of Synge’s equations (4.6)
and also of the corresponding equations determined by (5.1), i. e. of

dai (d*x | i d2® dof\ _ dat (4P j dx® daf
63) 7 (dt’ + e g5 dt)_ at (dt’ MR 7?)'

*The discovery that the same system of paths arises from (5.1) as from (2.1) when (5.5)
and (5.8) are satisfied is due to Weyl, Gottinger Nachrichten, 1921, p. 99. See also
Eisenhart, Proceedings of the National Academy of Sciences, vol. 8 (1922), p. 233,
and Veblen, ibid., p. 347. In the latter paper in equation (2.6) the final ¢ should be omitted
and dx'/dt, ..., dx"/dt should be evaluated at the point q; also the integration signs are
missing in (4.2).
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Between (5.3) and (4.6) we can eliminate the second derivatives, thus obtaining

5.4) (Fop— Aeg) da® da _ (Ihy— Alg) da® dzb
dat at dt  da/ ¢ dt’
dat dt

Let

(5.5) I, ;ﬂ—/’ip = (D:zp

and

1 .
(5.6) 1 i = @p.

If we subtract from (3.7) the corresponding equations for the functions -7 the
result shows that wf,,ﬂ is a tensor. Hence @; is a vector. The equation (5.4)
now becomes

(0}, 22 — o @:)Mﬁ_o
LY B dt at dt '
In this we put
dod o da da! _ g da
5 = O ad - = g,
and obtain
, i gl gy 42" daf dat
6.7 (@g 0y — @5 6)) ar at at "

Since the derivatives dz“/d¢ may be chosen arbitrarily this gives
J Y T B B i i i i
Pop 6r‘*‘ Py 2+ Pre O = (D{Vﬂ dr‘*’ wf?r O + m;a J.
If we set j = y in this equation and sum with respect to y, we obtain

n O+ O + Bp, = B+ (n+1) B 0+ (n+1) O, 5.
Hence
(5.8) D5 = @, 5+ Dy J,.

Hence, if the equations (5.1) and (2.1) are to determine the same system of
paths, the functions I' and .4 must be related by (5.5) and (5.8).
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Conversely, let @, be any covariant vector and let the tensor Q)ip be defined
by the equations (5.8). Then any two sets of differential equations (2.1) and
(5.1) will define the same system of paths, provided that (5.5) is satisfied.
For consider any path with respect to the I'’s. Along this path we have

o d_w‘"@i i i
o 42t _ at at _ Teg—Aep) do* ddf
* dt ax da dat dt’
at at

Hence (5.4) is satisfied. But if (5.4) is added to (4.6) the corresponding
equations in £ are obtained. Hence every path with respect to the I'’s is
also a path with respect to the .£’s.

A system of functions T;ﬁ determines a definition of infinitesimal parallelism
in the sense of Levi-Civita and Weyl. It is therefore appropriate to designate
the body of theorems which state those properties which are determined by
a particular set of differential equations (2.1) as an affine. geometry of paths.
In like manner the body of theorems which state properties of a system of
paths independently of any particular definition of affine connection (i. e. of
any particular set of differential equations (2.1)) may be called a projective
geometry of paths.

For example, the theory of the curvature tensor belongs to the affine geo-
metry of paths. For if the curvature tensor determined by (2.1) is denoted
by Bf,ﬂr as in § 2, the corresponding curvature tensor determined by (5.1) is

(5.9) Bg,— 0 g, + 0%, @, 35— 35D, ,+ 3, B, 5-— 35 D, D, + 3, O, s

In this expression @, sz denotes the covariant derivative (cf. § 10 below) of @,

with respect to the functions I M 8
The Ricci tensor B,z becomes

(5.10) R,,ﬂ-i-nwa’ﬂ———mﬂ,a-l-(n——l)ma wﬁ,
and the skew symmetric tensor S,z becomes

(3.11) Syp—(n+1) (D, 45— B, ).
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Comparing these three expressions, it is evident that a tensor which is the
same for the £’s as for the I'’s is defined as follows:

. . o R &R 1. . d. 8
—_ r e | B e i i o Ogy
by “br n—1 n—1 n*—1 (9 Sep— 9 Scy) n+1"'

This is what Weyl (loc. cit.) calls the projective curvature tensor, and its
theory belongs to the projective geometry of paths. It can also be written in
the form
di
i i 8
efy — aﬂr+ '—r;T:l—'("Rar'l'Rra)
i i

w1 (nBapt Boo) + S (Bay— Byg).

In the rest of this paper we shall be concerned entirely with the affine
geometry of paths, to which we now return.

6. Equations of the paths. A unique solution of (2.1) in the form (2.3)
can.be found which satisfies a set of initial conditions

(6.1) ¢ = P (0),
©.2) g — L yi(0)
ds ’
where ¢!, ¢% ..., ¢" and &', &, ..., " are arbitrary constants. For if we

differentiate (2.1) successively we obtain the following sequence of equations:

A i dx® daf .
s Tl g gy =0

'zt | i da® dof dd
(6.3) s Tl gy g as = O

dé 4 da® da? do? da’
dst “frd"gs “ds ds ds

=0,
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in which
(64) Il = %P(aa;," — i I — T I) = %P(aa’;f?‘ — a1 1
and, in general,

Tha..omn = %P(algz;;'"i—rém...m Tjp—o o —Tj.. .« r:m)

(6.5)

1
= % P[a—’ak;,% — (N—1) I'jjk... r:m]
where N denotes the number of subscripts, and the symbol P denotes the sum
of the terms obtainable from the ones inside the parenthesis by permuting the
set of subscripts cyclically. Thus the functions Ij. ... have the property of
being unchanged by any permutation of the subscripts.* The equations (6.1),
(6.2), (6.3) determine immediately the following series for y¢ in terms of s:

(6.6) 2t = q+5‘b-—i1’ﬁ(q)é°‘§‘g z_i apr(Q)E“E‘Bsr s__

In this expression I‘};pm » (q) represents the value of I‘,,‘,ﬂ_” » Obtained by
giving «* the value ¢*. In general we shall use z to represent (z', 2%, ..., 2"),
& to represent (&', &% ..., &), and so on. Fpr any point ¢ and any “direction” &
we have a unique path determined by (6.6). These equations may be abbrevi-
ated in the form

©.7) & = ¢+ T (g §s),

The jacobian of the equations (6.7) is equal to unity. Hence for values of
z sufficiently near to ¢ the equations can be solved, giving

(6.8) Es = ot — g+ A (q,z—q),

where £ is a multiple power series in (2 — ¢¢), beginning with second order
terms. Hence there is one and only one path joining ¢ to x.

* We have changed the notation used by Veblen in the Proeeedings of the National
Academy of Sciences, vol. 8 (1922), p. 192, in order to introduce this symmetry.
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7. Normal codrdinates. Let us now put
(1.1) Y= §is.

The equations (6.7) and (6.8) become

(1.2) ¥ = g+T(qy)
and
(1.3) ¥ = ' — ¢+ L (q,x—q).

These equations may be regarded as defining a transformation from the coor-
dinates (z', 2% ..., 2% to a new set of codrdinates (y*, % ..., y") which we
shall call normal coirdinates because they reduce to Riemann’s normal coor-
dinates in case the geometry of paths reduces to a Riemann geometry. This
transformation changes the differential equations of the paths (2.1) into

@y ey Ay
(7.4) dst + Cap ds ds 0,

where C:;p are functions of y defined by the equations

o 02 9% ut i 0af Odar

— g —m ———
k + Br ay.l ayk

7o) By oy oy

These coordinates have been so chosen that the curves defined by (7.1) are
the paths through the origin. If we take any point y there is one and only
one of the paths (7.1) which passes through it. Substituting (7.1) in (7.4)
we find

(1.6) Cap E° ¥ = 0,

and hence on multiplying by the square of the value of s determined for the
point y by the equation (7.1) we obtain

(1.7) Cp ¥y’ = 0.

Let us now consider the effect of a transformation of the variables x of
the form (3.1). This changes the equation of a path (2.3) which satisfies (2.1)
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into the equation (3.3) which satisfies (3.6). It also changes the initial con-
ditions (6.1) and (6.2) into

(1.8) 7 = & (0) = fi(g)
and

i 4 = __ay*(0) [ ozt
(1.9) F=Ltao=1010 (W)q

respectively, the subsecript ¢ indicating that the derivative is evaluated for
z = ¢q. For any point p, not too far away from ¢, there is a unique path
and thus a unique set of values (y%, ¢% ...,»"). From these we determine
& and s so that y* = §s. Then (3.3) gives the equation of the same path in
terms of the codrdinates z in such form that the point p is determined by the
parameter s. Hence by (7.9),

(7.10) 7 — y“( Zi«)q

i
In this formula the coefficients (%) are independent of the particular path
q

and dependent only on the point ¢ and the two codrdinate systems. Hence
when the covordinates x undergo an arbitrary analytic transformation, the
normal coordinates determined by the coordinates x and a point q suffer a linear
homogeneous tranmsformation (7.10) with constant coefficients. In other words
the normal codrdinates are transformed like contravariant vectors. They are
not vectors, however, in the narrow sense, but are the components of a “step”
from the origin of the normal codrdinates to the point at which the coordinates
are taken. An arbitrary step (4 B) determined by the points 4 and B can be
represented by the codrdinates of the point B in the normal coérdinate system
associated with the point 4.

