
A FUNDAMENTAL CLASS OF GEODESICS ON ANY CLOSED

SURFACE OF GENUS GREATER THAN ONE*

BY

HAROLD MARSTON MORSE

Introduction

1. The study of geodesies on closed surfaces is influenced largely by the

genus of the surface. Of closed surfaces of genus zero an important class has

been studied by H. Poincaré,f namely, those closed surfaces which are every-

where convex. Of the surfaces with genus one, the torus has been studied by

O. A. Bliss,J and it seems probable that the types of geodesies found there

will be found among the geodesies on any closed surfaces of genus one. It is

the object of this paper to consider geodesies on any closed surface of genus

greater than one.

In studying geodesies on a surface of negative curvature, the author§ found

that, of those geodesies which if extended indefinitely in either sense remained

in a finite part of space, any particular one could be characterized in a manner

which depended only upon a succession of fundamental contours of the surface.

Now these surfaces of negative curvature are never closed. The question

accordingly arose, is it possible also on closed surfaces, to characterize the

geodesies in terms of the topographical elements of the surface, that is to

characterize the geodesies of any particular closed surface in terms which

would serve likewise for any other closed surface of the same genus? The

answer to this question was readily seen to be no. However, on surfaces of

genus p > 1, there appeared a fundamental class of geodesies which could be

identified once and for all for all closed surfaces of the same genus. This paper

is devoted to the definition and study of such a fundamental class of geodesies.

The surface is first mapped upon a hyperbolic non-euclidean plane. In the

theory as developed each non-euclidean straight line represents a different

* Presented to the Society, September 8, 1921.

t Sur les lignes géodésiques des surf aces convexes, these Transactions, vol. 6 (1905),

p. 237.
X The geodesic lines on the anchor ring, Ànnals of Mathematics, ser. 2, vol. 4

(1903), p. 1.
§ Recurrent geodesies on a surface of negative curvature, these Transactions,

vol. 22 (1921), p. 84.
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t}rpe of fundamental geodesic and it is with the aid of this representation that

the fundamental class of geodesies is studied.

The surface

2. The surface defined. The surfaces to be considered are to be two-

sided, closed surfaces of finite genus p, p greater than unity. They are to be

without singularities. More specifically we will suppose that the points in the

neighborhood of any point of the surface can be put into one to one continuous

correspondence with the points in the neighborhood of some point in a plane,

in such a manner, that for the neighborhoods considered, the cartesian coor-

dinates, x, y, and z, of a point of the surface, be continuous functions of the

cartesian coordinates, u, v, of the plane, provided with continuous partial

derivatives up to the fourth order, while further

\D(xy)]\ \D(xz)V. \D(yz)f> n
[D(uv)\'r[D(uv)\'r[D(uv)\^

The given surface will eventually be mapped upon the interior of a unit

circle, in a manner that will be one to one and continuous as far as the

neighborhoods of any two corresponding points are concerned, but by a corre-

spondence that will be one to infinity as a whole. With that end in view there

will now be defined a special group of linear transformations of a complex

variable carrying the interior of the unit circle into itself. The method of

definition will be similar to the method used by Poincaré in the article cited

below.* From the "fundamental domain" of this group will be formed

a canonical surface which can be mapped on the interior of the unit circle

in the desired manner, and with the aid of which the given surface can also

be so mapped.

3. The polygon S0. Let there be given a unit circle. In the plane of

this circle let there be drawn a second circle concentric with the unit circle

and with a radius r greater than one. Let p be a positive integer greater

than one. On the circle of radius r let there be placed \p equidistant points.

With these points as centers let there be drawn ip circles orthogonal to the

unit circle. Now let r and the ip circles vary, the 4p circles still remaining

orthogonal to the unit circle and still having their centers equidistant on the

circle of radius r. As r becomes arbitrarily large the ip circles will approach

straight lines passing through the center of the unit circle, and such that

each makes an angle of n — 2n/ip with its successor or predecessor. For

very large values of r there will thus be formed a curvilinear polygon, lying

* Théorie des groupes fuchsiens, Acta Mathematica, vol. 1 (1882), p. 1.



1924] GEODESICS   ON  CLOSED  SURFACES 27

within the unit circle, containing the center of the unit circle, and absolutely

symmetrical with respect to the center of the unit circle (cf. Fig. 1). If r now

decrease from very large values to small values, for some value of r the Ap

circles will become tangent to each other. That is, the interior angles of the

curvilinear polygon will diminish from n— 2n/Ap to zero.  But for p^l

2n       2tx n
n-7>- = -

Ap       Ap 2p

so that for a properly chosen value of r the curvilinear polygon will have

interior angles of the magnitude of nl2p. The sides of this polygon will all

be segments of circles orthogonal to the unit circle and will be equal in length.

The polygon will contain the center of the unit circle and be absolutely

symmetrical with respect to that center.  The unit circle

sum of the interior angles of the polygon will

be 2n. This polygon will be denoted by So

and the corresponding value of r by r0. (Cf.

Fig. 1, for the case p = 2.)

A property of 80 to be used later is that

imong tlie Ap circles bounding S0, alternating

íes do not meet.   Suppose they did meet.

r and the common radius of the Ap circles

_ iould then be increased, the Ap circles still

remaining orthogonal to the unit circle, the

alternating circles would still continue to meet.

Now the interior angles of S0 have a magnitude

ti 12p which is less than nl2 for p^-1. On the other hand if r should be

increased beyond all limit the interior angles of the polygon thereby formed,

say S', would approach n— 2n/Ap which is greater than n/2 for p>\.

Thus for some value of r > r0 the interior angles of S' would be right angles.

Thus of any three successive circles bounding S', the first and last would be

orthogonal to the second and at the same time would be orthogonal to the

unit circle. This is impossible. For two circles orthogonal to two non-tangent

circles which meet, cannot themselves meet.

4. A group with principal circle. The polygon S0 will be used to

define a "group with principal circle." * The Ap sides of S0 will be taken in

one of their two circular orders and labelled as follows:

di oi Ci d\ a, b, c, a,, • • •, ap op Cp dp •

* H. Poincaré, Théorie des groupes fuchsiens, loe. cit. Also L. R. Ford, An introduction

to the theory of automorphic functions, Edinburgh Mathematical Tracts.

8*
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No confusion need arise if the circles bearing these sides be indicated by the

same letters. We will term au conjugate to Ck, and bk conjugate to dk, where k

ranges over the integers from 1 to p. Now a reflection of the plane in the

radical axis of a;c and Ck will carry S0 into itself and carry ak into its conjugate

side ck. On the other hand a reflection of the plane in Ck will carry ck into

itself and S0 into an adjacent polygon bordering S0 along ck. The product of

these two reflections will be a transformation expressible as a linear trans-

formation of a complex variable, and will carry the side ak into the side Ck,

and S0 into a polygon bordering S0 along ck- Similarly there exist linear

transformations of a complex variable which will carry any one of the sides

of S0 into its conjugate, and S0 into a polygon bordering S0 along the second

of these conjugate sides. These transformations and all possible combinations

of them will form a group G. All transformations of this group will carry the

unit circle into itself. Points and regions which are the images of each other

under this group will be termed congruent.

It is here necessary to make a convention, that just one side of each pair

of conjugate sides of S0 shall be considered as belonging to S0, and just one

of /So's vertices. With this understood it may be stated that the set of all

curvilinear polygons congruent to S0 cover the interior of the unit circle once

and only once. About each of the vertices of each of the polygons there will

be grouped áp polygons each with one corner at the given vertex. Each of

these corner regions at such vertices will be congruent to just one corner

in So, and conversely each corner of <So will be congruent to just one corner

at each such vertex. For the proofs of the results of this paragraph the

reader is referred to the literature on the subject.

Nature of the fundamental group

5. Distances between congruent points. The circles orthogonal to

the unit circle may be looked upon as representing the straight lines of

a hyperbolic non-euclidean (written NE) geometry in which the points of the

hyperbolic plane consist of the points interior to the unit circle. If we suppose

the unit circle has its center at the origin of the euclidean plane, the NE length

of any rectifiable curve interior to the unit circle is taken as the value of the

integral

Ç      2ds
J   1-x*—y»

taken along the given curve, and the N E distance between any two points

within the unit circle as the N E length of the N E straight line joining the

two given points.   It is possible to prove directly that the N E length and
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distance as defined by the above integral remain unchanged under any linear

transformation of the complex variable that carries the interior of the unit

circle into itself.

The NE distance between any two congruent points has a lower limit not zero.

It follows from the explicit nature (cf. § 4) of the transformations which

carry S0 into the polygons which are contiguous to S0, that in a sufficiently

small neighborhood of any point of S0, or of its boundary, there are no pairs

of mutually congruent points. Now if the lemma were false, it would be

possible to pick out an enumerable infinity of pairs of congruent points whose

NE distances would approach zero as the enumerating integer n became

infinite. Each of these pairs could be replaced by a congruent pair of which

one member at least might be taken so as to lie in S0 or on its boundary.

