
ELEMENTARY FUNCTIONS AND THEIR INVERSES*
BY

J. F. RITT

The chief item of this paper is the determination of all elementary

functions whose inverses are elementary. The elementary functions are

understood here to be those which are obtained in a finite number of

steps by performing algebraic operations and taking exponentials and

logarithms.    For instance, the function

tan \cf — log,(l + Vz)] + [«* + log arc sin*]1«

is elementary.

We prove that if F(z) and its inverse are both elementary, there exist n

functions

Vt(*)j      <hiz),      •',      <Pniz),

where each <piz) with an odd index is algebraic, and each (p(z) with an even

index is either e? or log?, such that

F(g) = <pn(pn-f-<Pn9i(z)

each q>i(z)ii<ît) being substituted for z in ^>iiiz). That every F(z) of

this type has an elementary inverse is obvious.

It remains to develop a method for recognizing whether a given elementary

function can be reduced to the above form for F(.z). How to test fairly

simple functions will be evident from the details of our proofs. For the

immediate present, we let the general question stand.

The present paper is an addition to Liouville's work of almost a century

ago on the classification of the elementary functions, on the possibility of

effecting integrations in finite terms, and on the impossibility of solving

certain differentia] equations, and certain transcendental equations, in finite

terms.!"    Free   use is made here of the ingenious methods of Liouville.

* Presented to the Society, October 25, 1924.

-(•Journal de l'Ecole Polytechnique, vol. 14 (1833), p.36; Journal für die

reine und angewandte Mathematik, vol. 13 (1833), p. 93; Journal de Mathé-

matiques, vol. 2 (1837), p. 56, vol. 3 (1838), p. 523, vol. 6 (1841), p. 1. For extensions

of Liouville's work on differential equations, see Lorenz, Hansen, Steen and Petersen.

Tidskrift for Mathematik, 1874-1876; Koenigsberger, Mathematische Annalen.

1886; Mordukhai-Boltovski. University of Warsaw Bulletin, 1909, 1910.
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Reference should also be made to the classifications by Painlevé* and

by Dracht of the solutions of algebraic differential equations.

In the course of our work we prove a set oí lemmas of which some are

not uninteresting in themselves. That of § 14 promises to be useful in

settling other questions on the elementary functions. The result on functions

with elementary inverses is a corollary of a very general theorem stated

in § 23.

We precede the solution of our problem by a discussion which is designed

to lend rigor to our work. This discussion is more explicit, on certain

points of special importance in the present paper, than that in our paper

On the integrals of elementary functions.% The formal parts of our work

can probably be followed without a careful reading of these preliminaries.

I. Elementary functions.   Theik differentiation.

LlOITVTLLE'S  PRINCIPLE

1. An analytic function of z will be said to be analytic almost everywhere

if, given any element of the function P(z — z0) ,§ any curve

z = f(X) (o^x<;i).

where <p(0) — z0, and any positive e, there exists a curve

(1) * = *(*) iO£X£l),

where q>i(0) = z0, such that

\q>i(X)-iP(X)\<e

for 0 <¡ X <; 1, and such that the element P(z — z0) can be continued along

the entire curve (1). Roughly speaking, an element of the function, if it

cannot be continued along a given path, can be continued along some

path in any neighborhood of the given one.

2. An algebraic function u, given by an irreducible equation

(2) «o n™ + «, u™ -1 H-Y «w, = 0 ,

* Leçons sur les Equations Differcntielles, professées à Stockholm, Paris, 1897, p. 487.

f Annales de l'École Normale Supérieure, vol. 34 (1898), p. 243.

í These Transactions, vol. 25 (1923), p. 211.

§ It is to be recalled  that an analytic  element P(z — z0)  is  a convergent series  of

positive powers of z — z0.
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where each « is a polynomial in z with constant coefficients, is analytic

almost everywhere, because its singularities are isolated.

In what follows the algebraic functions will frequently be called functions

of order zero, and the variable z a monomial of wder zero.

3. The functions ev and logv, where v is any non-constant algebraic

function, are called by Liouville monomials of the first order. It is seen

directly that ev is analytic almost everywhere. If v is analytic, and

nowhere zero, along a given curve, log v is analytic along the curve. If v

should vanish for some points (necessarily isolated) of the curve, there is

a curve arbitrarily close to the given one on which v is everywhere different

from zero.   Thus logw is analytic almost everywhere.

More generally we shall say, following Liouville, that u is a function

of the first order if it is not algebraic and if it satisfies an equation like (2)

in which each « is a rational integral combination of monomials of orders

zero and one, not all «'s being zero.

We mean by this that, for some point z0, the function u and each of

the monomials in the «'s have analytic elements which, when combined

by multiplication and addition to form the first member of (2), yield an

element with coefficients all zero. We may of course assume that a0 is

not identically zero.