8. Alternative treatment of normal codrdinates. The identity (7.7)
can be used as the definition of the normal coérdinates. For by (3.12)

i (['.7 by @y ) dx ax*
o8 *oar  oaioak! 9y ayf

(8.1)

so that (7.7) becomes

dy 'y ) dx) dx*

“yf = 0.
o 0w dxk/ ay” ayﬂyyﬂ

(8.2) (v
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The differential -equations (8.2) uniquely determine a functional relation
between the z’s and the y’s when taken in conjunction with the initial
conditions

(8.3) y* = 0 when 2¥ = ¢,
(8.4) ZZ; — ¢} when z* = ¢'.

For when we differentiate (8.2) repeatedly and substitute these initial con-
ditions, making use of the formulas at the end of § &, we find

. . . 1 1 o 1 i
x'=(l’+?/'—§ «ﬂ(Q)yyﬂ_yFuﬂr(Q)y‘zyﬂyr

(8.5)
1 o
"‘Hrépra?/ Fyy—...
and
. . ) 1 « «
Yy = o' — g+ 5y Aap(e) (2" — ¢%) (& — )
(8.6)

1 .
g7 Augy (@ — %) (@F — ) (T — )+ -
where the I'’s have the meaning given them in § 3 and the .#’s are such that
A}k = }k’
i i i o 1 ,(8Th i e
A = Tju+ P(Ao Tu) = 5 P\~ — I Ta),

3 i ) o ) <0 i
A_;klm = rjldm+P(‘/1ttj L+ g Ijk rzﬁ»'*‘ Ak Ifm)’

If the general solution of (8.2), regarded as a differential equation for y in
terms of x, is denoted by ¥ when only the initial conditions (8.3) are imposed,
then

8.7 gt = a, y"*
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where the a? are arbitrary constants, and y is the solution determined by the
initial conditions (8.3) and (8.4) which is given by (8.6). This last theorem is
proved by observing, first, that the function y defined by (8.7) satisfies (8.2)
and (8.3) and, second, that if there were any other solution for which

7t .
§i=0 and 2L — aj

Y

when 2f = ¢¢, the solution (8.6) would not be uniquely determined by (8.4).

In order to show the tensor character of the normal cotdrdinates let us now
consider the effect of a transformation of the variables 2 of the form (3.1).
We inquire what are the normal codrdinates determined by z!, z%, ..., z”.

These normal codrdinates which we shall denote by y*, y% ..., y* are
solutions of
—p 0y oyt ) oz BT _, 5 __
2 — S92 e = 0.
8:8) (r”‘ ozP 0w 9a% ) gy« agh U y

If we substitute into this the value of I'fi from (3.7) we obtain

[( ¢ 0t dx" BZP ot aa?ﬂ) oy’ a2y’ ]aa?f aa?"_agp

" ow 2% oa | o1 0aF oat | 9z 00 05" oy oy’ VT
or
oyt Yyt ) dat 0
rt — « B
(”’axt aat 02| oy oy 0 ¥
8.9)
+( o't oyt 'y 3%y’ dat axf) 0z) 0&* o g
0% 0k 0af  ow omF | datoar 0a) 0%F) oy® ogh o |

The parenthesis in the second term is identically zero. Hence (8.9) is the
same differential equation as (8.2).
By definition the normal codrdinates must satisfy the initial conditions

¥y = 0 when z' = ¢,
and

i _ 9y zi = gt
Jj—aij when x q°
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Hence we must have
oy’ ozt

9] — 2] when z* = ¢,

The value of 9x%/9a/ when z? = gq* is determined by (3.1). Let us call
it af. Then by the theorem regarding the formula (8.7),

(8.10) g = di o

is a solution of (8.9) determined by the conditions

i )
oy 6}

2 = when x* = ¢’,

y* = 0 and

Hence when the codrdinates 2 undergo an arbitrary transformation (3.1) the
normal codrdinates undergo a linear transformation (8.10) the coefficients of

which are given by
D

(8.11) - ‘

9. The normal tensors. Since Cj is symmetric in j and k and ¥ is
entirely arbitrary it follows from (7.6) that Cj vanishes at the origin of nor-
mal coodrdinates, i.e.,
©9.1) (Ciel = O,

Hence the power series for Cj takes the form
92 Ck= A}kay“+‘2—!A}Mpy“M+§A;mpry“?/ﬂ?lr+---
in which the A’s are the derivatives of Cj evaluated at the origin, i.e.,

; " O )
9.3 . = (——’ —.
( ) dke -t ay"‘... 8?/? 0

The equation (9.3) can be taken as defining A}}ww'x as a set of functions of
(= 2% ...,2"). At any point (p',p? ..., p"), Ajke...c is equal to the right
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hand member of (9.3) evaluated in the system of normal codrdinates having
(pY p% ..., p") as origin. The functions so defined are tensors. For consider
a transformation from x to x and the transformation which it produces from
y to y. By (3.7) we have

~e 3y i 0yf oy
&4 Doy = oyl oy
and from (9.2)

353 = 22t g 2 2

Pr oyl ay* d % 5y oy*
Hence
. 3
o _A, 0y’ oy —

3J Bré oy Bg/" aJ#"’

0y oyf oy oyt oy,
oy 2' A‘aﬂ’ dy/ ay* oyt ay” T

Comparing this with the equation

— — 1 —
C;k = A;kp?/#'l"—é!‘A;kyvyﬂ?/y'*’

we have

oy « .0y oy 8y ay*
Aﬂd “m By == Aﬁfd‘...s ayl oy* oyt aym™

If we make the substitution

Sy _ (22
(9.5) A (aif)o’
then
. dat 02f 9o Bx” ozt
9.6) Aja...m e = Appd..e 337 5% 551 " ogm

where 4 is regarded as a function of (z',2%...,2") and A as a function of
(z', x* ...,z"). This shows that 4jis...m is a tensor which is contravariant
in ¢ and covariant in jkI-.- m. We shall call it a normal tensor because of
its definition in terms of normal codrdinates.



568 0. VEBLEN AND T. Y. THOMAS [October

By their definition (cf. (9.3)) these tensors are symmetric in the first two
subscripts and also in the remaining ones, i. e,

(9-7) Ajkaﬂ. R A;.cjaﬂ...n
(9-8) A;kaﬂ...'r = ;krd...a’

where y0... ¢ is intended to represent any permutation of «8...7.

If we multiply (9.2) by 3 ¥* and sum, the left member is zero by (7.7) and
the right member is a multiple power series the coefficient of each term of
which must be zero. It therefore follows that

(9.9) Al + Abej + Al = 0,

(9.10) A;:kaﬂ + A;:akp + A;:ﬂak + Agcajﬂ + Ajeﬂja + A::pjk =0,

and in general
(9.11) 8 (Aep.. 2) = 0,

where S( ) stands for the sum of the N (N —1)/2 terms obtainable from
the one in the parenthesis and not identical because of (9.7) and (9.8).

The tensors 4 are expressible in terms of the functions ka and their
derivatives. If we differentiate (7.5) we obtain

R %t

2Ce o' _
dy oyt~ oyl dyk oyt

oy oy
(9.12)

+Ci

8Tp, 2af 0af 0a° PR LA L
0a® 8y 0yF by T TP aylay oyt T T oyl ayt oyt

Substituting the values of the partial derivatives of 2 with regard to the y's
as computed from (6.6) or (8.5) for the origin of normal codrdinates, we find

; oL} ;
©.19) Ay = S — T — T I — iy T,
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If we differentiate (9.12) again we obtain

: ' rh a0l k23 215
Aium = 5orgm — Liim = 55 Ten ™ 5 In— m Th
ar;
Bk 81‘,,,
(9.14) —Sam I — ' rf, —IjyTf, — Ty Ih,

+ Ay Tom+ A Ty Ty Tf T+ Ty T, T

It is evident that a continuation of this process will determine the explicit
formulas for any number of the 4’s.

10. Covariant differentiation. Covariant differentiation is a process by
which from a given tensor there may be formed a new tensor with one more
covariant index. Let T,f,mk" be any tensor referred to arbitrary codrdinates
(2% 2% ..., 2*) which is contravariant in (I, m,..., n) and covariant in
(4,4, -, k). Let ;" be the components of 74 %" in the normal coor-
dinate system (', % ..., ¥*) which is determined by the z-cotrdinate system
at the point (¢%, ¢% ..., ¢®). The equation

(10.1) pimen (085"
* y...kp 3yp ,

defines a set of functions of x which turn out to be the components of a tensor.
In the Riemann geometry this tensor is the same as the covariant derivative
of T according to the definition of Ricci and Levi-Civita. Hence we shall
call it by the same name in the general case. The subscripts arising by
covariant differentiation will be separated from those originally present in the
tensor by a comma.