N E distances between the two points of any pair would be the same as before.

These points in S0 would have at least one limit point in S0 or on its boundary.

In every neighborhood of this limit point there could be found points which

would be mutually congruent. This, as just stated, is impossible and the

lemma is proved.

6. Nature of the group. The group can contain no elliptic trans-

formations. An elliptic transformation carrying the unit circle into itself

would have one fixed point within the unit circle and one without. Now there

are in every neighborhood of a fixed point of an elliptic transformation points

which are mutually congruent under the transformation. This is here im-

possible according to the result of the preceding section.

The group can contain no parabolic transformations.

To establish this fact it will be convenient to carry the interior of the unit

circle into the upper half plane by means of a linear transformation of the

complex variable.  The integral

f      2ds

will go over into the integral

Jds
y '

If now the points above the axis of reals be considered as the points of

a hyperbolic NE plane, the circles orthogonal to the axis of reals as the straight

lines of this geometry, and the value of the integral I (1/y) ds taken along

any curve segment in the upper half plane as the NE length of that curve

segment, then any curve segment within the unit circle may be considered as
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unchanged in NE length by the transformation from the unit circle to the

upper half plane.

Corresponding to the fundamental group carrying the unit circle into itself

there will exist a transformed group carrying the upper half plane into itself.

If the first group had a parabolic transformation the transformed group would

have one also. Now any parabolic transformation, say T, which carried the

axis of reals into itself would have its fixed point on the axis of reals. Suppose

now the upper half plane be carried into itself and thereby the group be still

further transformed in such a manner that the fixed point of the parabolic

transformation T goes into the point at infinity. N E distances would thereby

be unchanged but the original parabolic transformation would now be trans-

formed into a translation parallel to the axis of reals through a euclidean

distance, say d. A point, no matter how remote from the axis of reals,

would still be carried by this parabolic transformation through this euclidean

distance d. If sufficiently remote, however, from the axis of reals, the N E

distance between two such congruent points is seen with the aid of the integral

/ds
y

to be arbitrarily small. This is contrary to the result of the preceding section.

Thus the group can have no parabolic transformations.

Now the only linear transformations of a complex variable which carry the

interior of a circle into itself are either elUptic, parabolic, or hyperbolic.

Hence all the transformations of the group are of the hyperbolic type.

7. A lemma on polygons near the unit circle. The N E distance

between any two points of S0 has an upper limit. The same upper limit

necessarily holds for distances between any two points on any one of the

congruent polygons. Accordingly a polygon which has any point sufficiently

near the unit circle will be arbitrarily small in its euclidean dimensions, for

otherwise its N E dimensions as measured by the N E integral

Ç      2ds
J  l-x'-if

would become arbitrarily large. The polygons accordingly cluster about each

point of the unit circle.

The following lemma will now be proved.

Lemma. If a polygon lie sufficiently near the unit circle, all of its bounding

circles, with the possible exception of one of them, will be arbitrarily small.
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Denote by 0 the center of the unit circle. Let A and B be two points on

the unit circle at the extremities of a diameter. Let abe a small positive

constant. Consider all the radii through 0, except those that make an angle

with O A numerically less than d. Now let 0 move along AB towards B.

At the same time let each of the radii not excepted be replaced by an arc of

a circle orthogonal to the unit circle, and drawn from O to the unit circle so

as to make the same angle with O A as the radius to be replaced. Denote this

pencil of circles through O by C. If O move along AB to a point sufficiently

near B, it is obvious that the circles of the pencil C just described will become

arbitrarily small.

To prove the lemma consider the 8p radii which pass from the center O

to the points on the unit circle where the circles bounding the polygon ¿So

(cf. § 3) meet the unit circle. Denote this set of radii by B. Let d, the con-

stant of the preceding paragraph, here be a positive quantity less than half

the magnitude of the angle between any two successive radii of the set R.

From the result of the preceding paragraph it follows that if O and ¿So be

carried by a transformation of the group respectively into a point 0' and

a new polygon sufficiently near the unit circle, then the set of circular segments,

say C", into which the radii of the set B are transformed will all be arbitrarily

small except any of them which make an angle with O' O of magnitude less

than d. But from the choice of d there will be at most one circle of C making

an angle with O'O of magnitude less than d. Now the circles bounding the

transformed polygon and the circles of the set C" will intersect the unit circle

in the same points, and accordingly, with the possible exception of one of

them, each of the circles bounding the transformed polygon will meet the unit

circle in two arbitrarily near points, and being orthogonal to the unit circle

will consequently be arbitrarily small.

8. Fixed points of the transformations of the group. The dis-

tribution of the fixed points of the transformations of the group will now be

considered.

(a). Let T be a transformation of the group. T is hyperbolic, and accord-

ingly has two fixed points on the unit circle. Let A and B be two points on

the unit circle not the fixed points of T, and let A' and B' be respectively

the images of A and B under T. It follows from the nature of a hyperbolic

transformation that in case the fixed points of T separate A and B, ABA'B'

will appear on the unit circle in the circular order ABB''A', and that in the

contrary case they will appear in the order ABA'B' or else in the order

AA'BB'.

(b). Consider any two conjugate circles of the circles bounding the polygon S0.

Suppose the first of these two circles meets the unit circle in the points A andi?

and the second of the two circles meets the unit circle in the points A' and B'
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where A is congruent to A' and B to B' (cf. Fig. 1). According to the result

of § 3 no two conjugate circles intersect. A reference to the explicit de-

scription of the transformations which carry any circle bounding S0 into its

conjugate (cf. §4) will now show that ABB'A' appear on the unit circle in

the order ABB'A'. After subjection to any other transformation of the group

the circular order of these four points will still be the same.

With the aid of the results of the preceding paragraphs (a) and (b) the

following lemma can be proved. This lemma will be used to show that among

the geodesies considered the types that correspond to closed geodesies are

everywhere dense in a sense to be explained later.

Lemma. There exists a transformation of the group which has fixed points

arbitrarily near the end points of any ^reassigned arc of the unit circle.

Let Mx and M2 be the end points of a preassigned arc of the unit circle.

Let e be an arbitrarily small positive constant less than half the distance

between Mx and M2. According to the lemma of § 7, it is possible to choose

a polygon Sx so near ML that all of its bounding circles with the possible

exception of one of them will lie within e of Mi. Let S2 be a second polygon

similarly chosen relative to M2. Since p >■ 1 and the number of pairs of con-

jugate sides of a polygon is 2p, Sx and £2 each have at least four pairs of

conjugate sides, and on both *Si and St at least three of these pairs of con-

jugate sides lie entirely within e of Mx and M2 respectively. It is accordingly

possible to choose a side of Sx such that its intersections with the unit circle,

say Ax and Blt and the intersections of its conjugate side with the unit circle,

say Ax and Pi, lie within e of Mlf while at the same time the four points

A2B2 A2 B2 corresponding to Ax Bx A[ B[ under the transformation of the group

that carries #1 into S2 also lie within e of M2.

According to the choice of e, the e neighborhood of Mx is entirely distinct

from the e neighborhood of M2. Accordingly AxBxA2B2 have either the

circular order At Bx B2 A2 or else the circular order Ax Bx A2 B2. In the first

case it follows from the result of paragraph (a) that the transformation of the

group that carries Ax Bt into .á2 B2 will have one of its fixed points on the

arbitrarily small arc between Ax and Pi and the other fixed point on the small

arc between A2 and B2, and the theorem is proved for that case.

Consider the second case. Here Ax Bx A2 B2 appear in the order Ax Bx A2 B2.

According to the result of paragraph (b) Ax Bx B'x A[ always appear in the

circular order Ax Bx B[ A[. It follows that in this second case A2 B2 B[ A[

appear in the order A2 B2 B[ A[. Using again the result of paragraph (a), the

transformation of the group which carries A2 B2 into A'x B'x is seen to be one

which has one fixed point on the small arc between A2 and B2 and the other

fixed point on the small arc between A[ and Pi, and the lemma is proved for

the second case as well.
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THE GIVEN SURFACE  MAPPED  ON THE UNIT  CIRCLE

9. Definition of the correspondence. Let a closed surface be formed

from ¿So by continuously deforming ¿So so as to bring congruent points of con-

jugate sides into coincidence. ¿S0 has 2p pairs of conjugate sides. Hence the

resulting closed surface, say T, will be of genus p. Each point P of T will

arise from one point P0 of So. The correspondence between T and ¿S0 can be

extended over the interior of the unit circle by requiring that P shall not only

correspond to P0, but also to all points of the unit circle congruent to P0.

The correspondence thereby established between the interior of the unit circle

and T is everywhere continuous and one to one as far as the neighborhoods

of corresponding points are concerned, but one to infinity as a whole.