4. Let r be any area in the complex plane, and suppose that we can

continue the above mentioned element of u with center at z0 into and all

over r, so that u has a branch which is uniform and analytic through-

out r. Let C be some curve along which u can be continued from z0

into r. Any curve which can be obtained from C by a slight deformation

will serve equally well for the continuation of u into r. As each monomial

in (2) is analytic almost everywhere, we can take a curve close to C all

along which each monomial can be continued from z0. It is easy to see

that a single curve can be taken for all the monomials, because a curve

which will do for one of them can be shifted slightly so as to do also for

another. We conclude that in any area in which u has an analytic branch,

there is an area in which all the monomials in (2) have analytic branches

which satisfy (2) together with u. Evidently we can choose the smaller

area in such a way that each of the algebraic functions of which the

monomials in (2) are exponentials or logarithms is analytic in the

smaller area.

5. Consider the domain of rationality of all of the monomials in (2).

We can form this domain by taking all rational combinations of the given

elements of the monomials, with centers at z0, and continuing the functions

thus obtained. ÏÏ the first member of (2) is reducible in this domain, let

it be replaced by that one of its irreducible factors which vanishes for the
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given element of u. We may thus assume that the discriminant of (2),

which is analytic in any region in which the «'s (properly associated branches

of them) are analytic, and in which «0 is not zero, does not vanish for

every z. We see now that u is analytic almost everywhere, since in the

neighborhood of any curve there is a curve along which each a is analytic,

and on which «0 and the discriminant of (2) are everywhere different

from zero.

6. Let the monomials of order one, some exponentials, some logarithms,

which appear in (2) be 61(z),---, dr(z). Suppose that, in every «, we

replace each Oi by a variable *{.   We form thus an equation

«o(ä;*0vw + «i(*;/<)i^-x +••• + ««(*;**) = 0.

Let a be any value of z at which the monomials are all analytic, and

at which «o and the discriminant of (2) are not zero. Then for z = a,

n'% = 0j(«) ii = 1, • ■ -; r), the first coefficient of the equation for v,

and the discriminant, do not vanish. We obtain thus an algebraic function v

of z, z'i, - - -, z'r, analytic when these variables remain in the neighborhood

of z = a, z\ = Oiia), and which, when each z\ is replaced by 0,(2),

reduces, for a neighborhood of z = a, to the function u defined by (2).

We observe that the equation for v is independent of the point a.

7. Comparing § 4 and § 6, we see that if ?i is a function of order 1,

then for any area in which (some branch of) u is analytic, there exist

(0) a point a interior to the area, a q>0 and a Qi>q;

(1) r algebraic functions of z, each analytic for \z—ft|<?i;

(I') r monomials, 9t, •••, 0,-, each either an exponential or a logarithm

of one of the r functions in (I), each analytic for \z—a\<g, and

such that I Biiz) — ö<(a)| <Qi for \z — a\ <q (i — 1, • • -, r);

(II) an algebraic function of the variables z, z[, ••-, z'r which is analytic

for \z—ft| <Qi, \z'i — Oi(a)\ <Qi ii = 1, ■ ■ -, r), and which reduces to

(the given branch of) u for \z — a\<g, if each z is replaced by 0j.*

Furthermore,   the integer r,   the algebraic equations satisfied by the

functions in (I) and that in (n), and the exponential or logarithmic characters

of the 0's,  are independent of the area in which u is considered and of

the branch of u.

8. We now define, by induction, functions of any order n. The exponential

or a logarithm of a function of order n — 1 will be called a monomial of

order n, provided that it is not among the functions of orders 0,1, • • •, to — 1.

* The fact that this algebraic function may actually depend on z explains our insistence

that p¡ exceed p.
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With the same reservation, any function defined by an equation like (2),

in which each « is a rational integral combination of monomials of order

0, 1, •••, to, is a function of order n*. As above, we may assume that

the discriminant of (2) does not vanish identically. One sees by a quick

induction that a function of any order w is analytic almost everywhere.

9. As in § 7, we find by induction that if u is a function of any order n,

then, for any area in which some branch of u is analytic, there exist

(0) a point a interior to the area, a q > 0 and a ç i > q ;

(1) r, algebraic functions of z, each analytic for \z— «|<çi,

(I') i\ monomials, 0{, • ■ -, 0'r,, each either an exponential or a logarithm

of one of the functions in (I), each analytic for \z — a\<ç, and

such that \d'i(z) — 9'i(a)\<çi for \z — a\<q and for every i;

(II) r% algebraic functions of z and of rx other variables z[, ■■■, z'r„

each analytic for \z—a\<ol: \z[—6'iia)\<Q1;

(II) r2 monomials, B'i, • • -, B"t, each either an exponential or a logarithm

of one of the functions of order 1 to which the algebraic functions

in (II) reduce when each z\ is replaced by 0¿; each 6" is analytic

for \z — a\<Q, and also \6"(z) — 0"(a)\<ci for \z—«|<i?;

(III) r3 algebraic functions of z, z'\, •• -, Zr, and of r., variables z", • • -, z"„

each analytic for \z — a| < g,, \z\ — B'i(a)| <qx, Iz" — 0"(a)| <çx;

(N+l) an algebraic function of z; •••; z\"\ ■■■, z[!l}, analytic for \s—a\

<Qi, ■■■, k¿n)—^.n)(«,)|<çi, which reduces to the given branch

of u for \z—a\<Q. when each variable z is replaced by the

monomial which corresponds to it.