Let us now prove that the functions Tf]"k'}, _actually are the components
of a tensor. Let the functions 7" and ¢ become 7" and ¢ respectively under the
arbitrary transformation (3.1). This gives the equations

Je..v 0F' dz™ 9z 82" ddf  bal

mim...n __ — —
(10.2) Tij...k = Lep...y axd' 9t 9y O0x* ox/ axk’

Jim...n Jde...v agl 3?7m 817” aya Byﬂ”. 6?/
10.3) 5" = tag, 257 oy py 0y* oy | oyk’

40
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Since the derivatives in (10.3) are constants we obtain by partial differentiation

— ds...v . _
10.4) dtgrit _ Olegly 0y oym™ | oyn oy® oy oy oy®
ay® o0y oy dy* 0y' 9y ay* oyr’

oy?
and, hence, at the point ¢ we have

mim...n ...y ozt azx™ ox™ 9x” 3$ﬂ o ox”
(108) Ty'ies = Tap..ow 5,8 g¢ ' opr & 080 o0&k 0P

Since the point g is arbitrary, 73" %% is a tensor which is contravariant
in (I, m, ..., #) and covariant in (¢, 7, ..., k, p).

Let us next evaluate T{" %% in terms of the I"s and the original
tensor Tf,"‘k” To do this we differentiate the equations

m oty 0Y dym Byt da® vaf  bd
(1006) tg’f..k - Taﬂ...r axd axs a$l‘ ayi ayj ayk,

obtaining

3...
o _ 0Tuly oy oyt 02 od baf
ayp 6a:’ awd awv ayt ay" ay”
gy 0% 8x” oy 82" oal
10.7) +Ta...r 22 9° OYF 3z’ 0y Y +e

Lot 0 oy bat 0
T gl o’ Y dy* oy?’

At the origin of normal cotrdinates
ozt

KL A S i S i Ay s
08 5 =% = U TweE = ooy - ik

as follows directly from (8.5) and its inverse (8.6). The substitution of (10.8)
into (10.7) then yields

a T(l;t‘:_. N

T iy =~ — + Tep Tg"ic" + Ty TG00+ - -

(10.9)
+ I3y T 5" — Ly Ta i — Ty T i — -+ - — D Tg 4™
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By using the tensors

<

(1010) Dy = 07 82 8% 07+ 0502 &% 0+ ...+ 0% 85 ... 0"
and
(10.11) Egy w = 050305 0h+ 000565 Oht .- 48,00 8...0r,

A

the formula (10.9) may be written in the form

2 T "
Ty = —t g, T 5T Doy
(10.12)
— T, Tog oy B i

The covariant derivatives of the sum and of the product of two tensors
with the same number of covariant and contravariant indices are formed by the
same rules as hold in the differential calculus. That is, if

(10.13) T 5™ = AP 4 Bt

then

(10.14) T 3 = iy + Bi i,

and if

(10.15) T = ALY By

then

(10.16) Tt = A% B, A By

These formulas follow without difficulty from (10.1).
11. A generalization of covariant differentiation. By repeated

differentiation of (10.3) we obtain

— de.. _ _
R A R T T

0y?...0y7 oy, 0y 0y oy

(1L.1)
Y™ oyt 8yt oyl byt oy
oy oy o ayE o oy
403
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This shows that a set of tensors Tu ..q are defined by

(11.2) T iy g =

r im.
(s (r=1,23..),

W)o

where the derivatives on the rlght are evaluated at the origin of norma]l
codrdinates. For r = 1, l’f,’” kop...q 1S the ordmary covariant derivative
that we have just consmered The tensors Tv J.p...q form a group of tensors
that may be derived from a ngen tensor We shall refer to the general
tensor of this group, namely, Ti" %% . ,, as the rth extension of T %",
r being the number of indices p, ..., ¢. By its definition this tensor is sym-
metric with respect to the indices p, ..., g. The operation of forming the
extension of a tensor may be repeated any number of times. For example,
Ty, pg,r,stu is the third extension of the first extension of the second extension
of T, i

The rth extension of the sum of two tensors which are of the same order
in their covariant and contravariant indices is equal to the sum of the rth
extensions of the two tensors, i. e.,

(11.3) (A+ B ilp.q = AY0ilp. q+ B il

This follows directly from the character of the tensor transformation. The
formula for the covariant derivative (first extension) of the product of two
tensors does not apply, however, for the case of the rth extension (r>1).
For let the tensor 7' be equal to the product of two tensors as in the
equation (10.15). If 7', A, B become ¢, a, b in a normal cotérdinate system
(y' % ..., y*) we have in this system

(11.4) B = ary VR

The formula for the rth extension of 7'is obtained by carrying out the differen-
tiation indicated in the following equation:

ar im...n 87
t" - (az bt k)c

k
(11.5) dyP...097  dyP... 0

This formula has 27 terms.
Any tensor Ti™%%.., may be expressed in terms of the Is and the
original tensor Tf,’”k" by the same process that we have used for the case
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of the tensor Ty %". That is we have to take the successive partial deri-
vatives of both members of (10.6) and substitute in these equations the
equations (10.8) and

A8 —2% o (rhe, Y (4
‘ dyJ oy* oyf g0 0l ok oot T o

and so on. It is evident that formulas for extensions of all kinds can be ob-
tained by this process. Instead of giving the general formulas, however, we
shall set down the first extensions of the first four kinds for the covariant
vector and the covariant tensor of the second order. In these formulas § is
used to indicate the sum of all distinct terms which can be formed from the one
in the parenthesis by replacing the given combination of the subscripts p, ¢
or p,q,r or p,q,r,s by arbitrary combinations of these subscripts. Thus

¢ T o ® T 9% T; 0% T;
S(W Tq“’) T datdar T Savoat da® dxd Tt o 00 ox® dar Ty
oT;
(11-7) Ti’p == ax; Ta tp,
22 T a7 LY
(UL8)  Tipg = 5ompmr — o ,j;_s(ax; T’”) Ta T3
. 63 Ti 88 Ti a) 38 Ta a)
Tiver = Somoat 00 _S(ax“ ap Lo _S(axp oan Lo
(11.9) aT. aT T
ofL i) sfiZ )3T
. 84 171 83 Ti a) v 63 Ta ,.a)
Timrs = Goiat 007 520 _S(Bx"‘a.ﬂ’ pat 7 _6(696" dat 0z |
32Ti o« ﬂ) ( B”Ta « .ﬂ) ( a”Ti u)
y[__ 7 —t _ % r. I —_— - r
+ (61"" oxf Toa Trs) + 8 axf o Tig Is § ax* o x? "
11.10
( ) 2T, 0T 8 0T 8
S oarom 02?9t Lis) + 8 xﬁr o Frs) £ 8 xﬂr,mr,s

oT. .. 3 ’1
=8 ( 832; IWs) Tiggrs — To Liggrs;
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o Ty o
(1111) Ty = I — Toy Iy~ Tia Is;

] _ BBT(; _3T1'J « 8Tq; 3:)__ 0T )
TV»?q_axﬂaxq axar”"_s(axpr‘“ S(axf’r

(11.12)
+TaﬂS(T1;§§)_T Fz;q T T, qu’
. 33 Tﬁ _Q 8 T“l ) 6 Ti« )
Ty, per = dxP 92 52" 8 (axp 0x? T S(axp ox? T;

92 T; 8 Toj rer 6Tw «
—s<m:;,, o+ sy 2B s

T aT,; 8Twz a)

0Ty .
—- x:: Tyt Top (LG If) + Top ST, Tf)

o o
— Toj Tipgr — Tie: Tipgr;

Tipars = 53 ai;ggcr oz _S(axz’a;fgw" 1;.;) _S(W?;—fz’f Iﬁ’)
st ) s
+ (e 158 — S ) —S (e 7o
48 (o ) =5 (e 1) — s (S xg, )
(11.14) S( ry, ,3)+S(8T“’ L rs)+S(awp ig ﬁa)
—5( rg 1, rr) 5224 rg 1) (2B e, )
+5(88e g rg) 4 s(20e rerg ) Lore

Ta" 11’47‘8 + T“ﬂ § ( ipqr Js) + S ( T T ;;,q Iﬁ,)

+ Taﬂ 8(7, z; Tf:rs) Tw Q;Ws
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12. Formulas for repeated covariant differentiation. In this section
we write down a few special formulas relating the tensors obtained by
successive covariant differentiation to the higher extensions and the normal
tensors. In each case the formula is obtained by computing the covariant
derivative in question according to the formulas of §10 and evaluating at the
origin of normal codrdinates:

(12.1) Tipg = Tipg— To 4ipys
(12.2) Tipar = Tiper — Tiadper — Tapdipy— Ta g 45

— T, A% — T, 4%

pq per

Tipare = Tipars ™ To,pq Aire™ T pr Aige ™ T po Aiger
= Teyor Aips ™ Tosa0 Air — Ttyrs Aipg ™ Tiap Aips
(123 — T oq Aprs ™ T ar Apgs — Tiras Apar — T p Aigrs
T Aipre = Tor Aipgs ™ T Aiper — Tiyo Apars
—T, (A;vm - A;pr Azzs - A;ps Azzr - A;t‘r Aﬁqs
- A;“ Aﬁqr o A;pq Aﬁs o A;iq Afws - A:;ﬂ Agrs);
(124 Typ0 = Tiog— Toj Aipg — Tia A5
Typar = Toper — T Aier — Tojq Aipr — Tojr Aig
(12.5) — Tia, p A;q,, — Tia, ‘ A}xp’, — T, A};q — Tq,a Azqr
Loy Liper — Tia Aipars
Tinars = Tooos ™ Toj Aipgrs— Tia Aipars
(12.6) = Tioq Abors— Togr Asogs— T g Alogr
_Tax,g A};wa—Tia,r Aj.;)qs_Tia,s A}:»qr
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— Ty p Airs ™ Tiep Ljows — T, -

oj,p “Tigrs ie,p “Vjgrs PYrs

—1r. A —T . A —T . A7

«j.qr “Vips «j,gs “ipr «j,rs “Hipy

A —T,, A% — T, . 45

w qr “jps i, qs “jpr in,rs “jpq

-1, A5 —T Ape— T p.s i

&, p,q “irs @), p,r G),p,8 TTUr

— T, A% — T, A¢ — T, AT

w,p.q “Yrs w,p,r " JYqs w,p,8 TJqr

Ty g A T e A% — Ty s A%,

Tijye,q “Tprs i, e, r “Tpgs

. T ‘1(( .

iy, p ¢ “Tqrs?