Now by a fundamental theorem of analysis situs any two closed two-sided

surfaces of the same genus can be put into one to one continuous corre-

spondence. The original surface, say 2 (cf. § 2), can then be put into one to

one continuous correspondence with that one of the above surfaces T which

has the same genus as does 2. The surface 2 will thereby be mapped on

the interior of the unit circle in a manner essentially the same as the manner

in which T has just been mapped upon the interior of the unit circle.

10. Surface distances and NE distances. In contradistinction

to NE lengths and distances, surface lengths and distances will now be

defined.

Definition. If a curve segment h within the unit circle corresponds on the

original surface to a curve segment k that is rectifiable, the ordinary length

of k will be termed the surface length ofh. Before defining the surface distance

between two points within the unit circle the following lemma is needed.

Of the curves within the unit circle joining any two non-coincident points, there

is at least one which corresponds on the original surface to a geodesic segment

whose surface length is at least as small as that of any other curve joining the

two given points. This lemma is essentially equivalent for the case of geodesies

to Hilbert's a priori existence theorem of the calculus of variations.* A method

which can be used without any essential change to prove this lemma is given

by G. D. Birkhofft for a similar problem in the article cited below.

Definition. The lower limit of the surface lengths of curves joining two

given points within the unit circle will be termed the surface distance between

these two points. The surface distance between two given points will be

denoted by Dg while the N E distance between the same two points will be

denoted by Dn.

* Cf. Bolza, Vorlesungen über Variationsrechnung, 1909, p. 428.

t Dynamical systems with two degrees of freedom, these Transactions, vol. 18 (1917),

§ 9, p. 219.
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Lemma 1. Corresponding to a positive constant a there exists a positive

constant b such that any pair of points interior to the unit circle for which

Dg < a

will be such that

Dn<b.

Any pair of points whose surface distance is at most a can be replaced by

a congruent pair of which one member lies on S0 and the other on the closed

region consisting of all points whose surface distance from points of S0 and

its boundary is at most a. These new pairs will moreover have the same

surface distances as the original pairs. But the N E distances between any

two points lying on a closed region are all less than a properly chosen con-

stant which we may take for b. The lemma thus is proved.

Lemma 2. There exist constants A and m such that for any pair of points

interior to the unit circle, if either

Dn>A,

or

Dg>A,

then

Dn^mDg.

Let there be given two points whose surface distance is Dg. Starting from

one end of a geodesic of surface length Dg joining the two given points, let

there be marked off segments of surface length equal to the constant a of

Lemma 1. The line will thereby be divided into not more than

a

parts. According to the preceding lemma there is between the end points of

each of these parts an NE distance less than the constant b. The NE distance

between the end points of the geodesic is accordingly less than

if-^ + ll.
La J

A^-A+fc.
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If then

(2) Dg>b

(1) becomes

Dn<~-Dg + Dg
a

or

(3) A,<(! + l)iV

Setting

-\-l = m
a

we have

(4) Dn<m-Dg

subject to the condition (2). Now (1) holds unconditionally, and shows

that Dg becomes infinite with Dn, so that the condition (2) will be fulfilled if

for a sufficiently large constant c

(5) Dn>c.

As seen now (4) holds if either (2) or (5) holds. Taking A as the larger of

the constants b and c, and m as the constant m of (4) the inequalities of the

lemma accordingly follow.

It may be observed that there is a large degree of reciprocity between Dn

and Dg. In fact the two preceding lemmas and their proofs will remain true

if the terms N E distance and surface distance be interchanged together

with Dn and Dg. Lemma 2 and the lemma obtained by interchanging Dn

and Dg in Lemma 2 may be combined into the following fundamental lemma:

Lemma 3. If either the N E distance or the surface distance between two

points exceeds a properly chosen constant, then the N E distance lies between

two positive constant multiples of the surface distance, and the surface distance

lies between two positive constant multiples of the N E distance, where the con-

stants involved are fixed once and for all for the whole unit circle and surface.

11. Proof of Lemma 7. The question arises, do there exist geodesic

segments which recede arbitrarily far from the NE straight lines joining their

end points and which still have a surface length as small as that of any other

geodesies joining their end points? This question is answered in Lemma 8.

This section is devoted to proving Lemma 7 which is the principal aid in

proving Lemma 8.
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A slight modification of the proof of Lemma 2 will serve to establish the

following lemma. The constants b and m of the following lemma are the con-

stants b and m used in Lemmas 1 and 2.

Lemma 4. There exist constants b and m such that, if a geodesic segment

has a surface length g for which g> b, then the end points of this segment can

be joined by a curve all of whose points lie within anNE distance b of the given

geodesic segment, and wiiose NE length, v, is such that

v < mg.

Lemma 5. Corresponding to a positive constant ft there exists a positive

constant B so large that if all the points of a curve segment h are «ianNE

distance B from some NE straight line, L, and the end points of h project

through NE perpendiculars into the end points of a segment of L, say k, of

more than unit length, then h has an N E length exceeding (i times the N E

distance between its end points.

The locus of points at a constant N E distance from L is a circle meeting

the unit circle in the same points as does L. The segment h lies on this circle.

To simplify the proof let the interior of the unit circle be carried into the

upper half plane by a linear transformation which carries the end points of L

respectively into the origin, O, and the point at infinity.  This can be done,

as in § 6, without altering

any NE distances. L will

go into an ordinary straight

line, L', perpendicular to the

axis of reals at the origin

(see Fig. 2). The transform

of k, say k', will lie on this

line. The circle on which h

lies will go into an ordinary

straight line through the

origin making an angle with

the axis of reals which we

denote by a, measuring the angle from the axis of reals in the counterclock-

wise direction. We may suppose further that « < n/2, since that could be

brought about without altering any N E distances by a reflection of the upper

half plane in L'. The transform of n, say h', will lie on this line, making an

angle « with the axis of reals. The N E perpendiculars from the end points

of h to those of k will go respectively into two arcs, say a' and V, of two

circles both with center at the origin and leading from the end points of h'

to those of k'.  To compute the NE length of a', V, h!', and k', suppose the

Fig. 2.
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plane referred to polar coordinates q and q> with pole at the origin. Denote

by Qi the value of q at the lower end point of k', and by q, its value at the

upper end point.  The polar coordinates of the end points of h' will be ($>i «)

and (q, a). The NE length of k' as evaluated through the integral I (dsly) is

(1) f^=logÜ-.
J    Q Qi
I h

The N E length of //, along which q> equals the constant «, is

(2)
J    Q SHI a (»i     sin a
pi

The N E lengths of a' and b' are the same, namely

(3) K .       = log cot—,       0<«<-s-.
Pi sin ?) 2 ' 2

It is desired to show that if the end points of h' be joined by the broken

line a' k' V', there results a curve whose N E length has a ratio to the N E

length of h' that approaches zero as R becomes infinite. The ratio of the NE

length of the broken line a' k' b' to that of h! is

2 log cot-+ log^
_f_Qi_

log^
Qi

sin« =

2 log COt y

log
Qi

+1 sin«,

Now by hypothesis the NE length of V, namely log (q2/qi), is greater than

one, so that the above ratio is less than

(4) 21ogcot—+1) -sin«,

R, the length of a' or b', is given by (3) and becomes infinite only if a

approaches zero.   But as a approaches zero the expression (4) approaches
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Unit circle

zero, so that for B sufficiently large the NE length of h! will certainly

exceed ¡i times the N E length of the broken line a' k' V joining the end points

of h', and hence the N E length of h! will exceed fi times the shortest N E

distance between the end points of h', as was to be proved.

Definition. Let k be any curve segment within the unit circle. The N E

distance between the end points of k will be denoted by Dn(k), and the surface

distance between the end points of k will be denoted by Dg (k).

Lemma 6. Corresponding to positive constants b and m there exists a positive

constant r so large that if a curve segment, v, has its end points at an NE

distance rfrom some N E straight line L, if further

all of v's points are at an N E distance from L

exceeding r — b, and if v projects into a segment

ofL whose NE length exceeds unity, then Me NE

length of v exceeds m times the N E distance

between v's end points.  (See Fig. 3.)

Denote by k a curve segment projecting

through N E perpendiculars into the same seg-

ment on L as does v, and consisting further of

points all at an NE distance r—b from L.

Let the N E length of v and k be denoted also

by v and k respectively. We seek to prove that,

for r sufficiently large,
Fig. 3.

(1) v > m • A (v),

To that end we shall obtain inequalities connecting v with k, k with A (k),

Dn{k) with Dn(v), and by combining these inequalities obtain the inequality (1).

By the aid of the construction of the preceding proof it is seen that

v>k.

Taking the constant /* of the preceding lemma as here equal to m + 1 it

follows from that lemma that if r—b, and hence r, be sufficiently large,

k>-Dn(k)-(m + l).