Furthermore the integers n, the algebraic equations satisfied by the

functions in (I), •••, (N+I), and the character of the 0's as exponentials

or logarithms are independent of the areas in which u is considered, and

of the branch of u.

We see that an accented z may be used in forming a monomial of

higher order than that to which it corresponds, and be used again by itself.t

We have chosen a symbolism which allows this, for the purposes of § 11.

10. For any to, the functions of orders 0, 1, ••■. to form a set which

is closed with respect to all algebraic operations. That is, a function

defined by an equation like (2), in which each « is a rational integral

combination of functions of orders 0, 1, • ■ •. n, is itself a function of one

of those orders. This follows immediately from (N+I) of § 9, if one

considers that an algebraic function of algebraic functions is also algebraic.

* The existence of functions of all orders is proved by Liouville.

t Consider log (e* + 1 ) + e*.
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The functions to which orders are assigned by the preceding definitions

will be called elementary functions of z.

11. We consider now the differentiation of the elementary functions.

Of the algebraic functions introduced in (I), • • •, (N) of § 9, there are

possibly some which are used for forming logarithmic monomials. As each

monomial is analytic at a, such an algebraic function cannot vanish when z

is ft, and each accented z is its 0(a): the function is therefore distinct

from zero if the z's are close to these values. If now pi is taken suffi-

ciently small, and if p is made correspondingly small, so as to limit the

variation of the monomials, we may assume that none of the algebraic

functions which give logarithmic monomials vanish when z differs from a, and

each accented z from its 0(a), by an amount smaller than px in modulus.

This understood, the formulas for the differentiation of composite func-

tions show that if u is an elementary function, described as in (N+I) of

§9, there exists an algebraic function of the z's, analytic for \z — a|<Pi,

■ - ■, | ¿f* — 0(n) ( ft ) | < Pi, which reduces to the derivative of u for \z—a | < p,

when each variable is replaced by the monomial which corresponds to it.

A similar result holds for the higher derivatives of w.

12. The equation (2) which defines a function u of order to is never unique,

except for to = 0. But of all the equations (2) which determine u, there

are some which involve a minimum number of monomials of order n; that

is, the rn in (N +1) of § 9 is a minimum. In that case, no algebraic relation

can exist between these r» monomials of order to and monomials of order

less than to. We mean by this that if £i, •■•, Çp are monomials of order

less than to, analytic at z = a, and if a function

f(zf\ ■••,<»>;  xu -■-, xp),

algebraic in all its variables, and analytic for zf> — OfKa), xi= £<(«),

should vanish for the neighborhood of a when each zf1 is replaced by df)

and each a¡¿ by h, then the function vanishes for any ^n)'s close to the

values 0w(ft), if only each Xi is replaced by h-

For suppose that this is not so. Then there is a point b, close to a,

such that for xi = íi(b) (i = 1, 2, ■••, p), and for certain values of

the ^n)'s close to the 0(w)(ft)'s, /does not vanish. Consider the partial

derivatives of /, of all orders, with respect to the £(re)'s.* Not all of them

can vanish tor xi = ^i(b), éf = 6f (b), else we could not make/different

from zero by varying the z'n)'s slightly from the 0«(6)'s. (Each 0(n)(6)

is close to 0M(ft).)

* Cross-derivatives included.

5
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Suppose then that all of the derivatives up to and including those of

order j vanish over the neighborhood of a when the variables are replaced

by their monomials, but that some derivative of order j-\-\ does not vanish

for a b close to a.   To fix our ideas, suppose that

g(z{n\ .., z%>; xv ■■■, xp)

is a partial derivative which vanishes over the neighborhood of a, but that

the derivative of g with respect to z™ does not vanish at b. Then the

equation g = 0 determines z[n) as an algebraic function of 4n)> ■••> xp>

analytic in the neighborhood of 0£n)(&), •••, ?p(&), which reduces to d[n)

for the familiar replacements. If we substitute this algebraic function for z[n)

in (N +1) of § 9, we find a contradiction of the assumption that r„ is

a minimum.

The foregoing principle is due to Liouville, and underlies all of his work

on the elementary functions.

H. Some lemmas

13. By a logarithmic sum of order to, we shall mean a function of order to

of the form

CllOgÇ>i is)-i-h CmlOgfm (z) im  >   1),

where each c is a constant, and each <piz) a function of order not ex-

ceeding n — 1.    Of course, at least one cp (z) is of order to — 1.*

If we assume that m is a minimum, it follows that no relation ^pid = 0

can exist with the p's integral and not all zero. For if, for in-

stance, cm = 2T=i1iCi' W^n tne Qs rational, the sum could be written

ZT^CilOgCpiCpm.
A function defined by an equation (2) in which each « is a rational

integral combination of exponential monomials of order to, of logarithmic

sums of order to and of monomials of order less than «, will be of order to

or less. We may reword (N + I) of § 9, (also (N) and (N')), so as to

permit the substitution of logarithmic sums of order to, Avith any number

of terms, for some of the variables z(n).f The results of §§ 11, 12 evidently

hold for this new type of substitution.