Im . tz (m.. . lm n
T L,p = 4 h,pq"{' 17 ‘ ]r/w[“‘ + apq
(12.7)
lm lm, n o
1’ ik Azpq+ + Akpq-

13. A generalization of the normal tensors. If we transform the
equations (6.3) to a system of normal coordinates and make use of (7.1) we

obtain the following sequence:

s & =0,

(13.1)

where the C’s denote the corresponding functions I" in normal coérdinates.
Caﬂr... o is symmetric in the indices 8y - .. ¢. The functions C:,p are related
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to the I'’s by (7.5) and there are similar equations of transformation for the
other C’s. Thus

daxt 33t i o0xt ax* axt

Ce = or oz ox
oy aymayfoay’ | Moyt ayf oy
(13.2)

9%t ” 9%t ,a izt ,u

_-ayﬂay"o‘“” ay* oy Cre— ag/‘ayf

Since the &'s are entirely arbitrary at the origin of normal coérdinates it
follows from (13.1) that

(13.3) (Cagy...ado = 0,

where the left member denotes the value of C at the origin of the normal
codrdinate system.

We may define a set of functions 4(,, ..d)p...q Of @, 2% ..., 2" corre-
sponding to the normal tensor Aaﬁp q deﬁned by (9.3) by the equations

. "
i aﬁr .0
(13.4) A(aﬁ’r. La)D... ( dyP...0y? )0’

in which the derivative on the right is evaluated at the origin of normal
codrdinates. By a method similar to that employed in § 9 we can show that
A(aﬂr .0)p...q DOSSesses a tensor character, but this fact may also be inferred
by observing that A(aﬂ,, .)p...q 18 expressible in terms of the normal tensors.
The tensors A(aﬂr 9)p.. o thus constltute a generahzatlon of the normal tensors.
They are symmetric in the indices By ... and p---¢. In case A(“ﬁr .9)p.
contains only two terms in the parenthesis it is a normal tensor and we shall
then omit the parenthesis for simplicity.

The following equations express a few particular cases of the relations
between the tensors Afaﬂr. ..0)p...q and the normal tensors. These equations
are obtained by differentiating the identities (6.5) referred to normal codr-
dinates and evaluating at the origin. The symbols P and S have their previous
significance (cf.§ 6 and § 11) except that P operates only on the letters e 8yde
and S only on the letters p, ¢, r

(13.5) A(ialgr)p == P(A ﬂrp)’
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: 1 ] i v
(13.6) Azapr)pq - ?P [A:xﬁrpq_2S(Avap Aﬂrq)];
1 i i v 3 v
(18.7) Alappper = 5 P [Aupyper—28 (Abeng 450 —28 (Ayep A3y
i 1 i
(13.8) Aupyryy = 5 P (Lappon);
i 1 i i v
(13.9) A(aﬁrd)pq = ZP [A(apr)dpq'-3s (A(uaﬁ)p Ar&q)];
: 1
(18.10) Alapyaeyp = 5P (Aupyaes)-

By differentiating the equations of the type (13.2) and evaluating at
the origin of normal cotrdinates we may express these tensors in terms of
the functions I. For example

. . art . . .
i _ i ofy i I o s i o
(13.11) A(aﬂr)pv - Faﬁr_p + P Tyap Lyp— ey Tpp py Tep

i M i 4k i M
+F;mAﬂrp+F;ﬂA7up+r;eraﬂp'

The generalized normal tensors appear in some of the formulas of
extension which generalize the formulas of § 12. We here write down
only the following four particular cases:

(183.12) Tiper = Tiper— Teyq Agpr— Te,r A?pq—' Te A:;qr;
(13.13) Tipgr = Tiper— Tija A;qr_ Ta,pA?Q‘r— Teq A‘i;w— Te Agpq)ﬁ

Tij,p,qr = Tﬁ.pqr"T«i,qAar- Taj,r A'i;’q"— Tw,qu‘;r— Tia,r A.‘i;q

13.14) .
— Toj Aiper— Tice Afpr;

Tii.pq,r = Tﬁ,mr— T i« A;qr—‘ T @j,p qur— T %j,q Agpr‘" T ie,p Afw

(13.15)
— Tiaq Afpr— Toj Azipq)r“‘ Tia Aa(jm)r'
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The generalized normal tensors satisfy the identity
(13'16) S(Afiaﬂr...d)p...q) = 0’

where S( ) denotes the sum of the terms obtainable from the one in the
parenthesis which are not identical because of the symmetric properties
of A:“ﬁr. ..o)p...q- This identity may easily be proved by the method used for
the corresponding theorem about the normal tensors in § 9.

14. The curvature tensor. The normal tensor Ajy is related to the
curvature tensor by the equation

(14.1) B = Ah— Al

which is immediately evident on comparing (2.7) with (9.13). The tensor
character of B follows from that of A. From the definition it follows that

(14.2) B;:kz = — szk.
From (9.9) it follows that

(14.3) Bju+ Blaj+ B = 0.

Also by solving the equations (14.1) and (9.9) for the A’s we obtain

(14.4) Ajg = 3 (2 Bju + Bijk)
or
(14.5) g = g(Bf'kz + Bii).

If we write (9.13) in normal codrdinates, differentiate, and evaluate at the
origin we obtain

(14.6) A}Id,m == Ajklm—Abkbm-
From this and (14.1) it follows that

(14.7) B}kl,m = Alam— Abpem.



580 0. VEBLEN AND T. Y. THOMAS [October

The equations (14.7) and (9.10) may be solved for the A’s giving

(14.8) Akbm = ‘“(5qul m+4B‘llq,m+3BlJm,k+2Bndk,J+Bmk),l)

If in (14.7) we permute the indices %, /, m cyclically and add the three
resulting equations we obtain the identity of Bianchi,

(14.9) Bjia,m + Bjtm,k + Bjmk,s = 0.
From (14.7) there also follows the identity,
(14.10) Bk, + Bia,j + Biig,i + Bji.e = 0.
From (12.7) there follows the important identity of Ricci and Levi-Civita,
Ti™ima— Torias = T5mi™ Bapg+ -+ -+ T5" k" Big
(14.11)
_ T‘f}nkn B;;q - .. Tlm n .kaq

Using the tensors D and E (14.11) becomes

Im... im... im. .. Im.
(1412) Ty o= To i = To' " By Doy s — Tupy 7 Bepg B! -

This identity may be generalized by combining identities of the type (13.12).
For example,

(14-13) Ti,p,qr - Ti,q.pr = Ta,p A?qr — Te,q A};,, — To,r Biapq —Te Bguz.r-

15. Homogeneous first integrals. A homogeneous first integral of the
kth degree of the differential equations (2.1) is an equation of the form

da® daf do’

(15.1) “p.r7gs ds " ds

= constant

which holds along every path. From the equations for the transformation of
da*/ds it follows that the functions a,p. ., are the components of a covariant
tensor. We shall now derive some general theorems about the conditions
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theorems is given by Ricei and Levi-Civita for the case of the Riemann
geometry in Chapter 5 of their Méthodes de calcul différentiel absolu.
If we differentiate (15.1) with respect to s we have

under which a tensor a,z.., gives rise to a first integral. The first of these

ddog..y da® dof  da¥ . d*z® daf  da¥ Y. —0
ds ds ds ds “fr ds?  ds ds o

At the origin of the normal codrdinates this equation becomes

0. ..
_T"‘;d_’_ga;ﬂ...grgv =0,

owing to the equation (7.1). We may also write
(15.2) Uup.. 3, a S EF - ETE =0

where aqg, .5, 5 is the covariant derivative of a,g...,. The substitution involved
in obtaining the last equation is permissible on account of (10.1) which holds
at the origin of the normal codrdinates. The identity

(15°3) P(aaﬂ...r,d) =0

where P indicates the sum of the terms obtained from the one inside the
parenthesis by cyclic permutation of the subscripts, is therefore a necessary
condition for the existence of the integral (15.1). Owing to its tensor
character (15.3) has validity in all coordinate systems.

To show that (15.3) is also sufficient for the existence of the first integral,
let this equation be satisfied by the symmetric tensor ay...x, and express it in
its expanded form

8 aii .
P( ‘?szk — I3 aogi...k—l)?aia...k—..._T&aﬁma) —0.