The two ends of v project into the two ends of k through N E perpen-

diculars to L, say H and H' respectively. Now the end points of v can be

joined through the mediation of k by joining the first end point of v to the

first end point of k, tracing out that segment of H that lies between these two
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points, following this segment by tracing out the N E line joining the end

points of k and proceeding finally to the second end point of v by tracing out

that portion of H' which lies between the second end points of v and k. In

accordance with one of the hypotheses of this lemma the portions of H and PL'

thereby traced out are each of N E length b, so that the whole broken curve

thus traced out will have an N E length 2 b + Dn (k). This length will be at

the least Dn (v), since Dn (v) stands for the shortest N E distance between

the end points of v. Thus

2b + Dn (k) > Dn (v) or Dn (k) ^ Dn (v) — 2b.

Combining the preceding inequalities we have

(2) v>(m-\- \)[Dn(v) — 26] = (m + l)D„ (v) — (m + \)2b.

Now as r becomes infinite Dn (v) will do likewise, and, for all cases in

which the segment v projects on L into a segment of at least unit N E length,

Dn (v) will become infinite uniformly with r. Suppose r so large therefore that

(3) Dn(v)>(m + l)2b.

Adding (2) and (3) we have

v>m- Dn(v)

with the condition simply that r be sufficiently large. The proof is accordingly

complete.

Lemma 7. There exists a constant r such that if all the points of a segment

of a geodesic g are ai an NE distance at least r from some NE straight line L,

if further the end points of the geodesic segment g are exactly at a« NE

distance r from L, and if g projects in the NE sense into a segment of L of

more than unit NE length, then the surface length g of the given geodesic

exceeds the surface distance between its end points.

It is required to prove that for r sufficiently large

(1) 9>Dg(g).

Now as r becomes infinite Dn (g) will also become infinite. It follows from

Lemma 3 that Dg (g) will do likewise, so that according to Lemma 4 there

exist positive constants b and m such that if r exceed a properly chosen
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positive constant the end points of g can be joined by a curve v whose points

are each within an N E distance b of g and whose N E length v is such that

mg > v.

We now have a relation between g and v. We shall obtain a relation

between v and Dn («), an<l a relation between Dn (v) and Dg (v). Combining

these relations (1) will be obtained.

If r exceed a second constant so large that A (v) exceeds the constant

required for the application of Lemma 3, we will have

Dn(v)>ADg(v),

where A is a positive constant. If further r exceed the positive constant

required for the application of Lemma 6 for the case where the m of Lemma 6

equals ml A, then in addition to the preceding inequalities there will also

result the inequality

v > -j Dn (v).

If the above inequalities be combined there results the inequality

g > Dg (v),

subject simply to the condition that r exceed a properly chosen constant.

A FUNDAMENTAL CLASS OF GEODESICS

12. Geodesies of Class A. Definition. A geodesic segment h will

be said to be of Class A, if, on the original surface, h is at least as short as

any other rectifiable curve joining A's end points and capable of being con-

tinously deformed on the surface into h without moving its end points. An

image of a geodesic segment of Class A on the hyperbolic plane for simplicity

also will be termed a geodesic segment of Class A. The definition of geodesic

segments of Class A reduces in the hyperbolic plane to the following. An image

of a geodesic segment within the unit circle is of Class A if its surface length

is at least as small as that of any curve joining its end points and possessing

a surface length. An unending geodesic will be said to be of Class A if each

of its finite segments is of Class A.
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Lemma 8. There exists a positive constant R, so large, that within the unit

circle, no segment of a geodesic of Class A can recede an NE distance greater

than R from the NE straight line joining its end points.

Denote the given geodesic segment by g, and the NE straight line joining

its end points by L. Consider the constant r whose existence is affirmed in

Lemma 7. If g has points at more than r NE units from L, let P' be such

a point. Let P and Q be the first points following and preceding P, respectively,

that are at an NE distance r from L. If the segment PQ projects through

NE perpendiculars into a segment on L of more than unit NE length, it

follows from Lemma 7 that the surface length of the segment PQ exceeds

the surface distance between P and Q contrary to the hypothesis that the

given geodesic segment is of Class A.

If on the other hand the segment PQ projects into a segment on L of unit

N E length or less than unit N E length, while P and Q are at an N E distance r

from L, the N E distance between P and Q will be at most 2 r + 1, and hence

the surface distance between P and Q will in all cases be inferior to some

positive constant, say d. Since g is of Class A the surface distance between

P' and P is at most that between Pand Q, or at most d. It follows from

Lemma 3 that the N E distance of P' from P is always less than some con-

stant, say q. Hence P' is in all cases at most at NE distance r-\-q from L,

and the theorem is proved.

13. Unending curves of the same type. A definition will presently

be given of what is meant by two unending curves being of the same type.

This definition will be an extension of the definition of what is meant by two

closed curves being mutually deformable. We begin accordingly by considering

closed curves. A curve continuously deformable into a point either on the

given surface or on the unit circle, will have an image deformable into a point

on the other. A closed curve, say h, not deformable into a point on the given

surface, if traced out just once will have as images on the unit circle an infinite

number of curve segments whose end points are congruent, non-coincident

points.  Let A and B be respectively the end points of one of these images.

A is congruent to B under a certain transformation T. The set of all points

within the unit circle congruent to A under T and its inverse all lie on a circle

through the fixed points of T and cluster in the neighborhood of these fixed

points. The set of all segments congruent to AB under T and its inverse join

up these points congruent to A so as to form a single curve passing from one

fixed point of T to the other. An unending curve such as this, consisting of

an unending succession of segments all congruent under the same trans-

formation of the group, will be called a periodic curve. Traced out in either

sense such a curve corresponds on the original surface to a closed curve

traced out an infinite number of times.

4
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It follows from the fact that the correspondence between the surface and

unit circle is one to one and continuous as far as the neighborhood of corre-

sponding points is concerned, that if the given closed curve, h, be con-

tinuously deformed on the surface, then the image AB will vary continuously

through corresponding points, A and B always remaining congruent under

the same transformation. At the same time the variation of the complete set

of points congruent to A under T and its inverse is one in which the circle

on which these points lie turns about the fixed points of T while the points

themselves vary continuously on the circle in such a manner as to remain

always congruent under T. Thus two closed curves which on the original

surface are not deformable into points, but which are mutually deformable

into each other, will correspond within the unit circle, among other images,

to pairs of periodic curves with end points at the same points on the unit

circle. For the sake of completeness the following is added. Two curves

which correspond to two periodic curves within the unit circle with the same

end points on the unit circle and with successive portions congruent under

the same transformation of the fundamental group, are mutually deformable

on the original surface.

Definition. Two unending curves within the unit circle will be said to be

of the same type if there exists a positive constant C such that every point of

either curve has an N E distance from some point of the other less than C.

Two unending curves on the original surface will be said to be of the same

type if among their respective images on the unit circle there are at least two

curves of the same type.

Two circular arcs within the unit circle are of the same type if their end

points on the unit circle are the same, and of different types if either of their

end points are different. Every circular arc with two end points on the unit

circle is thus of the type of the NE straight line with the same two end points

on the unit circle. Only those curves will be considered which are of the types

o/NE straight lines. There is thereby included a type for every periodic

curve, that is, curves which correspond on the original surface to closed

curves. Future developments will still further show the inclusiveness of

types of curves as restricted to NE straight lines. From Lemma 3, it follows

that N E distance and surface distances become infinite together uniformly.

Accordingly if two unending curves are of the same type there exists a con-

stant D such that every point of either curve has a surface distance less

than D from some point on the other curve. It is not difficult to show that

if on the original surface two curves are closed and mutually deformable they

have for their images on the unit circle an infinite number of pairs of periodic

curves of the same type. It is in this sense that the property of two curves

being of the same type is an extension of tJie property of two curves being
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mutually deformable. The definition of what is meant by two curves being of

the same type will be given in the following paragraph more in the spirit of

analysis situs. The statements of the following paragraph will not be proved

as they will not be used later.

Let the given surface, p~^\, be cut so as to form a single simply-con-

nected piece S. Let there be provided an enumerable infinity of copies

of S each spread over the original surface in exactly the position in which

they were before the surface was cut. Without altering the position of any

of these copies of S, these copies of ¿S can be successively joined in a manner

analogous to the way in which the congruent polygons of the unit circle were

joined, so as to "heal" up all of the cuts and to form an infinitely-sheeted,

simply-connected, unbounded surface, say M, the neighborhood of each point

of which will consist on M of an exact copy of the neighborhood of the point

which is overhung on the original uncut surface. Two curves of if could now be

defined as being of the same type if there exists a positive integer n, so large,

that any point of either curve could be joined to some point of the other curve

by a curve which has points in at most n of the copies of S making up M.

From this definition it could be shown that two curves of the same type on the

given surface will correspond, on any surface which corresponds to the given sur-

face in a one to one continuous manner, to two curves again of the same type.

14. Existence of geodesies of Class A. An image on the unit circle

of a geodesic on the original surface will be spoken of as a geodesic on the

unit circle. By an element is meant a point and a direction through the point.

