A UNIQUENESS THEOREM FOR THE LEGENDRE AND HERMITE POLYNOMIALS*

BY

K. P. WILLIAMS

1. If we replace \(y \) in the expansion of \((1+y)^{-v}\) by \(2xz+z^2 \), the coefficient of \(z^n \) will, when \(x \) is replaced by \(-x\), be the generalized polynomial \(L_n(x) \) of Legendre. It is also easy to show that the Hermitian polynomial \(H_n(x) \), usually defined by

\[
e^{xz} \frac{d^n}{dz^n} e^{-z^2} = H_n(x),
\]

is the coefficient of \(z^n/n! \) in the series obtained on replacing \(y \) in the expansion of \(e^{-y} \) by the same expression \(2xz+z^2 \). Furthermore, there is a simple recursion formula between three successive Legendre polynomials and between three successive Hermitian polynomials. These facts suggest the following problem.

Let

\[
\phi(y) = a_0 + a_1 y + a_2 y^2 + a_3 y^3 + \cdots
\]

and put

\[
\phi(2xz + z^2) = P_0 + P_1(x) z + P_2(x) z^2 + \cdots.
\]

To what extent is the generating function \(\phi(y) \) determined if it is known that a simple recursion relation exists between three of the successive polynomials \(P_0, P_1(x), P_2(x), \cdots \)? We shall find that the generalized Legendre polynomials and those of Hermite possess a certain uniqueness in this regard.

2. We have

\[
P_n(x) = \frac{1}{n!} \left. \frac{d^n}{dz^n} \phi(2xz + z^2) \right|_{z=0}.
\]

When we make use of the formula for the \(n \)th derivative of a function of a function given by Faà de Bruno,† we find without difficulty

\[
P_n(x) = \sum_{i+j=n} \frac{a_{n-i}}{i!j!} (2x)^i,
\]

* Presented to the Society, October 25, 1924.
where the summation extends to all values of \(i \) and \(j \) subject to the relation

\[i + 2j = n. \]

When developed, the expression is

\[
P_n(x) = \sum_{0}^{n} \frac{a_n}{n!} (2x)^n + \sum_{0}^{n-2} \frac{a_{n-1}}{(n-2)!} (2x)^{n-2} + \sum_{0}^{n-4} \frac{a_{n-2}}{(n-4)!} (2x)^{n-4} + \ldots.
\]

It is seen that while \(P_n \) is an even or an odd function, the coefficients of the generating function that enter into it form a certain consecutive group, a fact which has important consequences.

3. Let us denote by \(A_n^m \) the term in \(P_n(x) \) that is of degree \(m \) in \(x \). We see that

\[
A_n^{n-2j} = \frac{a_{n-j}}{(n-2j)!} (2x)^{n-2j},
\]

\[
A_{n+1}^{n-2j-1} = \frac{a_{n-j-1}}{(n-2j-1)!} (2x)^{n-2j-1},
\]

\[
A_{n+2}^{n-2j} = \frac{a_{n-j+1}}{(n-2j)!} (2x)^{n-2j},
\]

the expressions being valid for \(j = -1, 0, 1, 2, \ldots \) if we agree that \(A_n^m = 0 \), when \(m > n \). The notable fact is that \(A_n^{n-2j}, A_{n+1}^{n-2j-1} \) both contain \(a_{n-j} \), but \(A_{n+2}^{n-2j} \) contains \(a_{n-j+1} \).

Let \(k \) and \(l \) be multipliers, which we shall assume to be polynomials in \(n \) to be determined; then

\[
2x A_{n+1}^{n-2j-1} + k A_n^{n-2j} = [ln + (k-2l)j + k] \frac{a_{n-j}}{a_{n-j+1}} A_{n+2}^{n-2j},
\]

a formula valid for \(j = 0, 1, 2, \ldots \). Let

\[
\psi(j) = ln + (k-2l)j + k.
\]

We see that

\[
\psi(-1) = (n + 2)l,
\]

and when \(n \) is even, that

\[
\psi\left(\frac{n}{2}\right) = \left(\frac{n}{2} + 1\right)k.
\]
This shows that, \(h \) being another polynomial in \(n \) to be determined,

\[
h P_{n+2} - 2x_l P_{n+1} - k P_n = \sum_{j=-1}^{n'} \left\{ h - \psi(j) \frac{a_{n-j}}{a_{n-j+1}} \right\} A_{n+2}^{n-j},
\]

where \(n' = n/2 \), if \(n \) is even, and \(n' = (n-1)/2 \) if \(n \) is odd.