If we consider this equation referred to a normal codérdinate system and
multiply by (dy¥/ds) (dy//ds) - - - (dy*/ds) (dy*/ds), we obtain

_ Qoop..y dy* dyf Ay _
(15.4) ds ds ds ds =0,
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on making use of the equation (7.6). Since the derivatives dy*/ds in (15.4)
are constant along any particular path, it follows that

dy* dyf dy"

Tp..r “3s ds  ds = constant

along any particular path. In consequence of the tensor character of ay.. r,
we have in general codrdinates

dz® daxf dar

L P I = constant.

Hence, A necessary and sufficient condition for the existence of a homogeneous
Sirst integral of the kth degree is that a symmetric covariant tensor of the kth
order ayj...x exist which satisfies (15.3).

If a symmetric tensor by..x and function ¢ (2!, 2% ..., 2") exist which
satisfy the equations

0
(15.5) P(bii...k,l) = P(bﬁ...k 91); P = 22

where bj.. .k, is the covariant derivative of b;.. .k, a function ¥ can be chosen
so that the equation

(15.6) Pl(¢by..kit] = 0

is satisfied. The bracket contains the covariant derivative of ¥ b;.. with
respect to 2!, In fact, we have

P[(yby...x)]
= P(Yby....c+ Yhy...x1)

= yp[p s[5 4 S]]

Hence (15.6) is satisfied if we put

Y = e"
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Therefore if (15.5) is satisfied a first integral exists which is given by e=® b;.. .x.
That (15.5) is a necessary condition is immediate, for, as we have seen, if ;.. .«
furnishes a first integral (15.5) is satisfied with ¢ = constant.

Hence, A necessary and sufficient condition for the existence of a covariant
tensor ayj...x which satisfies (15.3) is that a covariant tensor by;...x and function ¢
exist which satisfy (15.5). If the tensor by...r and function ¢ exist, then

..k = €% by k.
A particular case of (15.3) is

(15.7) aj..xq = 0,

where ay...x,: is the covariant derivative of ay...x. In a manner similar to the
above it can then be shown that

oe
(15.8) by = by kP 0= G

is a necessary and sufficient condition for the existence of a first integral
which satisfies (15.7), and that this integral is given by ay..x = ¢ by.. k.

Hence, A necessary and sufficient condition for the existence of a covariant
tensor aij...x which satisfies (15.7) is that a covariant tensor by. ..k and function ¢
exist which satisfy (15.8). If the tensor byj.. x and function ¢ exist then

aij.. .k = e ® by, k.

The equation (14.12) provides a new statement of this last theorem. If the
tensor by;. ..k satisfies (15.8) we obtain by covariant differentiation

bii...k,l.m = bii...k,m 9+ bﬁ...k Pi,m

- bii...k (% q’m+q)l,m)‘

Hence,
bq...k.z,m“sz...k,m,z = 0.
From (14.12) we then have

(15.9) bap...r Bam Eop i = 0.
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Conversely, if the tensor b, , and vector g, satisfy (15.9) and

(15.10) [ by, x P

where b;;...x,: is the covariant derivative of by;...x, we have

bz'j...k,z,m = bij...k (9, ‘I‘m+‘l’z,m)’

and

b

b .. koml bij...k (?z,m—q‘m,t)'

...k lm

Since by;...x satisfies (15.9)

bz;i...k,z,m’— bij...k,m,l =0,

so that
om ™ Pmy = 0
or
0 q)l 0 P

ox™ ot
and this last equation is the condition that ¢, be the gradient of a scalar
function ¢ (2!, 28, ..., 2), i.e,,

o9
o= b

Hence, A necessary and sufficient condition for the existence of a covariant
tensor a; 4 which satisfies (15.7) is that a covariant tensor b; . and vector g,
exist which satisfy (15.9) and (15.10). If the tensor by.. x and vector g, exist,
then

..k = € by k.

16. Algebraic condition for existence of first integrals of a par-
ticular class. We shall now derive a condition on the functions I" for the
existence of a homogeneous first integral of the kth degree which satisfies the
particular condition (15.7). The condition is to involve only the algebraic
consistency of a set of tensor equations formed from the functions I. If the
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covariant tensor of the kth order ay;.. x satisfies the condition (15.7) it follows
by (14.12) that ay.... will satisfy a sequence of equations of the form

Aap. ..y Dgﬂk{m =0,
aaﬂ...rD g

pB...
Y...km,r

aap...r D:f.‘..légn,mfa = 0’

(16.1)

aaﬂ...r D;‘.g::l;:{m.n,rs.m»"n = 0’

where
Dl = B Eql il

and Dgﬂ i, rire ..., TEDTESENLS the nth covariant derivative of Dgﬂ e The
algebraic consistency of the equations (16.1) is a necessary condition on the I'’s
for the existence of the homogeneous first integral of the kth degree which
satisfies (15.7).

The algebraic solutions of the equations (16.1) possess a tensor character.
For let ay.... represent an algebraic solution of (16.1). Under a general
transformation of codrdinates the first set of equations of (16.1) becomes

(16'2) Eaﬂ...r B:iﬂkrbm = 07
where D7 is defined by the equations of transformation

ot dxk oz’ 02° =a..p
2z®  azP 0x? oat 10

(16.3) DYyt =

41
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and @,g . , represents an algebraic solution of (16.2). Substituting (16.3) in
the first set of equations of (16.1) we obtain

ox° az® Bz’ 0z°

(16.4) Ae...0 ok az* 0xP Y

Dy 5= 0.

If we multiply (16.4) by (02?/0x%) (92%/02/) ... (92*/0z™) and sum for
(p,q,..., 1), then
o0t 02

LoV
Tk 65]4 Dyklm =0

(e...w

and a comparison of these equations with (16.2) shows that a solution of (16.2)
is given by

— . ox€ oz
a't:)‘...k - ae‘..w 651 e aik'

While we have considered the first set of equations of (16.1) a similar result
would have been obtained with regard to any other set. Hence the algebraic
solutions of (16.1) are tensors and it is consequently permissible to form the
covariant derivative of these solutions as we shall do in the later work.

Let us now assume the algebraic consistency of the equations (16.1) and
suppose that the first system of these equations admits a set of fundamental
solutions denoted by bﬁ,‘f’,,k, p=1,2,...,s. The general solution of this
system of equations can then be expressed as a linear combination of the
fundamental solutions b’ x with arbitrary functional coefficients. We next
consider the first and second systems of equations (16.1) and suppose that
these equations have a fundamental set of solutions cgff),,k, p=1,2,...,¢,
in which of course s> ¢. If s = ¢ then &P x, p = 1, 2, ..., ¢ will furnish
a fundamental set of solutions of the first system of equations which satisfies
the second system. If s> ¢ we consider the first three systems of equations,
which we may suppose to have a fundamental set of solutions dﬁ,’f),,k, p=1,
2, ..., u, with the condition ¢>u. In case { = u then d{f’ x,p = 1, 2,
..., u, will furnish a fundamental set of solutions of the first two systems of
equations which satisfies the third system. By proceeding in this way we
shall finally come to a point where the first NV systems of equations of (16.1)
will admit a fundamental set of solutions which satisfies the system imme-
diately following in the sequence. Hence to say that the equations (16.1) are
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algebraically consistent implies that there is a number N such that the first N
systems of equations (16.1) admit a fundamental set of solutions aﬁ}f),, kp=1,
2, ..., s, which satisfies the equation

Daﬂ...r = 0.

aaﬂ...r .. kldm,ry,re, .. Ty
The general solution of the first N systems of equations is then

(16'5) & = (l’(a) “E-,"x,),,k (a =1, 27 AR 3)7

Q...

where the expression on the right is summed for e, and q>(“) is an arbitrary
function of (2!, 2%, ..., z*).

Before proceeding further with the general case let us consider the particular
case where the first system of equations (16.1) has a unique solution a;...x
which satisfies the second system, i. e.,

...y —
aaﬂ...r ij.. Jlm,r 0.

(16.6)

Under these conditions a homogeneous first integral of the kth degree will
exist whose covariant derivative vanishes. For if we differentiate the first
system of equations (16.1) covariantly we obtain, on account of (16.6),

...y — 0’

(16.7) aaﬂ...r,r ‘Dy klm

where a,g. ., is the covariant derivative of a,4 . Since (16.7) possesses
a unique solution ay;.. .k, it follows that

B k1 = P Yk

in which ¢, is a covariant vector. The above statement then follows from the
last theorem of § 15.

Going back to the general case let us substitute one of the fundamental
solutions aﬁf’,,k in the equations of the sequence (16.1) through the (V4-1)th.
We may then differentiate these equations covariantly so as to obtain the
following:

41*
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@) af.
Qag... D(] kl’;n = 0’
® s 1
Qaf...p, -D L Klm,y, = 0,
(16.8)
® of...r
a“ﬂ r’ DO ’dm"rh'l; G TN—1 = O’
where aJ} . is the covariant derivative of af} . Since af’ is a solution

of (16. 8) it may be expressed linearly in terms ‘of the fundamental solutions
of these equations. Hence

(16.9) a8” Kl = g as‘.)..k’

where the expression on the right is summed for «, and the 4’s are covariant
vectors. Since ag’,),.k satisfies the first system of the sequence (16.1),

(16.10) “if.)..k,t,m — a’é;’.)..k,m,l = 0.