14. The proof of the following lemma will sharpen its statement.

Lemma.    If, in the expression for a function u of order to, the number

of exponentials of order n plus the number of logarithmic sums of order n

* The present investigation seems to be the first in which sums of logarithms play the

rôle of monomials.

fFor the z<-p) with p<ln, we shall continue to substitute only monomials.
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is ft minimum, each exponential of order n and each logarithmic sum of

order n is an algebraic function of u, a certain number of the derivatives

ofu and the monomials of order less than n which appear in the expression

for u.

We represent the derivatives of u by u, u", etc.   According to § 11,

there exists an infinite sequence of algebraic functions

/o(4n).- •••. <>; 4n-1)> •••• *)»

/i(2f, ■••, *£>; zf~1}, ■■■■ *),

f (zin)   ■ ■ ■    z{n)- 2(w-1)    ...    e\
•'2\  1   ' '     r   '     1 ' '     )>

which reduce respectively to u, v!, u", etc., for the neighborhood of z = a

((I) of § 9), when each z is replaced by its corresponding monomial or

logarithmic sum. The functions of (3) are analytic when the variables are

close to the values which their corresponding monomials or sums assume

at z — ft.

Consider any rn functions of (3). The functional determinant of these

functions with respect to z™, - ■ -. sß> is algebraic in all the z's. If, for

some b close to a, this jacobian does not vanish when the z's are replaced

by the values which their monomials or sums assume at b, we can solve

for the 2(n)'s; each é-n) will be an algebraic function of 4n_1)> • • •• z ancl

a certain number of v's, which reduces to the exponential or logarithmic

sum corresponding to that z{n) when zf~x) ,•••,* are properly replaced and

when each v(i) is replaced by u®.* This is the state of affairs sought in

the lemma.

We are going to show that, because rn is a minimum, there must be

rn functions in (3) whose jacobian does not vanish throughout the neighbor-

hood Of ft.

Let the contrary be assumed. We observe first that the derivative of v

with respect to z<n) cannot vanish for every s close to a. If it did, then,

according to Liouville's principle, it would vanish for any zf> close to

0[n)(a), if only the other z's are replaced by their monomials or logarithmic

sums.   This would mean that m is obtained from

,/(0f)(«), 4»), .... ««*;«*-», •••■ *)

by the familiar replacements, and that rn is not a minimum.

(3)

y
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Suppose then that for certain m<r» of the functions (3), the jacobian

with respect to m of the ^n)'s, say z[n), ■ ■ -, zl£, does not vanish for some

b close to a, but that the jacobian of any m + 1 functions of (3) with

respect to any wi + 1 of the 2(n)'s vanishes for every z close to a. Let

the m functions be

„(¿0   —   f   (»(»)    . . .    ?<n).   ~(n)        . . .     ~(»).  Un—1)    ...    ?\
v Jit V¿i   , ,  ¿m 7  ¿m-i-!, í  ¿rB '  Äl       ' >  ■*/>

(4) .

In (4), let 4W_1)) ■••> B be replaced by the values of their monomials

at z = b, and each v(p) by the value of u™ at * = b. Then 4M)7 • • -,zm

become functions of z^+1, ■■•, z^\ analytic when the latter variables stay

in the neighborhood of B(^+1(b), •••, B^ib). We are going to allow

zm+i> '"> 4n) *° vary *n *ne following way as functions of a parameter p.

Suppose that B%>+1, ••-, 0™ are exponentials, while 0^, •••, Bf> are

logarithmic sums.   We put

^Vi = 0 +m) W&)> •••> *2° = (1+/*) ̂ n)(&),

«ft,   =   Öfti<6) +f», •••,*«* =   ««(ft) + /»■

Then 2<n), •••, 2^ become functions of/*, analytic for,u< = 0. Suppose

that 0<n), •••. 0|n) are exponentials, while 0^, •••, Offi are logarithmic

sums.   We define functions ß (/*). analytic at p — 0, by

4»>    =   ¿» 0f>(&), ••,*?»>  =   /*,» if»>0»),

(6)        4?i = *i+\W + 4+»> •••• <? = W)+4,».*

Thus if all the z(n)'s in (4) are replaced by the functions of /* associated

with them, the other z's by the values of their monomials at b, the second

members in (4) stay constant as [i ranges over the neighborhood of zero.

Consider now any vlq) of (3) where q is distinct from every i of (4).

The jacobian of v{q) and of the functions of (4) with respect to any m + 1

of the zWs vanishes for the neighborhood of a. By Liouville's principle,

such a jacobian must vanish for arbitrary z(n)'s close to their respective

0<n)(2»)'s if only the other z's are replaced by their monomials and sums.

* ßi (ff) is zero or one according as i does or does not exceed /.
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It follows from well known theorems on functional dependence that if,

in v(?), 2(n-1), ■■-, z are replaced by the values of their monomials at b

and if zf\ ■■-, z™ vary, according to (5) and (6) for instance, so as to

keep the functions in (4) constant, v(9) will also stay constant.

The function v of (3) is derived from y by a formula

»' = 2 -jjk ZT fi +2 -^ % + other terms>
* J

where the zf^'s correspond to exponentials and the zjn)'s to logarithmic sums.