By an element on a geodesic on the surface is meant a point on the geodesic

together with a direction tangent to the given geodesic at the given point. By

an element on a geodesic on the unit circle is meant a point P within the unit

circle on such a geodesic, together with the direction of a tangent to the

original geodesic at the point on the original surface corresponding to P. In

either case an element may be represented by the coordinates x, y of its

initial point in the unit circle, together with the direction cosines a, b, c of

the direction tangent to the original geodesic on the surface. The element

may be considered as represented by a point (xyabc) in five dimensions.

A set of elements will be said to have a limit element (x0 yo Oo b0 c0) if the

corresponding points in five dimensions have a limit point (xo yo Oo b0 c0).

With these conventions the following definition is given.

Definition. A geodesic G will be said to be a limit geodesic of a set of

geodesies M not containing 0, if every element on Q is a limit element of

elements on geodesies of the set M.

An element will be said to be on an NE straight line in the unit circle if

its initial point P is on the NE straight line, and if its direction is the direction

of a tangent to the NE straight line at P.

4»
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Lemma 9. If a geodesic is a limit geodesic of a set of geodesies of Class A,

it is itself of Class A.
Let H be an image of the limit geodesic within the unit circle. If H were

not of Class A, it follows from the definition of geodesies of Class A, that

H has some segment, h, whose end points can be joined by a curve k whose

surface length k is less than the surface length h of the segment h.  Set

k = h — e.

On the other hand, if the given geodesic is a limit geodesic of geodesies

of Class A, it follows, from the property of continuous variation of a finite

geodesic segment with its initial point and direction, that there exists a geo-

desic segment m, of Class A, with end points within e/4 of those of h, and

with a surface length m, such that

Now the end points of m can be joined through the mediation of k by first

passing from one end point of m to the nearer end point of k, passing thereby

along a curve which can be taken so as to have a surface length less than e/4;

thence passing along k to k's other end point, thereby passing over an

additional surface length of A — e; finally passing from the second end point

of k to the second end point of m along a curve taken so as to have a surface

length less than e/4; in all passing over a curve of surface length less than

h—(e/2), that is, over a length less then that of m. This is impossible if m be

of Class A. Thus the lemma is proved.

Theorem 1. Corresponding to awvNE straight line, there exists at least

one geodesic of Class A of the same type. Conversely, every geodesic of Class A

is of the type of some one NE straight line.

Let there be given an NE straight line L. Let

• • •   P—2 P— 1 Po Pi P2

be an unending succession of points on L which follow each other on L in

the order of their subscripts, and which with increasing subscripts approach

one end point of L on the unit circle, and with decreasing subscripts approach

the other end point of L. Within the unit circle let P-n be joined to Pn by

a geodesic of Class A, say gn. According to Lemma 8, gn will have at least

one point, say Qn, within an NE distance R of P0.   Let P» be the geodesic
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element on gn at Qn. The elements En will have at least one limit element, E.

Let G be the geodesic within the unit circle bearing the element E. G will

be shown to be of Class A, and to be a curve of the type of the given N E

straight line.

If any finite segment of G be given, it follows from the definition of G,

that there can be found among the segments g„, one which possesses a sub-

segment lying arbitrarily near the given segment of G, not only in position

but also in direction and length. A repetition of the proof of the preceding

lemma will suffice to show that the given segment of G is of Class A, as was

to be proved.

Every point of the segments^» lies within an NE distance R of some

point of L (cf. Lemma 8). All the limit points of the points of the segments gn,

including the points of G, accordingly lie at most at an NE distance R from

points of L. G thus lies in a region bounded by the two circles at an N E

distance of R from L. Any two such circles and L meet the unit circle in

the same two points. G passes from one of these points to the other. From

this it is obvious that each point of L, also, lies at most at a distance R from

some point of G, and G is thereby proved to be of the type of L.

To prove the converse proposition let G be a geodesic of Class A, within

the unit circle, and let

■ • • P—2 P-l Po Pi P2

be a set of points appearing on G in the order of their subscripts, and so

chosen that their surface distances from P0 increase beyond all limit as n

becomes infinite in absolute value. Denote by hn an N E straight line joining P»

to P-». At least one point of hn, say Qn, will be at an NE distance from P0

not greater than the constant R of Lemma 8. Denote by En, the element on hn

at the point Qn. The elements En will have at least one limit element, say E.

The NE straight line, L, through E, will be shown to be of the type of G.

Let P be any point on G. Let m be the smallest value of n such that all

segments P-nPn for which n> m include the point P. For n>m there is

a point An on each hn which is within an NE distance R (cf. Lemma 8) of the

point P. But as n becomes infinite the points An will have at least one cluster

point which, according to the definition of L, will lie on L. This cluster point

will be at most at an NE distance R from the given point P of G. G thus

lies within the band consisting of all points within an NE distance R of L.

G and L will accordingly be of the same type, and the theorem is completely

proved.

As just stated, a geodesic of Class A lies within a band consisting of all

points within an N E distance R of the N E straight line of the same type.

This constant R is the constant of Lemma 8, and is entirely independent of
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the particular geodesic of Class A that is considered. Combining this fact

with the fact given in Lemma 3, that N E distances and surface distances

become infinite together uniformly for the whole unit circle, we have the

following theorem:

Theorem 2. Tliere exists a positive constant D, fixed for all types of geo-

desies of Class A, such that no geodesic of Class A, and N E straight line of the

same type, can recede either a surface distance or an N E distance exceeding D

from each other.

15. Intersecting and asymptotic geodesies of Class A.

Theorem 3. Two geodesies of Class A can intersect at most once within the

unit circle.

If two such curves, G and H, intersected twice in two points, A and B, the

portions, g and h, respectively, of G and H, between the points A and B,

would have the same surface length. For if, for example, A were shorter

than g, G could not be of Class A, as follows directly from the definition of

curves of Class A. But g and h cannot have the same surface length. For

consider a segment k of G large enough to contain the segment g as an interior

segment. If the surface length of g equaled that of h, k would be unaltered

in surface length if its subsegment g be replaced by the segment h. But the

curve so obtained would have corners at A and P, and so could be shortened,

contrary to the fact that k is of Class A, and hence could not be shortened.

Thus the theorem is proved.

A geodesic of Class A within the unit circle passes from one end point of

the N E straight line of the same type, to the other such end. Hence the

theorem:

Theorem 4. If two N E straight lines have both end points distinct, the

corresponding geodesies of Class A of the same type cross or do not cross each

other within the unit circle, according to whether or not the given NE lines

cross or do not cross each other.

If two N E straight lines have one end point on the unit circle in common,

the minimum N E distance from a point P on either to a point on the other

approaches zero as the point P approaches the common end point. The

N E straight lines are termed asymptotic. A direct result of Theorem 2 is

accordingly

Theorem 5. If two geodesies of Class A are respectively of the types of two

asymptotic N E straight lines, as they approach the common end point on the

unit circle of the given N E straight lines, they come and remain within a finite

surface distance of one another.

Theorem 6. No two geodesies of Class A which are asymptotic can intersect

within the unit circle.

Let a and b be two geodesies of Class A which are asymptotic.
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Choose as the positive senses of a and b the senses in which a and b are

asymptotic. Suppose the theorem were false and that a and b did inter-

sect in a point O (cf. Fig. 4). Now

any broken geodesic which contained

any one of the corners formed by

a and b together with a segment of

a or & on either side of O of at least

unit surface length could be replaced

by a curve joining its end points and

with a surface length smaller by at

least a positive constant e.

By hypothesis a and b are asymptotic. Accordingly it will be possible to

find two points A and B, on a and b, so remote in the positive senses of

a and b that they can be joined by a curve whose surface length AB is less

than el A:

AB<^.
A

Observe that the surface length of the segment A O of a cannot differ from

that of B O on b by el A or more, for otherwise the larger of the two seg-

ments AO and BO, say AO, could be replaced by a broken curve of shorter

surface length, namely ABO. Hence, in particular,

BO<AO-\--^.

Now let A' be any point on a, at least a unit surface distance beyond O in

the negative sense. The segment A O A' of a can be replaced by a segment

of shorter surface length. For adding to the two preceding inequalities the

equality

O A' = O A',

we have

ABOA'^cAOA' + Y'

But the broken curve, AB O A', contains a corner formed by a and b at 0,

so that it can be shortened by at least the constant e without altering its end

points. The new curve will still join the end points of A O A', and will now

in addition have a surface length less than that of AOA'. This is impossible

if a is of Class A.  The theorem thus is proved.
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We have already defined what is meant by a limit geodesic of a class of

geodesies (cf. § 14).

Definition. We here define an NE straight line L to be a limit line of

a set of NE straight lines M not including L, if every element of L is a limit

element of elements on lines of the set M. A necessary and sufficient con-

dition that L be a limit line of the set M is that there be in the set M lines

whose end points on the unit circle lie, in the euclidean sense, arbitrarily near

those of L.