If afp) ., as given by (16.9) be differentiated covariantly and substituted in
(16.10) there is obtained the following condition on the 4’s:

(r9) Q)
(16.11) ﬂ;%l__ a;'gk + ).5?“’ ,_(uq) lgp«) ,_gxq) N

If we substitute (16.5) in (15.7) we see that it will be satisfied if a set of
functions ¢®, p = 1,2,...,s can be chosen so as to satisfy the equations

(®)
(16.12) "’ +@ MNP =

Such a set of functions can be chosen, for in consequence of (16.11) these
equations are completely integrable. This set of functions ¢© will determine
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according to (16.5) a covariant tensor of the kth degree aj...x whose covariant
derivative vanishes.

Hence, a necessary and sufficient condition for the existence of a homogeneous
first integral of the kth degree aj...x which satisfies (15.7) is that there exists
a number N such that the first N systems of equations (16.1) admit a fundamental
set of s solutions (s = 1) which satisfy the (N -+ 1)th system of equations.

17. Special cases. The theorems of the last two sections have some
interesting applications in the linear and quadratic cases. It is natural to
define a field of parallel covariant vectors by means of a set of functions A;
such that

17.1) hij = 0.

For this means that if normal codrdinates are introduced with origin at an
arbitrary point, we have at this point

dhi _ 0hi dy* __
ds ~ 0y* ds

(17.2)

By the third theorem in italics in § 15, a necessary and sufficient condition
for the existence of a field of parallel covariant vectors is the existence of
a function ¢ and vector 4; such that*

0
(17.3) Ai,j = 4, 9y 9 = 8_3—-'

The last theorem of § 15 now shows that a necessary and sufficient condition
for a field of parallel covariant vectors %; is that a covariant vector 4; exist
which satisfies the equations

(17.4) 4,; = 4;9;
(17.5) 4« B = 0,

where ¢; is a covariant vector and 4, ; is the covariant derivative of 4,. The
theorem of § 16 shows that a necessary and sufficient condition for a ﬁeld of

* Eisenhart, Proceedings of the National Academy of Sciences, vol. 8 (1922),
pp. 207-212, defines A as a field of parallel vectors, and finds the condition (17.5) for
their existence.
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parallel covariant vectors is that there exists a number N such that the first N
sets of equations of the sequence

Aa Bijr = 0,
Ao Bt = 0,
(17.6) Ao Biji,iym = 0,

admit a fundamental set of s solutions (s>>1) which satisfy the (N 1)th
set. In particular a sufficient condition is obtained if the first system of
equations of (17.6) be algebraically consistent and all their solutions satisfy
the second system of these equations.

Going now to the quadratic case we see from the third theorem in italics
in § 15 that the condition on the functions I" for the geometry of paths to
become a Riemann geometry is that a tensor g, exist such that

o

The equation (17.7) without the condition that the vector ¢, be the gradient
of a scalar function gives the geometry upon which Weyl bases his electre-
magnetic and gravitational theory, for this equation is equivalent to tke
equation (2.10). By the last theorem of § 15, the condition (17.7) can be
written

(17.8) Yije = 9ij i
(17.9) 9ej B+ 90 BJ“,d = 0.

This shows furthermore that a necessary and sufficient condition for the Weyl
geometry to become the Riemann geometry is that the tensor g,; satisfy (17.9).

The theorem of § 16 shows that a necessary and sufficient condition for
the geometry of paths to become a Riemann geometry is that there exists
a number N such that the first V systems of equations of the following sequence
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admit a fundamental set of s solutions (s=>1) which satisfy the (N -+ 1)st
system of equations:

Yo B?kl+gia Bjo;d =0,
gqi B?kl,m—i_giu B/a'ld,m = 0’

(17.10) Yo; Bia,mn T 9ie Bia,mn = 0

In particular* we have that a sufficient condition for the geometry of paths
to become a Riemann geometry is that the equations

9ej Bia + gie Bjia = 0
be algebraically consistent and that all their solutions satisfy
Goj B?kl,m‘}‘ Jie B;‘kl.m = 0.

18. The homogeneous linear first integral. From the first theorem

of § 15 it follows that a necessary and sufficient condition for the covariant
vector 4; to furnish a linear first integral,

(18.1) ha Z—f = constant,

is that the equation
(18.2) hij+hj,i = 0

be satisfied, i. e., the covariant derivative 4;; must be skew symmetric in the
indices 7 and j. The equations (14.12) show that

(18.3) Rije— Rixj = ha Bij.

* Eisenhart and Veblen, Proceedings of the National Academy of Sciences,
vol. 8 (1922), pp. 19-23.
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By (18.2) these give rise to
hijx+ hxij = he B,
(18.4) hii,j+ hjki = ha B,
hiki+ hijx = ha Biik.
If we add these three equations we obtain
(18.5) hijx+ hj,i - hrij = 0.
Combining (18.5) with the second equation of (18.4), we have also

(18.6) hijk = ha By

These are integrability conditions obtained by consideration of second deri-
vatives. In order to obtain those involving third derivatives we use (13.12),
which with (18.2) gives

Pi, par =+ iy igr = 2ha,q Aipr + 2 ha,r Atpg+ 2ha Afpar.
(18.7) hq,ipr + hi,qpr = 2ha,p Agir + 2ha,r A:ip+ 2he A:ipr;
ho,qir + ha,pir = 2ha,i Apgr+2ha,r Apgi+ 2 he Apgir.

If we add the first two of these equations and subtract the third, we obtain

i, per = he,p qur“‘ ha,q A}’;,,— ha,i A;qr

(18.8)
+ ha,r (Aipg + Agip— Apg) + ha (Afper + Agipr — Apair).
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Now interchange the indices ¢ and » and subtract the resulting equation from
this one. We obtain

(18.9)  he,i Byrg+ ha,p Bigr+ ha,q Bryi+ ke, Byip+ ha ( Bgip,r + Brgi,q) = 0.

If we collect the terms in the equation (18.9) we have

(18.10) hy €+ hy s D = 0,
where
C* = B, (0k 07 8} of + o 8] of of),
D™ = B, (78] o7 o+ o 0T onf + ool of of + of OLo? oF).

C% is a tensor which is contravariant of the first order and covariant of the
fourth, D* is a tensor which is contravariant of the second order and
covariant of the fourth. The covariant indices of these tensors have been
omitted for simplicity. If we differentiate (18.10) covariantly, we obtain

hei €+ ho Cs4 ho gs D + 1y s D = 0,
and this becomes

(18.11) ha,; C* + hy C% 4 hy Blop D + by y D = 0

when we make the substitution (18.6). This equation may be written in an
abbreviated form as follows:

(18.12) he Cf +hy s D = 0.

Covariant differentiation of (18.12) will give rise to a new equation which
can in its turn be abbreviated to the form (18.10), this process requiring the
use of (18.6) to eliminate A, g ,. Continuing in this way we obtain an infinite
sequence of equations. For the purpose of convenient reference we shall
write this sequence with the equation (18.2) as the first member:
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hap+ g, =0,
he C% 4 g s D = 0,

he Cf +hy 3 DI = 0,

(18.13)

he G+ ha p DY = 0,

The algebraic consistency of this set of equations, regarded as equations
for the determination of A; and %, ;, is a necessary condition for the existence
of a first integral A;. Hence as in § 16 there must be a value of N such
that the first N+ 1 sets of equations admit a fundamental set of solutions
EP,KP (p=1,2,...,s) each of which will satisfy the system of equations
next following in the sequence (18.13). This necessary condition turns out
also to be a sufficient condition.

Before proving this in general, let us consider the special case in which
N =1 and s = 1. In this case (18.2) and (18.10) are consistent and
possess a unique algebraic solution consisting of a set of functions 4,
t=1,2, ..., n and a set of functions %Ay, ¢, j = 1, 2, ..., n, which
satisfy (18.11). It may now be shown that the solutions 4; and Ay are tensors,
so that it is possible to substitute these quantities in the equation (18.10)
and differentiate it covariantly. Doing this we obtain

(18.14) hayi C" 4 by €+ hyp,: D + hyg DF = 0.
If we subtract (18.14) from (18.11) with A replacing 4;, j, we obtain

(18.15) (hai — has) C* + (ky Blog— hag,) D = 0.
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In (18.15) the coefficient of D® is skew symmetric in the indices « and 8.
By hypothesis, the solution of (18.15) and (18.2) is unique and consequently

the solution (hg; — hq,i), (h, B{aﬂ — hqp,;) can only differ from the solution
he s heg by a factor of multiplication. Hence

(18.16) hij— hi,j = @; hi,

(18.17) ha Biij— hi j.x = @i hyj,

where ¢@; is a covariant vector. If we differentiate (18.16) covariantly,
obtaining

hij e — hijx = @il +9j hik,

and from this form the expression
(@i — Prj) hi = hije — hak,j + ik j — i, jox =+ Prc hi, j — @ ik,

we find on substituting the equations (18.16) and (18.17) in the right member
of this equation that it vanishes identically. The functions k; are not all
identically zero, for if so it would follow by (18.16) that the functions /; are
also identically zero, contrary to the assumption that (18.2) and (18.10) are
algebraically consistent. Hence

Pk — Pr,j = 0.