Each q>i is a function of 4n_1>> • • • » * which reduces to the derivative of

the exponent in 0ln) for the proper replacements; each q>. is a function

of 2(n_1), ■--, z which reduces to the derivative of 0jn). The "other terms"

are derivatives of v with respect to zf'1*, ■ • -, z times algebraic functions

which reduce to the derivatives of 0<n_1), • • -, z. It follows that if each zf>

is replaced in v by kt 0^n) (Zc¿ a constant close to unity) and each zjn) by

ef^ + kj ikj a constant close to zero), and zf-n~l), ■ ■ -, z by their monomials,

the function obtained is the derivative of the function obtained from v by

these same replacements. Similarly, v" etc. will give the higher derivatives

of the new function obtained from v.

If, in (5) and (6), we write z in place of b, the «W's are associated with

functions of z and p, analytic for z = b, p = 0. If, in v, we replace

the 2<n)'s by these functions, and the other z's by their monomials, we

obtain, for any p, a function uß of z. By what we have just seen, the

derivatives of uß with respect to z for z = b are obtained by making the

substitutions (5) and (6), and replacing z^-v, •■-, z by 0jn_1)(6), ■--, b

in the functions of (3).   Thus the discussion of «/«> above shows that

«„(&) = «(&),       u'lx(b) = u'(b),       u'¿(b) = »"(&), •••.

Hence, as u^ and u are analytic in z, they are identical.

Thus the partial derivative of uß with respect to p is zero for every

admissible e and p. We equate to zero this partial derivative for p = 0,

and find, using (5) and (6) with b replaced by z,

m à*m#*+If (0>^+,l1#f' + JUp - •■
In (7), each z is to be replaced by its monomial or logarithmic sum. But,

according to Liouville's principle, (7) will also hold for arbitrary zin),s if

the other z's are replaced by their monomials.
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The fact that some of the coefficients ßl (0) may be zero makes a change

of notation desirable. Every 2(n) of (7), for which ß'i (0) = 0, we replace

by a symbol wq. Every other z{n) we replace by an xq or a yg, according

as it corresponds to an exponential or to a logarithmic sum. If there

are j of the m/s, h of the a;'s, k of the y's, we have ,/ + /? + & = rn. The

first function of (3) becomes

(8) v = f(wv ■--, wy,   xi; •••, xh;   yv ■■-, yk;   4"-», •••, z),

the order of its arguments probably being disturbed, while (7) assumes

the form

/n\ dv    . . 9 c    ,   „    9v    . ,   »    9v n
(9) YiXl-r—-\--\-YhXh-—- + d, —— -j-+ âk -— = 0.

9 a;, 9a;ft dyx dyk

Here each y or d is either unity or a /fl'(O) =j= 0. Also (9) holds for

arbitrary, but admissible, w's, x's and y's if 4n-1); • • •, * are replaced by

their monomials.

Suppose first that some a;'s are actually present in (9). We may, after

a division, assume that yt = 1. Consider then the following h-^-k — 1

solutions of (9):

S2   =X   x2xi !   • • • )   Sfc   ==   xh %\    h)

(10)
k — yi — ¿iloga-i, •■•,  tk — yk—àklogxi.

These solutions are analytic for the values in which we are interested of

the a;'s and the y's, because Xi, which is associated with the exponential

of an analytic function, does not become zero. The jacobian of these

solutions with respect to x2, ■ ■ -, yk is x"^^ l_y^, which is not zero.

Consequently if the w's are given arbitrary fixed values, and if 4n_1)> • • • > z

are held fast at the values of their monomials for any fixed z, v in (8)

becomes an analytic function of the functions (10). If we replace x2, ■ ■ ■, yu

by their values obtained from (10), we find

(11) v =f(wv •••; xv j%*av •••; í^^loga^, ■■•; zin~1\ ■■-, z).

By what precedes, the second member of (11) is independent of Xi,

so that

(12) v = fim, • ■ ■; fi, c2s2, • ■ •; h + di, ■■■; zin-1), ■■-,z),

where the c's and d's are constants.



1925] ELEMENTARY  FUNCTIONS   AND   THEIR   INVERSES 79

We notice that when the a;'s are replaced by their exponentials, each s

becomes an exponential of a function which is at most of order to — 1,

and each t a logarithmic sum of order to plus a function of order to — 1.

If then we replace the variables in (12) by the functions of z to which

they correspond, we have u expressed in terms of fewer than rn exponentials

and sums of order w. This contradiction of the assumption that rn is

a minimum implies the truth of the lemma.

If no a;'s are present in (9) (h = 0), we use the independent solutions

of (9),

U = ¿tyt — <*i2/i,    ••,    tk = àkyk—dly1.

As above, we find that rn is no minimum. This completes the proof of

the lemma.

15. We shall call any set of numbers, c,, • • -, cm dependent or independent

according as there do or do not exist integers pi,---,pm, not all zero,

such that 2 Pi a == 0-
Lemma. A function .2^=1°* *°£ 9"» (*)> w^1 no <Pi(z) of order greater

than to—1, with at least one \ogq>iiz) of order to, and with independent c's,

is a function of order to .

We begin by proving the theorem for the case of to — 1. Suppose

then that each <Piiz) is an algebraic function, that some q>iiz) is not

constant, but that the sum of logarithms is an algebraic function tyiz).