Theorem 7. If a set M of NE straight lines have an NE straight line L

for a limit line, the geodesies of Class A of the type of tlie lines of M will have

at least one geodesic of the type of L as a limit geodesic.

Let A be any element on P. It follows from the hypothesis of the theorem

hat there exists a set of elements,

Ai A, At •. •,

all on lines of M, and such that

lim An = A.
n—>oo

Let Ln be the NE straight line of M bearing An. Let Cn be a geodesic within

the unit circle of Class A and of the type of Ln. According to Lemma 8,

there exists on Cn at least one point, say P„, within an N E distance B of the

initial point of the element An. Let En be the geodesic element on Cn at Pn.

The elements En will have at least one limit element, E. It follows from the

result of Lemma 9, § 14, that the geodesic G, defined by E, is of Class A.

It will now be proved that G is of the type of the NE straight line L.

It follows, from the property of continuous variation of a finite segment of

a geodesic with its initial element, that every point P of G is a limit point,

as n becomes infinite, of a properly chosen set of points on the geodesies Cn •

But the latter points are each at an NE distance less than the constant B

of Lemma 8 from some point of the corresponding NE straight line Ln. These

points on the Unes Ln will, however, as n becomes infinite, approach some

point of L, say H, and this point H will be at most at an NE distance B

from the given point P on G. Thus G is of the type of L as was to be proved.

Theorem 8. If there is more than one geodesic of Class A of a given type

within the unit circle, there always exist two particular non-intersecting geodesies

of Class A of the given type bounding a region outside of which no geodesies of

Class A of the given type can pass.

Let L be an NE straight line of the given type. Let M be a set of N E

straight lines which have L as a limit line, which have no points in common



1924] GEODESICS   ON CLOSED   SURFACES 49

with L either within or on the unit circle, and which all lie on one side of L.

Let N be a similar set of NE straight lines all on the other side of L. Let M'

and N' be two sets of geodesies consisting of one geodesic of Class A of the

type of each NE straight line of the sets M and N respectively. According

to Theorem 7 the geodesies of the sets M' and N' each have at least one

limit geodesic, say M0 and N0, respectively, that is of Class A, and of the type

of L. The NE straight lines of the sets M and N do not cross L or have any

end points in common with L. It follows from Theorem 4 that all geodesies

of Class A of the type of L will lie in the region between any geodesic of the

set M', and any second geodesic of the set N'. It follows further from the

property of continuous variation of any finite segment of a geodesic with its

initial element that the geodesies M0 and N0, by virtue of the fact that they

are respectively limit geodesies of the sets M' and N', will, in case they are

non-coincident, be non-intersecting, and have between them all geodesies,

other than M0 and iVo, of Class A and of the type of L.

Closed geodesics

16. The variation of the distance of an arbitrary geodesic 7 of

Class A from a given type of periodic curve h. Let there be given an

NE straight line, h, made up of successive segments all congruent under

a transformation, T, of the fundamental group. We have previously termed h

a periodic curve. Let febea second N E straight line crossing h. Let K be

the geodesic of Class A of the type of k. The transformation T carries h into

itself. Accordingly the successive images of k,

■ • • k—2 k—i ko ki k2 • • •,

under T and its inverse, will consist of a set of non-intersecting circles, all

meeting h and shrinking down about the two ends of h, the fixed points of T.

The successive images of K under T and its inverse, say

• • • K-2 K—i Ko Ki K2 • • •,

will accordingly not meet each other (cf. Theorem 4), and will, like the kn>

shrink down about the two fixed points of T. Now let there be given any NE

straight line, v, and let 7 be a geodesic of Class A of the type of v.   If v

crosses any one of the kn, 7 will cross the geodesic Kn with the same sub-
script.

Three cases are distinguished here. The end points of v on the unit circle

may be distinct from those of the given periodic curve h.   In this case v
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crosses at most a finite number of the kn. Or v may be asymptotic to h, in

which case v will cross ab" of the kn with subscripts exceeding a certain integer,

or else less than a certain integer. Finally v may coincide with h, in which

case v will cross all of the kn. A study will now be made of the positions of

the points of intersection of 7 with the different Kn.

Let Ao be any point on K0. Let An on En be the image of A0 under T, or

its inverse. N E distances will be measured along each Kn from the corre-

sponding An. The sense that corresponds to positive distances on each of

the Kn will be chosen so as to be unchanged through application of T. Now

if 7 intersects Kn, denote this point of intersection by Pn and let sn be the

surface distance of Pn from An, measured along K„. A proof will be given

that the sn behave in one of the following ways: (1) remain constant, (2) in-

crease with their subscripts, (3) decrease with their subscripts, (4) increase to

a maximum and thereafter" decrease, or (5) decrease to a minimum and there-

after increase. In the latter two cases the maximum or minimum may be taken

on by a single sn or by two successive sn. The proof will be given under the

heads A, B, C, D, E.
A. If three successive sn are equal all of the sn are equal. An application of

the transformation TtoV will cany 7 into a new geodesic of Class A, say 7'.

If in particular st = s2 = s3, Px and P2 on 7 would go into P2 and Ps on V

so that 7 and 7' would intersect in P2 and P3. According to Theorem 3,

F must then be identical with V. Thus each Pn will be carried by Tinto P»+i,

so that Sn equals sn+i-

B. If just two successive sn are equal, the next preceding and the next

following Sn, if they exist, are either both greater or both less than the

equal sn.

Of the two regions into which 7 divides the unit circle, that region which

a point enters upon being projected from 7 along any of the curves Kn

in the positive sense of that particular Kn will be termed the region above 7,

and the other region the region below 7. As before let 7' be the image of 7

under the transformation T. Suppose now that s2 = s3 and that Sx > s2. To

prove ss<csá: 7' will meet K2 above 7 since st > s2. V will meet Ks in

the same point as does 7 since s2 = s3, and at this point will pass from

above to below 7. Thereafter 7' will remain below 7, since it cannot cross 7

a second time. In particular 7' will meet Kt below 7, so that s3 <c s4 as was

to be proved. Similarly it could be shown that if s2 = s3 and sx < s2, then

sa > St.

The preceding proof includes a proof of the following.

C. If the sn are equal for n = m and n = m — 1, 7 and V meet on Km.

D. If the sn have a relative maximum or minimum for » = m, then between

Km and Km+x, 7 and V cross each other.   More explicitly suppose that



1924] geodesics on closed surfaces 51

s, is greater than both si and ss. Then 7' meets K, below 7 since Si<s8,

and meets Ks above 7 since s2> s3. Thus V must cross 7between ÜT2 andJT8.

The case of a minimum among the sn is similarly treated.

E. The sn cannot have more than one extremum of any sort. For if the sn

had more than one extremum it follows from C and D that 7 and 7 ' would

have more than one point of intersection. 7 would then have to be identical

with 7'.  All the sn would be equal in that case.

A proof can now be given that the sn behave only in the ways enumerated.

Any sequence of numbers such as the sn are either (1) all equal, or (2) increase

or decrease monotonically with n, or (3) have at least one extremum. The

first case is admittedly possible. The second case can be achieved, according

to A and B, only when no two of the sn are equal, and then is admittedly

possible.

The third case, according to E, can occur only when there is a single

extremum among the sn- In this case the extremum will be taken on by

not more than two successive sn, as follows from A. Further, no two of

the remaining sn are equal, for if just two of them were equal, it would

follow from B that they would constitute another extremum among the sn,

contrary to E ; and if three or more of the remaining s» were equal all of

the sn would be equal and we would have the first case.

Thus all three cases reduce to the cases originally stated to be possible.

17. Periodic geodesics of Class A. Definition. Of the transformations

of the fundamental group which have the same fixed points there are two

which will be called the corresponding primitive transformations. They are

inverses of each other. Each is such that every other transformation of

the group with the same fixed points is either its multiple or the multiple

of its inverse. Such transformation exists. For every transformation of the

group which has the two given points for fixed points carries the NE straight

line through these points into itself. With the aid of NE distances measured

along this line the existence of the primitive transformations can be proved

in exactly the same way as the existence of a primitive period is proved

in the theory of simply periodic functions.

Theorem 9. A geodesic of Class A which is carried into itself by a trans-

formation T' is also carried into itself by the corresponding primitive trans-

formations.

Denote the given geodesic by 7. We shall make use of the notation of

the preceding section, identifying the 7 and T oí this section with the 7 and T

of that section. Now according to the result of the preceding paragraph,

there exists a positive integer m, such that

rpl __   iJTm
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where T is one of the two primitive transformations. Accordingly, upon

applying Tm times to 7, 7 will be carried into itself. Hence among the sn

used in the preceding section those whose subscripts differ by m must be

equal. But if all of the sn were not then equal, the sn would have an

infinite number of maxima and minima, which has been shown to be impossible.