The vector ¢; is therefore the gradient of a scalar function ¢, i.e.,

o
dxt”

9 =

Now we shall have a first integral if a function ¥ exists such that

(18.18) (Yhi); = Yhy,
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where (Y h;); denotes the covariant derivative of ywh;. For if this equation
is satisfied, wh; will be a covariant vector satisfying (18.2) and hence will
give a first integral. Expanding (18.18)

0
it Wl — i,

or
(18.19) hij — hi,j = ¥jhi,
where
s
W = Y] and ¥ = logy.

The gradient %; is a covariant vector and consequently (18.19) will be satis-
fied if we put

U= ¢.

Hence, a sufficient condition for the existence of a linear first integral is
that (18.2) and (18.10) be algebraically consistent and that they possess
a unique solution which satisfies (18.11).

Let us now return to the general case and assume that there is a value
of N such that the first N4 1 systems of equations (18.13) admit a funda-
mental system of solutions {”, AP, p =1, 2, ..., s, each of which satisfies
the system of equations immediately following in the sequence. By the same
argument as before, %™ and AP are tensors for all values of p. The general
solution of the first N+ 1 systems of equations is then

(18.20) h, = ¢ KO,
(18.21) hy = ¢@ hgz),

where the terms on the right are summed for & from &« = 1 to « = s. If we
differentiate the equation

(18.22) K "4+ 1 D =0
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covariantly, and subtract it from the equation

(18-23) h(p) Cl +h(l’) — 0’
we obtain
(1829  (hd—hI) "+ Blg—h5 ) D¥ = 0.

If we next differentiate (18.23) covariantly and subtract it from the equation
immediately following in the sequence, we have

(h(p) (p)) c* + (h(p) Bfap h:;) ‘)Dap = 0.
Continuing in this way we obtain the equations

(hed —h) O + (" Blag—hp ) DY = 0,

(h(p)—h(p))C _I_(h(p) B{a,s ggz)pap =0,

The term (h;,p ) B{.,p—hf,’;,’,,-) is skew symmetric in the indices « and 8, and
we may therefore express the quantities (ks — ko)), (hrp " Bl — f,‘;) ;) as

a linear combination of the particular solutions A, b, p = 1, 2,
(18.25) KR P — 19 5

(18.26) WP —nP By = 122 hQ.
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To determine the condition which the covariant vectors lﬁ”

differentiate (18.25) covariantly, vbtaining

must satisfy we

k Kot k )
hg‘;’.q - hs‘n).q l},q) Iz§“’+}.§,“’ (’?q’
or

(k) — 7,0 (ko) 7(ex) (Feer) ) 1 (ko) (7,() (.
(18.27) AP = 1% BE 4 2% B 4 2% b 4 %0 (D 4 2B ).

Ly ')

If we interchange p and ¢ in (18.27) and subtract these two equations we
find that

(18.28) R (a0 — ) gk8) 3Be) — 2(k8) (Be)y = o,
We next differentiate (18.26) covariantly,

k (3 k o a (ko (4 a (73 o
hq('p)' Q,r — h(a,)r Baqip - |' h(a ) qup' r q, r) ('p) | (q ) hl('p: r)
or

k _ k) &) 3( 3 ker) 7, (e
WY o = (W4 3% 1Py BE + ¥ BE |+ %) ()

P, 9.7

(18.29)
-+ 20) () B, + K0 1f)).

Interchanging » and ¢ in (18.29) and subtracting the two equations,

kg‘;) ()';1,:‘) — ),yz) + )'SIkﬂ) )_sﬂa) . lg;p) lgga))
(18.30)

+ 1% (Bgip,r— Byip.¢) + W% Biip+ %) By + b Bl + 1% BE, = 0.
This equation reduces to

(
(18.31) K (4 — 30) | 318) (B 38 (Pe)) = o,
since A, kff) is a solution of (18.9). From (18.28) and (18.31) we now
deduce that

(18.32) A — q8) | 8 2(Pe) — a4A) 2Be) — o,
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for if (18.32) were not satisfied there would be a linear relation among the
solutions 4, 2%, contrary to the hypothesis that A, AP k=1, 2,..., s,
is a fundamental set of solutions.

A linear first integral A; will be determined by (18.20) if ® can be chosen
so that the equations

(18.33) (0@ By, = ¢ 1

are satisfied, where the term on the left is the covariant derivative of ¢ A,
for the covariant vector #; = qJ(“’ B will possess a covariant derivative A; ,
which is skew symmetric in ¢ and p. Expanding (18.33)

8 (“) o o (23
(18.34) T+ 9 (W — 1) = 0.

From (18.25) we find that the condition on the ¢’s can be put in the form

xP

(18.35) 5

+ ¢(a) },g‘ﬂ) = (.

The integrability conditions of (18.35) are the equations (18.32) and hence
a set of ¢’s can be found which will satisfy (18.33).

Hence, a necessary and sufficient condition for the existence of a linear first
integral (18.1) is that the I'’s be such that there exists a mumber N such that
the first N1 systems of equations (18.13) admit a fundamental set of s
solutions (s = 1) which satisfies the (N + 2)nd system of equations.

19. The homogeneous quadratic first integral. A necessary and
sufficient condition for the existence of a homogeneous quadratic first integral

dz® daf
(19.1) I~ gs ds — constant
such that
(19.2) 9i = Gji

is that g;; satisfy the condition

(19.3) 9ii.p + Gip,i + 9pij = 0,
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where gy.p is the covariant derivative of g;. By differentiating (19.3)
covariantly, we obtain

g‘i:paq_‘_gjp:i'q_‘—gpiaj»q = O)
g‘is?tﬂ:r+gjp1irqir+gpi»jy%r = 07

90,078t Ginisa,r,s T+ Ipisj,ars = 0.

By substituting (12.4), (12.5) and (12.6) in these three equations we obtain

(19.4)
(19.5)

(19.6)
where

(19.7)

(19.8)

(19.9)

9ii,pa + Giv,ig + 9rija = Pijpa,
9ij.var + Gin,igr + 9wijer = Pijpgr,

94, pars + Gin,iars 1 Gpi.jers = Pijpgrs,
Pypg = 2(gia Aqu'i’.‘]ja Aziq+9w Agiq),

Pypgr = 2(gie,q Afpr + gje,q A;ir + gpa,q Aglr
+ gia,» A.?pq + i r Agiq + gpa,r Agiq

+ gia A}qur + gje A:n’qr + gpe Agiqr),

Pipers = 2(gie,or Ajps+ Gia,vs Ajpg + gia,sq Ajpr
+ gjegr Aips + Gi,rs Aipg + gje,sq Atpr
+ 9pa,or Afis + gpe,rs Aijq + gpe,s0 Aijr
+ Gia,q Afprs + Gie,r Ajpgs + Gia,s Aiper
+ Gje,q Aiprs + Gja,r Aipgs + gja,s Atper
+ gpa,q Afjrs + gpa,r Aijes + gpa,s Aijor

+ gia Ajpers + g Aipars + gpa Aijars)-
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The P’s are tensors which are symmetric in the first three indices and also
in the remaining ones. Thus

Piyjpg = Pjipg = Pipjg,
(19.10) Pijper = Plipgr = Pijprg ete.,

Pijpers == Pipars = Pijpesr €tc.

The equations (19.4) can not be solved for g;;, 5, but may be solved for the
difference of two of these extensions, namely

1
(19.11) Gipe — e = o (Pijpg + Pijop — Pipgi — Pipgj)-
We may however solve* (19.5) for gij, por, thus

1
Yiper = 3 (Pypar + Pijgpr + Pijrog + Pporij)
(19.12)
1
- F (Piqur + Pimiq+ Piqrjp + Pquir + Pjrpiq+ ijrip)-

Similarly from (19.6)

1 _
Gij,pars =— 3 (Pypars + Pijprs + Pijrogs + Ppgrijs)
(19.13)
1
Y (Pipgjrs + Pirnjgs + Piarips + Pipgirs + Pirpiqs + Piqrips)-

The equations (19.11) and (19.12) constitute integrability conditions arising
from second and third derivatives respectively. By interchanging » and s in
(19.13) and subtracting we obtain the integrability conditions arismg from
the fourth derivatives:

(19.14) (2 Pyraps + 2 Ppgrijs + Pisjer + Pigsjpr + Pispiar + Pigsipr)

- (2Piisqpr+ 2qu8iir+Pimiqs + Piqrjps+Pjrzriqs+ ijﬁpa) = 0.

* The solution is facilitated by noticing that the tensors in the left member of (19.5)
can be regarded as notation for the vertices of a Desargues configuration.