Differentiating, we have

(iv\ ,  ffí(g)   i |       Vmiz) __    ., v
(13) Ci       .  s i-Y Cm       ,  s   —  w (z).

<Pl(z) <Pm(Z)

Suppose that a function q>iiz) has a zero or a pole at some point a,

which may or may not be a branch point of the function. Then g>\iz)lq>iiz)

will have a pole at a in which the coefficient of l/(z — a) is a rational

number; the coefficient may be a fraction if a is a branch point, but

otherwise it is an integer. Thus the first member of (13) has a develop-

ment at a in which the coefficient of \¡{z — a) is a linear combination

of the c's with rational coefficients, some coefficients distinct from zero.

But we cannot get a term in l/(z — a) by differentiating an algebraic

function fpiz), so that (13) is impossible.

Suppose now that the lemma is untrue for some « > 1, so that there

exists a class of functions ^p = 2T=Í (H log q>i of order less than to, with

each cpi of order less than to, with some log (pi of order to, and with

independent c's.   Here m may depend on ip, but this is not of importance.
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For any ip of this class, let r represent the minimum number of monomials

of order n — 1 in terms of which, with monomials of lower order, xp and

all of the functions q>i can be expressed. Consider the subclass formed

by those functions xp whose r is not greater than the r of any other xp.

We may assume that the functions of this subclass are so expressed that

of the r monomials of order to — 1 appearing in ip, q>i, ■ ■ ■, q>m, the number s

of those which appear in q>i, • ■ ■, q>m is a minimum. In the subclass there

are certain functions xp whose s is not greater than the s of any other

function of the subclass. We assume that we have in hand a xp of this

type, and proceed to force a contradiction.

Writing w for z(n~1)) we have, for the familiar replacements,

m

(14) Xalogfiiwi, ---,ws\ 2(M_2), ••-,?) = g(m, ■■■, «v; z(n~2), ■■■,z),
¿=i

each cpi resulting from/, and ip from ft. After differentiation, (14) gives,

for the replacements,
m w

(15) Z*~ = g',
¿=1        Ji

where the significance of fi and g is obvious. As usual, (15) holds for

arbitrary w's.

We shall prove first that none of wi, • • •, ws can be associated with a

logarithm. Suppose, for instance, that wx corresponds to a logarithm, 8.

As seen in § 15, if, in (14) and (15), wx is replaced by 0 + /* ip constant

and small), the other w's and z's by their monomials, the members of (15)

will still be the derivatives of those of (14). Also, (15) will remain an

equation.    Consequently, for these replacements, we have

(16) Zc¿ log/ = g + ß(p),

where ßip), being the difference of two analytic functions of p, is analytic

for p small. We differentiate with respect to p in (16), and put p = 0,

obtaining

(17> ^i^^-^ + W).
Ji   owx a Wi

Again, (17) holds for arbitrary iv's, but we consider only wx arbitrary, and

replace the other íü's.   Integrating (17), we have, for Wi arbitrary,

(18) Zcilogfi = g + #iQ)wi + y(z),

where it will be unnecessary to determine yiz).



1925] ELEMENTARY  FUNCTIONS   AND   THEIR   INVERSES 81

By what we know for the case of r = 1, (18) shows that when w2, ■••,z

are replaced by their monomials, each log/¿ (and also g-\-ß' iO)wi) becomes

independent of wx • But this contradicts the assumption that s is a minimum,

so that Wi cannot stand for a logarithm.

Suppose then that wx corresponds to an exponential, 0. We find that

(16) holds when wx is replaced by /*B, with ¡i close to 1. Differentiating

with respect to ¡t, and putting n — 1, we have

2c4 4^1 = ^-1+¿'(1).
ji   owx oiüi

Letting ¿a>i be arbitrary, and integrating, we find

(19) 2cilogf~ß'(l)logwl =g + yiz).

If ß1 (1) were not a linear combination of the c's with rational coefficients

we would have, on fixing z, a contradiction.   Thus, let

ß> (1)   =   qi <-ï H-h qm Cm

with rational q's.   Then (19) gives, for wt arbitrary,

2 a log -4 = 9 + r{M).
w\'

Consequently, for every i, fi/uf is independent of wu and if we write (14)

(20) 2 a log -A. = g -ß> (i) log Wu

we may replace wx in the first member by a constant instead of by 0.

Now some term in the first member of (20) is of order to, because we

have subtracted from each logcc¿ a function of order to — 2. Also the order

of the second member is less than to. This contradiction of the assumption

that s is a minimum proves the lemma.

16. If cp(z) is of order to, log q> iz) may be of any of the orders»—1,

to, TO + 1.   We prove the

Lemma. If fiz) and log fiz) are both of order to>0, (piz) is of the

form ?i iz) e^îte), where ?i(z) and Ç2iz) are each of order n — 1.

Let ip = log cp. We choose expressions for g> and tp such that the total

number r of monomials of order to appearing in both of them is a minimum,
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and this condition being first satisfied,  we suppose further that we have

expressions such that s, the number of monomials of order to appearing

in 90, is a minimum.