4. We see from the last expression what must be the character of the recursion relation,* and that for it to exist we must have

\[
a_{n+1} = \varphi(n) a_n,
\]

where \(\varphi(n) \) is a polynomial in \(n \). In order that the summation on the right vanish, it is necessary that

\[
\psi(j) = \varphi(n-j) \theta(n),
\]

\(\theta(n) \) being a polynomial in \(n \). The polynomial \(h(n) \) is then given at once by

\[
h(n) = \theta(n).
\]

It is easy to determine \(l \) and \(k \), so that \(\psi(j) \) will have the desired form. Since \(\varphi(n-j) \) is of the same degree in \(j \) that \(\varphi(n) \) is in \(n \), and since \(\psi(j) \) is linear in \(j \), we see that \(\varphi(n) \) must be linear in \(n \).

Put

\[
\varphi(n) = \alpha n + \beta.
\]

Then

\[
l n + (k - 2l) j + k = (\alpha n - \alpha j + \beta) \theta(n).
\]

This is to be an identity in both \(n \) and \(j \). Put \(j = -1 \), and we find

\[
(n + 2) l = (\alpha n + \alpha + \beta) \theta(n).
\]

Since \(\alpha \) and \(\beta \) are arbitrary it follows that \(\theta(n) \) must contain \(n+2 \) as a factor, and

\[
l = (\alpha n + \alpha + \beta) \frac{\theta(n)}{n+2}.
\]

* It is evident that a linear recursion relation will not exist unless the factor \(2x \) is introduced as in the middle term above.
It follows then at once that
\[k = (\alpha n + 2 \beta) \frac{\theta(n)}{n + 2}, \]

No loss of generality results from putting
\[h = \theta(n) = (n + 2), \quad l = (\alpha n + \alpha + \beta), \quad k = (\alpha n + 2 \beta). \]

The polynomials will therefore have the recursion relation
\[(n + 2) P_{n+2}(x) - 2x(\alpha n + \alpha + \beta) P_{n+1}(x) - (\alpha n + 2 \beta) P_n(x) = 0, \]
if
\[a_{n+1} = (\alpha n + \beta) a_n. \]

Taking \(a_0 = 1 \), we have for generating function
\[\varphi(y) = F\left(\alpha, \frac{\beta}{\alpha}, a, \alpha y\right) = (1 - \alpha y)^{-\beta/\alpha}, \text{ if } \alpha \neq 0, \]
where \(F \) represents the hypergeometric function, and
\[\varphi(y) = e^{\beta y}, \text{ if } \alpha = 0. \]

These then are the only types of generating function that will give a recursion relation, with the conditions that \(h, l, \) and \(k \) are polynomials in \(n \).*

5. A further remark might be made about the case \(\alpha \neq 0 \).
We have
\[2 \varphi'(2xz + z^2) = P'_1(x) + P'_2(x) z + P'_3(x) z^2 + \cdots. \]

Also we find
\[\varphi'(y) (1 - \alpha y) = \beta \cdot \varphi(y), \]
and can then deduce
\[P'_{n+2}(x) - 2\alpha x P'_{n+1}(x) - \alpha P'_n(x) = 2 \beta P_{n+1}(x). \]

When this is combined with the recursion formula we have
\[x P'_{n+1}(x) + P'_n(x) = (n + 1) P_{n+1}(x), \]

* It would evidently be no more general to take \(h, l, k \) rational in \(n \).
a relation independent of α and β. From this and the recursion relation we can obtain
\[(1 + \alpha x^2) P_n' + (\alpha + 2\beta) x P_n - n(\alpha n + 2\beta) P_n = 0.\]

Now the differential equation
\[(1 + \alpha x^2) \frac{d^2 y}{dx^2} + (\alpha + 2\beta) x \frac{dy}{dx} - n(\alpha n + 2\beta) y = 0\]
is changed into
\[(n^2 - 1) \frac{d^2 y}{du^2} + (1 + 2\gamma) u \frac{dy}{du} - n(n + 2\gamma) y = 0\]
by putting $u = \sqrt{\alpha - x}$, $\gamma = \beta/\alpha$. But this is the differential equation satisfied by the generalized Legendre polynomials.

6. It is evident that we can now state the following theorem:

Let

$$\varphi(y) = a_0 + a_1 y + \frac{a_2}{2!} y^2 + \cdots,$$

and put

$$\varphi(2xz + z^2) = P_0 + P_1(x) z + P_2(x) z^2 + \cdots.$$

The only cases in which there will be a recursion relation of the form

$$h(n) P_{n+2}(x) - 2l(n) x P_{n+1}(x) - k(n) P_n(x) = 0,$$

where $h(n)$, $l(n)$, and $k(n)$ are polynomials, are essentially where we have the generalized polynomials of Legendre, and the polynomials of Hermite.