The sn are then all equal. The result of applying T to 7 must carry 7 into

itself. For the geodesic into which 7 is carried by T would otherwise inter-

sect 7 in each of the points at which the sn were equal ; according to

Theorem 3, this is impossible. Thus T carries 7 into itself, as was to be

proved.
Theorem 10. A geodesic, V, of Class A, which if traced out in one of its

senses, say the positive sense, comes and remains at an NE distance less than

an assignable positive constant from a periodic NE straight line L, is either

a periodic geodesic of the type of L, or else is asymptotic in its positive sense to

a geodesic that is itself periodic, and is of the type of L, and of Class A.

L is made up of successive portions congruent under a primitive trans-

formation, say T. We will again make use of the notation of the preceding

section identifying the 7, T and L of the preceding section with the 7, T

and L of this theorem. We suppose that the subscripts n of the sn of the

preceding section are here so chosen that they increase as 7 is traced out in

its positive sense. If the sn are all equal, 7 must be periodic. The case where

the sn are not all equal will be considered now.

According to the result of the preceding section, if the sn are not all equal,

then for values of n exceeding a properly chosen integer, say m, the sn must

either all increase with n, or else all decrease with n. It follows from the

hypothesis that 7 traced out in its positive sense comes and remains within

an assignable positive NE distance of L, that the sn are bounded, for n >■ m.

Hence as n becomes infinite the quantities sn approach a limit, say b.

Let k be any positive integer greater than m. The transformation which

carries the geodesies Kk of the preceding section into Ko, carries L into

itself, and 7 into a curve of Class A, say Vk, for which the corresponding sn

will be obtained from the sn for 7 by advancing the subscripts by k. Thus

the point of intersection of Vk with Ko, say Qk, will be at an NE distance

so+k from the point Ao of K0, from which NE distances along K0 are being

measured. As k becomes infinite the points Qk will approach a point on K0,

say Q, whose surface distance from Ao will equal lirnfc^«, Sk =» b. Let Ek

be the element on Vk, at the point Qk. The elements Eu will have one or

more limit elements. Let E be one such limit element. The initial point of E

will be Q.  The geodesic, say G, defined by E will be of Class A.

The point of intersection of G with any particular Kn, say K3, for example,

will be the limit of the points of intersection of the geodesies Vk with that
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particular geodesic Ka, as k becomes infinite; so that G will intersect Ks at

a surface distance from Aa on Ks equal to limj..^ ss+u — b. Similarly G

will meet all other Kn at a surface distance from the corresponding An equal

to b. It follows that the transformation T will carry G into itself, so that G

is a periodic geodesic.

It remains to be proved that 7 is asymptotic to G. Now E was defined as

a limit element of the elements Eu. But the elements Eu can have no other

limit element than E. For if the elements had another limit element E',

then E', like E, would serve to define a second periodic geodesic, say G',

passing through the point Q. G' and G would intersect not only in Q but

also in all the points congruent to Q under the transformation T. This is

impossible for two geodesics of Class A. Hence G' = G, and E' = E, and

the set E% has no other limit element than E.  This may be written

(1) lim Eu = E.
U—>oo

Now Eu is the initial element of the portion of Vu, say hu, between Ko

and Ki, while E is the initial element of the portion of G between K0 and K.

Hence for k sufficiently large, hu, according to (1), will lie arbitrarily near

the portion of G between K0 and K. But the portion of 7 between Ku and

Ku+i is, by definition of Vk, congruent to hu, and accordingly for k sufficiently

large lies arbitrarily near the portion of G between Ku and Ku+i. Thus 7 is

asymptotic to G in its positive sense.  The proof of the theorem is complete.

Definition. The two non-intersecting geodesics of Class A of a given

type which form the two boundary curves of the region outside of which no

geodesics of Class A of the given type can pass, will be termed the boundary

geodesics of that type (cf. Theorem 8). The name will be applied even in the

special case where the two bounding geodesics are identical.

Theorem 11. The boundary geodesics of the type of aperiodic NE straight

line L are themselves periodic.

Let T be a transformation of the group that carries L into itself. T carries

L into itself, and hence every curve of the type of L into another such curve.

Further, T, as well as every other transformation of the group, preserves

surface distances, and hence carries every geodesic of Class A into a geodesic

of Class A. Thus T carries a geodesic of Class A of the type of L into

another such geodesic.

To prove the theorem, observe first that the two given boundary geodesics,

say Gi and G,, divide the unit circle into three non-overlapping regions, say ¿Si,

S,, and S, of which S lies between Gy and G,, Si lies between Gx and the unit

circle, and S, lies between G, and the unit circle.   S, in case Gt is identical
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with Gi, will reduce simply to the geodesic Gx = G2. Now Si contains in its

interior no geodesic of Class A of the type of L, but is, however, bounded

within the unit circle by one such geodesic. These two properties of Sx must

be preserved in the region, say S', into which Sx is carried by the trans-

formation T. For otherwise, upon applying the inverse of TtoS', we could

conclude that the two properties attributed to *Si did not really belong to Sx.

Now the only regions of the unit circle which have these properties of Sl7

and like Sx are bounded in part by the unit circle, are the regions Si and S2.

Hence the transformation T must cany Si either into Si, or else into S2.

But T cannot carry /Si into St ; for that portion of the unit circle that bounds *Si

lies between the two fixed points of T, and under a hyperbolic transformation,

such as T, is carried into the same portion of the unit circle. Thus Sx goes

into Si. Hence Glf as the boundary of Si within the unit circle, goes into Gi.

It follows similarly that G2 is carried into G2 by T, and the theorem is proved.

Theorem 12. If two closed geodesies of Class A are of the same type they

are also of the same length.

Since the two given closed geodesies are of the same type they will be

represented on the unit circle by an infinite number of pairs of periodic curves,

the members of each pair of the same type. Let C and D be the members of

one such pair. Let T be a primitive transformation which carries C and D

into themselves. Let c be a segment of C of which one end point A is carried

into the other end point by T. Let d be a segment of D of which one end

point B is carried into the other end point by T. Denote the surface lengths

of c and d also by c and d, respectively.

Suppose now that the theorem were false, and that

d — c = e^>0.

Let h be the surface distance between A and P. Let n be a positive integer

such that

2h
w>*—.

e

Consider now a continuous portion of C, say c', consisting of all of the images

of c obtained by applying Tn times to c. Let d' be a similar piece of D

obtained by applying Tn times to d'. The end points of d' can be joined by

a curve whose surface length is shorter than that of dl, by passing from the

end point B of d' to the end point A of c through a surface distance h, passing

along c through a surface distance nc, thence returning to the second end

point of d' through a surface distance h, in all over a path whose surface
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length would be 2h + nc which according to the preceding inequalities would

be less than n d, or the surface length of d'. This is impossible if D is of

Class A. The theorem thus is proved.

18. Geodesies of Class A asymptotic to periodic geodesics of

Class A.

Theorem 13. A geodesic a of Class A which is asymptotic to a periodic

geodesic b of Class A within the unit circle cannot cross any periodic geodesic

of Class A of the type of b.
Suppose that a did cross a periodic geodesic c of Class A of the type of b, at

a point P. (See Fig. 5.)

Let there be assigned

to a, b, and c, positive c

senses that lead to their

common end point on

the unit circle. Let m be

the length of the closed

geodesic which on the

original surface corre-

sponds to b.

According to Theorem 12, the length of the closed geodesic which corre-

sponds to c is also m. On c let there be laid off from P in c's positive sense

a segment whose surface length is m; denote the second end point of this

segment by Q. The transformation T which carries P into Q, and b and c into

themselves, carries a into a geodesic d of Class A that is again asymptotic to b.

Let P be any point on d, following Q, and neighboring Q. Any curve

which contains the corner PQP, formed at Q by c and d, can be shortened

in surface length, without disturbing P and P, by a positive constant, say e.

Let B and B' be two points on b which are the two end points of a segment

of b of surface length m, and which are so remote on b that two geodesics

perpendicular to b respectively at B and B' meet the asymptotes a and d in

points within a surface distance e/4 of B and B' respectively, and cut out

of a and d respectively two segments whose surface lengths differ from m by

less than e/4. Denote the point in which the geodesic perpendicular to b at B

meets a by A, and the point at which it meets d by D, and denote the point

in which the congruent geodesic perpendicular to b at B1 meets a by A', and

d by D'.
We will now show that the segment PA on a can be replaced by a curve

joining its end points, which has a smaller surface length. To that end we

compare the surface length of PA with that of the broken curve PQDA. We

shall use the letters PA to denote the surface length of PA measured along

the geodesic a, and will extend this convention to all other segments to be
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considered.  Now since the segment PA is congnient to the segment. QD'

we have

(1) PA = QD',
or

(2) PA = QD + DD'.

Now, from the choice of B and B',

(3) DD'>BB!-e-.
4

Adding (2) and (3),

(4) PA^QD+BB'--^.

Now

BB' = m = PQ.

Hence (4) becomes

(5) PA>QD + PQ—^.

Further, from the choice of P,

(6) -^>DA.