42
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If we substitute the value of Pjjy,rs given by (19.9) in (19.14) we obtain an
equation which we may write in the form

¢
(19-15) Yep U;ﬁqrs + Yap,y V;%s + Gep,ye Wg%rs =0,

where U, V, and W are tensors.
Let us next consider the identity

(19.16) Y., = Gii,pa— 9oi Aipg — gic Ajpq

(cf. (12.4)). The third covariant derivative gj, », ¢,» may be evaluated in terms of
gy and gy, » by setting the value of gy, por given by (19.12) in the identity (12.5):

Gi.par = Yai,p Airg + Gei,q Ajrp + Gei,r Ajgp + 9o, p Arig + gaj,q Arip
+ 9aj.r Agip + Gop,i Agri + Gap, j Agri + Gap,q Afr + gap,r Afiq
+ gag.i Argi+ gaq, j Arpi + gog,p Aijr + gug,» Afip + gar,i Apg
(19.17) + Gor, j Apai + gar,p Afjg + ger, ¢ Aijp — 9ij,« Apar
+ gei (Ajgpr + Afrpa) + 9oj (Agior + Arigp)
+ gap (Aijer + Agrij) + g (Afipr + Apri)
+ gar (Aijpg + Apeiy)-

If we differentiate both members of (19.16) covariantly and substitute for
Gij.pq,r its value from (19.17), we obtain an equation which we may write as

(19.18) Yij.pa,r = YJep Egﬁw + ap,y Fy ggq,;’

where & and F are tensors. Next differentiate (19.15) covariantly, obtaining

9ap,i U “ + Jap U,?g + 9ap y,i v 4 Jap,y v

’

(19.19)
+ 9o ya,i Wdﬂ}'d + 9op, yo W,‘:'pyd =0,
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in which we have omitted the covariant indices for simplicity. When we
make the substitutions (19.16) and (19.18) this equation becomes

9api UL+ 9 U+ (Gup yi— o Auyi — us Agys) V"

(19.20)
+yaﬂ,y + (g;tv ﬂyaz+gpv 7 oz;;/)m) Waﬂyd+ 9B, yo W«ﬂ;/d =0

and may be written in the form (19.15) as

(19-21) Yop Ul + 9ep,y V +9aﬂ yo Waﬂyd = 0.

By covariant differentiation of (19.21) and substitution for gij,»,¢ and gy, pg,r
from (19.16) and (19.18) we again obtain a system of equations of the form
(19.15). Continuing this process we are led to the following sequence of
systems of equations. As in the case of the linear first integral we add to
this sequence the conditions (19.3) and (19.4) and also the symmetry con-
ditions on the ¢'s for the purpose of convenient reference:

Gij,p + Gip,i + 9pii = 0;
Gij.pa t Giv.ia + Goija = 2 (gia A:I?;Jq + gje A;‘n'q + 9pe Ag‘q%

95 = 9ii5 G, = Git,»>  G4,vq = Gii,pas  Fi.pa = Gij,qp>

Jep Uaﬂ+gaﬁ,y Vaﬂy +g¢xﬁ,yc W“ﬂ}’ﬂ' = 0,

9ep U +gaﬁ, V +.9o:ﬂ yo Waﬂyo‘ = 0,

(19.22)

Gop U:p+gaﬂ,y V:py+gaﬂ,yd W:pyd =0,
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The algebraic consistency of the equations (19.22) is a necessary condition
for the existence of a homogeneous quadratic first integral. As in the pre-
ceding cases there must therefore exist a number N such that the first N 41
systems of equations of (19.22) possess a fundamental set of s solutions ggi‘);

93 9ing (@ =1,2,...5) each of which satisfies the (N + 2)nd system of

the sequence. We shall show that this is also a sufficient condition for the
existence of the quadratic integral (19.1).

We first take the case in which N =1, and s = 1. The first two systems
of equations (19.22) then possess a unique solution which satisfies (19.20).
This solution possesses a tensor character so that we may substitute it
in (19.15) and differentiate covariantly, obtaining

9ep,i U + 9ep U,z +gaﬂy 1 157 +yaﬂy V i
(19.23)
+ Yopye,i Waﬂy” +yaﬂy¢ W,‘;ﬂyd = 0.

Subtracting (19.20), into which the solution g;; gijn; giing has been substituted
instead of gy; ij,»; 9uj,pe, from (19.23),

(Gaps—9a) U™ + Gy, i—Gapyi + 9o Aayi + 9ao Agy) V7
(19.24)
+ (Gupyoi — 9w E:;Wi ) F:;;Zai) w7 — 0.

The solution appearing in (19.24) satisfies the first system of equations (19.22)
in the summed indices and is consequently given by

(19.25) Giio — 9o = Pp 94>
(19.26) Gijp.a — Gupq + 9o A?pq + gia Af';q = @q Gijp,

(19.27) Yiipg,r — 9ap Evgqr 9apy Fy aﬂy = Pr Yijpg*
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The covariant vector @; is the gradient of a scalar function, for if we differen-
tiate (19.25) covariantly,

9ij.p.a— Giip.a = Pp,a 95 + Pp ij,q-
Hence,

(19.28) (@p,q— Pa,p) 9ii = Gij,p.a— Gijra.» + Gijo.o— Jiin,a + Pa Fij,p— Pp Gij.a-

If we substitute the values given by (12.4), (19.25), and (19.26) for the
covariant derivatives in (19.28) we find that the right member vanishes iden-
tically. In the left member of (19.28) gi; can not be equal to zero, for if this
were 80 we see from (19.25) and (19.26) that g;j» and gyp, Would also vanish,
which is contrary to the assumption that our equations are algebraically
consistent. Hence

Ppa—Pap = 0,
or

(19.29) .

A homogeneous quadratic first integral (19.1) will exist if a function ¥ can
be chosen so that

(19.30) (Ygij)p = Ygip,

where the left member denotes the covariant derivative of ywg;. If we
expand (19.30) we find that the condition takes the form

dlogy _
(19.31) sap T 9» =0

Therefore (19.30) is satisfied if we put

1)(]= —9,

Hence, a sufficient condition for the existence of a homogeneous quadratic
Jirst integral (19.1) is that the first two systems of equations (19.22) possess
a unique solution which satisfies the third system.
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We return now to the general case and assume that there exists a number N
such that the first (V4 1) systems of equations (19.22) admit a fundamental
set of s solutions ggi‘); i)‘.’g; ggfzq (=1, 2,...,s)each of which satisfies the
(N4 2)nd system of equations. The general solution of the first (N+1)
systems of equations may then be written

(19'32) -qij — (p(“) ggl),
(19.33) Gip = ) 95;?1): ,

(19.34) Jiima = 9 9500,

where the right members are summed for e from ¢ = 1 to @ =s. Let us
substitute the particular solution gi’; ¢ g% in the equations (19.22) begin-
ning with the second system and ending with the (¥4 2)nd. If we then
differentiate each system of equations through the (V4 1)st covariantly, and

subtract it from the system immediately following, we shall obtain the equations

(k) (k) () (k) (k) (k)
(gaﬂ,i - 9aﬂi) U“ﬁ + (.%:ﬂy,i  Japyi + Yap A:yi + Yoo A;yi) Vaﬂy

(k) (k) (k)
+ (gaﬂ’ya,i —Yuy Ef;yvi Yy F, ;‘;;?m) Wap’w =0,

k) k) (k) (k) k) (k)
(gaﬂ,i _gaﬁi) Ufﬂ + (gaﬁy'i " Yepyi + 9ap A:yi + Yoo A;yi) thxﬂy

(k) () (k)
—I' (ya,syo',i_g,uv a;yai —_y;uvy ngai) Wfpyd = 0)

(19.35)

(k) (k) (k) k) . (k) k
(Gupi — Gept) Unts - Gy i — Gugys + Gop Ay + G Ae) Vi

(] (L5 (k) —
+ (gaﬂya,i - g,u: Et':‘;ydi Gy F«f;;?dt) Eaiyla = 0.
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Since the solution which appears in (19.35) satisfies the first (¥ + 1) systems
of equations (19.22), it may be written as a linear combination of the

fundamental solutions gi; 90, 9%, k=1,2,...,s. Hence
(19.36) 9Py = K7 4P,
(1930) gl 90+ 98 Al tglo A = 2 9y,
(k) (k) (k) ko) (@)
(19.38) Gipa.r — v Eg;qr—gmy F, 5;21' =4, y.;‘pq,

the left members of these equations being summed for @ from ¢ =1 to « =s.
To find the conditions which the covariant vectors 4 must satisfy we proceed
in the same way as for the linear integral and thus obtain the equations

y(if) ( ;,gfg) —_ ),(qu) + ),gxr) ),(qyﬂ) - ),sxy) ),g'ﬂ)) =0,
(19.39) g8 (& — KB 4 27 WP — Ko 17Py = o,

‘7(5,),4 ( 1(:5) —_— ;,Sff) + ),(;'J') ;,gyﬂ) — ),gay) ;,(ryﬁ)) =0,
which are summed for 8 from 8 = 1 to 8 = s. It follows consequently that

(19.40) 2B 0B e 0B e ) g

)

for otherwise one of the fundamental solutions could be expressed linearly
in terms of the others.

A homogeneous quadratic first integral (19.1) will exist provided that the
arbitrary functions ¢ in the general solution can be so chosen that

(19.41) (9@ g®), = 9@ g,
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where the term on the left denotes the covariant derivative of ¢ g{. If we
expand (19.41) we find that the quadratic integral will exist if the ¢’s can be
chosen so as to satisfy the equation

(19.42) o

( -
+ ¢2A = 0.

The integrability condition of (19.42) is the equation (19.40) so that a set of
@’s can be found which will satisfy (19.42).

Hence, a mecessary and sufficient condition for the existence of a quadratic
Jirst integral (19.1) is that the I'’s be such that there exists a number N such
that the first (N 1) systems of equations (19.22) admit a fundamental set
of s solutions (s = 1) which satisfies the (N + 2)nd system of equations.
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