We have, for the replacements,

(21) lOg/dft,,  -..,  WS;   2*»-»,  ■-., z)  = g(wi,  ■■-,  wr; Z<"-»,  •••,  Z),

q> resulting from / and xp from g.

Precisely as in § 15, we prove that wu ■■-, ws cannot correspond to

logarithms. Suppose that wt corresponds to an exponential, 0i. We find

the equation

log/ = g + ß(p)

to hold when wi is replaced by pBx.  Then

so that, for ivx arbitrary,

log/-¿'(l)log«;i= «7+ /(*).

This means that £'(1) is a rational number q1} and that flw\* is inde-

pendent of Wi when w2, •••, z are replaced.  Writing (21)

(22) log^T = 9 — lilogwi,

replacing w\ by a constant in the first member and by 0i in the second,

we have again, if s>l, a function of order to whose logarithm is also of

order to. Continuing thus, we find that f(z) divided by e\l BV • ■ ■ ef is

a function of order to —1 at most, and this proves the lemma.

As an immediate consequence of the above result, we have the

Lemma. If q> iz) and e9(ß) are both of order to > 0, q> iz) = ?i iz) + log h iz),

where £1 iz) and ï2 iz) are each of order n — 1.

17. We record here two results, easily proved, of which we shall later

use the second.

Iffiz) is of order to, and iff'iz) is of order less than to, <p(z) = q>t(z) + q>2(z),

where <px(z) is of order less than n, and where q>2 (z) is a sum of logarithms

of order to multiplied by constants.
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If (p(z) is of order n, and if the logarithmic derivative of <piz) is of

order less than n, fiz) = fiiz)e9'i<-'!) where q>i iz) is of order less thann,

and where q>2 iz) is of order to — 1.

HI. Composite elementary functions

18. In what follows, we shall discontinue the "replacement" language,

and speak of the arguments w, z etc. in our algebraic functions as "being"

monomials. What precedes indicates sufficiently how everything we say

is to be taken.

Lemma. Given a function <piz) of order m, if a function ty(z) of order to > 1

exists such that the order of y[<piz)] does not exceed wi + to — 2, tJiere

exists a monomial of order n, Biz), such that B[cpiz)] is at most of

order m + to — 2.

According to § 14, if w is one of a minimum number of monomials and

sums of order to in the expression for *piz), we have, with / algebraic,

(23) w = fizf-», ■ ■ -, z; <//, f, ■ ■ -, tpW).

From § 11, we see that the order of the derivative of a function does

not exceed the order of the function.   Thus, since

the order of ip'[<p] does not exceed the greater of m + w — 2 and m.

By induction, the order of every î/>(î)[ç>] is seen not to exceed the greater

of these integers. As n is now at least 2, the order of no iff(i)[cp] exceeds

m + to — 2.

Thus, by (23), w[cp] is at most of order m-\-n—1. Its order will be

even less if no z(n~1)[cp] is of order m + « — 1.

Suppose first that w — e", where u depends on zf-v, •■-, z. H the

order of w[f] does not exceed m-\-n — 2, w is the monomial sought in

the lemma.   In what follows, we assume the order of w[q>] to be m + to —1.

If a £("-1)[gp] is of order m-\-n—l, it is a monomial:' Hence u[(p]

has an expression in which all monomials of order m + to — 1, if indeed

there be any, are of the form z^n~l)[q>]. By (23), the same is true

of w[g>].

We choose expressions for u[q>] and w[f] such that the total number r

of monomials of order m + w—1, all of the form «('l_1)r?)], appearing in

* When » > 1, as the hypothesis stipulates.
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both of them is a minimum, and this condition being first satisfied, we

suppose further that we have expressions such that s, the number of

monomials of order m-\-n—1 in w[q>], is a minimum.

Let W = w[f], U = u[q>]. We write x for the monomials of order

m-\-n — 1, and omit symbols for monomials of lower order.   We have

log W(xi, • --, xs; z) ■= U(xi, ---, xr\z).

Precisely as in § 16, we prove that xx, - - •, xa are exponentials, and that

W = x\* - - - xf V,

where the g's are rational, and where V is of order m + to — 2 at most.

Now x\l ••• xqs' is of the form £[<p], where f is an exponential of order

« — 1. Let £ = e"1, where Ui is of order to — 2. Then v = u — ux is

of order n—1 while its exponential is of order n, and we have

(Á<?'\ = v,

as the lemma requires.

Suppose now that, in (23), w is a logarithmic sum of order to, and that

the order of w[q>] is ra + n—1. We shall later cover the case in which

the order is less.
Let w = ^CjlogMj, with independent c's, where no m is of order greater

than n — 1.   We put

W = w[q>],        Ui = Ui[q>),

observing that W and each Ui have expressions in which every monomial

of order m + w — 1 is of the form z(n-1) [cp]. Introducing x's, with r

a minimum for W and the Z7¿'s and then s a minimum for W alone, we write

W(0Ci,   •••,  XB; Z)  =  £ Ci lOg" Ui (Xi,   ■■■,  Xr\  z).

We prove quickly that Xi, ■ - ■, xs are not exponentials. Let a-i be a logarithm.