Adding (5) und (6)

PA>PQ+QD + DA--j,

or

PA>PQDA — ̂ r.

Now the broken curve PQDA contains the above mentioned corner at Q,

and can be replaced by a curve joining its end points whose surface length

will, according to the choice of e, be e less than that of PQDA. This new

curve will accordingly join the end points of PA, and according to the last

inequality be less in surface length than PA contrary to the fact that PA is

a segment of Class A. Thus our assumption that a crosses a periodic geodesic

of Class A of the type of b is impossible, and the theorem is proved.

One of the hypotheses of Theorem 10 requires that the geodesic 7 of that

theorem be of Class A.   However, what is essential in the proof of that



1924] GEODESICS ON CLOSED SURFACES 57

theorem can be carried over to the case where every segment on 7 from

a certain point on is of Class A. In this way we get the following lemma:

Lemma 10. A portion of a geodesic which in one sense, say its positive sense,

is unending, every segment of which portion is of Class A, and which in its

positive sense comes and remains at an NE distance less than an assignable

positive constant from some periodic geodesic b of Class A is either asymptotic

in its positive sense to a periodic geodesic of the type of b, and of Class A,

or is itself periodic of the type of b.

There is a similar difference between Theorem 13 and the following

lemma:

Lemma 11. A portion of a geodesic which in one sense from a certain point

on is of Class A, and which is asymptotic in the given sense to a periodic geo-

desic b of Class A, cannot cross any periodic geodesic of Class A of the type of b.

Theorem 14. If there exist two different periodic geodesics of Class A, namely,

b and c, of the same type and between which there are no other periodic geo-

desics of Class A, then if to b and c there be assigned positive senses that lead

on b and c to a common end point of b and c on the unit circle, there exist at

least two geodesics of Class A lying in the region between b and c, of which

one geodesic is asymptotic to b in b's positive sense and to c in c's negative

sense, while the other geodesic is asymptotic to b in b's negative sense and to c in

c's positive sense.

Let Bi B, Ba ■•• be a set of points which follow one another on b in

b's positive sense, and whose surface distances from Pi become infinite with

the subscript n. Let C C, C, • • • be a set of points on c which follow each

other other on c in c's negative sense and whose surface distances from Cx

become infinite with the subscript n. Let An be a segment of a geodesic of

Class A joining Bn to C». Let P» be a point on hn whose surface distances

from b and c are equal.

Let it be a segment of a geodesic of Class A joining some point of b to

some point of c. Let T be a transformation of the fundamental group that

carries b and c into themselves. (Cf. Theorem 9.) Under T, k will be carried

into a second geodesic segment, say k', also of Class A, and also joining

a point of b to one of c. Between k and k', b and c, there will be a region,

say S, contained in the region, say S', between b and c, and such that every

point of S' is congruent under some multiple of T or its inverse to some

point of ¿S'.

A proper multiple of T or its inverse will carry Pn into a point Pn of S. The

same transformation will carry hn into a second geodesic segment of Class A,

say h'n, again joining a point of b to a point of c. Let En be the element on h'n

at the point Pn. The elements En will have at least one limit element E.

Denote the initial point of E by P.  Let d be the geodesic defined by E. We

5
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will show that d is asymptotic to b in 6's positive sense, and to c in c's negative

sense.

The h'n all become infinite in surface length with n. (Cf. Lemma 3.) Accord-

ingly d will become infinite in surface length, in at least one sense, without

passing out of the region between b and c. That portion of d that lies between

b and c, and contains the point P, will certainly be of Class A. For any of

its finite segments between b and c permit an arbitrarily close approximation,

both in position and in surface length, by a properly chosen segment of some

one of the segments h'n, which are themselves of Class A. (Cf. proof of

Lemma 9, § 14.) According to Lemma 10, d traced out in that sense in

which it is already proved to remain between b and c, becomes asymptotic

to some periodic curve of Class A of the type of b and c. According to

Lemma 11, d cannot then cross any periodic curve of Class A, of the type

of b or c. In particular d cannot cross b or c, and hence remains between

b and c. As stated before every segment of d which contains the point P,

and remains between b and c, is of Class A. We can conclude therefore

that every segment of d is of Class A.

Finally it would be impossible for d, as defined, to be asymptotic to b in b's

negative sense, and to c in c's positive sense. For the methods of § 16,

applied to any geodesic segment hn, will show that if hn be traced from its

end point Bn to its end point Cn, its successive intersections with the geodesic

segments congruent to k under T will recede from b and progress toward c,

in the sense that their surface distances measured from b along the segments

congruent to k will increase. Now according to the definition of d, there

exists a geodesic segment h'n, which, starting near the point P on d, will

follow along d arbitrarily near d, for an arbitrarily long surface distance,

measured on d from P, in either sense. Hence d can only be asymptotic to b

in b's positive sense, and to c in c's negative sense.

The existence of a geodesic of Class A asymptotic to b in 2>'s negative sense

and to c in c's positive sense is similarly proved.

Theorem 15. It is impossible within the unit circle for a geodesic of Class A

to be asymptotic in both of its senses to the same periodic geodesic of Class A.

Suppose the theorem were false and that a geodesic b of Class A were

asymptotic in both of its senses to a periodic geodesic c of Class A. Upon

applying any transformation of the fundamental group which carries c into

itself b would be carried into a second geodesic, say b', of Class A also asymp-

totic in both of its senses to c. Now b and b' would intersect. For if b, for

example, lay entirely within the region between b' and c the maximum N E

distancé of any of 6's points from c would be less than that of b'. This

maximum, however, should be the same for both b and V since they are con-

gruent. Thus b would intersect V contrary to the fact, as stated in Theorem 6,
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that no two geodesics which are asymptotic can intersect. Thus the initial

assumption of this proof is false, and the theorem is true.

19. Completion of results on periodic geodesics. Let L be any

periodic N E straight line. Denote the set of all geodesics of Class A and of

the type of L by M.- The properties of the geodesics of the set M may be

summed up and completed as follows:

If there is but one geodesic in the set M it is periodic. If there is more

than one geodesic in M there are two non-intersecting geodesics of M, say bi

and b,, called boundary geodesics of M, delimiting a region outside of which

no geodesics of M can pass. The boundary geodesics are periodic. No

periodic geodesics of M intersect. Between bx and b, there may be a finite or

infinite number of periodic geodesics of M or none. If there exists a single

point in the region between bi and b, through which there does not pass

a periodic geodesic of M, there is at least one region bounded by two periodic

geodesics of M, say pi and p,, between which there are no other periodic

geodesics of M. Denote one end point of L on the unit circle by A, and the

other end point by B. In the region between pY and p, there is at least one

geodesic of M asymptotic to pt as A is approached, and asymptotic to p, as B

is approached, and at least one geodesic of M asymptotic to px as B is

approached and to p, as A is approached. Any geodesic of M which is not

periodic lies in a region between two periodic geodesics of M, between which

there are no periodic geodesics of M. Any such non-periodic geodesic of M

is always asymptotic in one sense to one of the periodic geodesics bounding

the region in which it lies, and to the other such periodic geodesic in the

other sense.

Geodesics of Class A, of the type of N E straight lines that cross L, cross

all geodesics of the set M and recede indefinitely from all points of geodesics

of M. Any geodesic, say c, of Class A, of the type of any one of the infinite

number of N E straight lines asymptotic to L, lies wholly outside the region

between bi and b,, and as A is approached becomes asymptotic to that one of

the two geodesics, bt or b,, which separates c from the region between bt and b,.

A similar statement may be made replacing the point A by the point B.

We conclude with a proof of the following theorem.

Theorem 16. The set of all periodic geodesics of Class A include among

their limit geodesics all of the "boundary" geodesics. (Cf. § 17.)

Let L be a given NE straight line. According to the lemma of § 8 there

exists a transformation of the fundamental group, having its fixed points

arbitrarily near the end points of any preassigned arc of the unit circle. The

NE straight line passing through the fixed points of a transformation of the

group is a periodic straight line. Accordingly it will be possible to choose

a set'of periodic NE straight lines, say M, which have L as a limit line,
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Which have no points in common with L either within or on the unit circle,

and which all lie on one side of L. Let N be a similar set of periodic N E

straight lines all on the other side of L. According to Theorem 11, § 17, the

boundary geodesies of the type of any periodic N E straight line are themselves

periodic. Accordingly, corresponding to each periodic N E straight line of the

set M there exists at least one geodesic of Class A of the same type that is

itself periodic; denote the set of such periodic geodesies by M'. Let N' be

a similar set of periodic geodesies consisting of one periodic geodesic of

Class A of the type of each NE straight line of the set N. Now exactly as

was shown in the proof of Theorem 8, § 15, the geodesies of the sets M' and A7'

will have, the one, a limit geodesic M0, and the other, a limit geodesic Ao,

that are the two boundary geodesies of the geodesies of Class A of the type

of L. Thus the theorem is proved.
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