We find, for a;i arbitrary,

W - 2dlogUi + #(Q)xi + y(z),

so that, by § 15, W—ß'(0)xx, and each Ui, are independent of x. Con-

tinuing, we find that W less a linear combination of the x's is independent
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of the a;'s, and is hence of order m-\-n — 2 at most. But the linear

combination of the a:'s is of the form ?[gt>], where ? is a logarithmic sum

of order to — 1.    Let

£(*) — 2dilogVi(z),

where no vt is of order greater than to — 2.   Let £ = w — ?, so that

(24) He) = 2alogUi(z)—2dilogVi(z).

Then C is a logarithmic sum of order to , and £ [ <p ] is at most of order m + to—2.

Of course, it might have been that w[f] above was itself of order not

exceeding m, + to — 2. If such be the case, £ is to stand for w in what

follows.

Let Ç be reduced to the form ^eilogk with no U of order greater

than to — 1, and with independent e's. We put Ti = U[q>]. Then each Ti

has an expression in which all monomials of order m + to — 1, if there are

any, are of the form £(n_1)[gc>]. We assume that the T's are so expressed

that the total number r of such monomials appearing in all of them is

a minimum, and putting Z — £[?>], we write

(25) 2ei log Ti (xt, • • ■, ay; z) = Z.

We prove quickly that no x is a logarithm. Let a¡i be an exponential.

We find, for xt arbitrary,

2edogTi = 0(i)\ogxl + Y(z).

By § 15, we must have 0 (1) =2Jí¿«¿ with rational q's, and each TJx\"

must be independent of a;i. Now xx is of the form r[cp\, where % is an

exponential of order to — 1.    We put

Ti = KM = -^, ^ = ?l>] = tf-^Dloga:,.

Then, since logr is of order to —2, S' = ^eilog<¿ is a logarithmic sum of

order to. Also £'[<p] is at most of order m + n —2. Finally each tí[<p]

involves only a*, • • •, xr and not a:,..

It is evident that if this process is gone through r times, we will arrive

at a logarithmic sum of order to, Ç(r) = ^eflog^, such that Çlr)\f] and
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also each t(r)[q>] are at most of order m-\-n — 2. It follows by § 15 that

no logt'C'lf] has an order greater than m-\-n — 2. Since some logáis

of order to, the lemma is proved.

The fact that the order of tp{q>] does not exceed m + w— 2 will be

used in the next section.

19. Lemma. Given a function q>(z) of order m, if a xp(z) of order

«>1 exists such that the order of xp[q>(z)] does not exceed wi + w — 2,

there exists a function xpx(z) of order to—1, where either \ogxpx(z) or

e&w ¿j 0j- order n f such that the order of xpx [q> (z) ] does not exceed m-\-n — 2.

According to the preceding section, we may assume that xp is a monomial,

and indeed, the final remark of that section disposes of the case in which

xp is a logarithm.

Suppose that xp is an exponential eK. We have to discuss the case in

which w[f] is of order m-\-n — 1. Of course, w[q>] has an expression

in which every monomial of order m + « —1 is of the form ^""""[y].

This is because to>1. Let TF= w[q>], and suppose that W is expressed

in terms of a minimum number r of monomials of order »w + to — 1, all

of the form ¿n-l)[<p].   Writing

W(xx, ...,av; z) = logxp[<p],

we prove that the a;'s are logarithms, and that TF= ^c¿a;j + |, where ?

is at most of order m + to — 2. Here the c's are independent, since r is

a minimum.   Let x% = logvt-, where Vi is of order to — 2.   We have

Ci logoff;] H-Y crlogVr[(p] — logxp[q>] = — £.

Hence, by § 15, we must have 1 — ¿£fttc:. with rational g's, so that

, vi[q>]      . ,        Vrif]

Furthermore, by § 15, no logarithms in the equation just written can be

of order greater than m-\-n — 2. Thus, considering the first term, we

see that
ftilogV-'M—logwily] = <hw[<p]—logvi[<p)

is of order ra + w — 2 at most.

Hence qxw—logDi is the function we seek, unless its order is less than

to—1.   But then

e«'« = Vl gil«»—logvi
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would be of order less than to. As ew is of order to, and as qx is rational,

and clearly not zero, this is impossible.   The lemma is proved.

20. Lemma. Given a function q>(z) of order m, if a V(^) of order

to>2 exists such that the order of *p[fiz)] does not exceed m + « — 2,

there exists a function tyiiz) of order- to — 1 such that the order ofrpx [<piz)\

does not exceed m-\-n — 3.

According to §§ 18, 19, we may assume that xp is a monomial, and that

if w is the function whose exponential or logarithm is taken, iv[q>] is at

most of order m + to — 2.

First let «"' = ew, and suppose that w[cp] is of order m + w — 2. Accord-

ing to § 16, if ip[q>] is of order m + w— 2, we have

(26) w[<p] = ?i+log?s

where §i and §2 are of order m + n — 3. If y[<p] is of order m + to — 3,

I, = 0 in (26).
Let x be one of a minimum number of exponentials and logarithmic sums

of order to — 1 in w. Then x is algebraic in w, w', w", etc., and in

monomials of order less than to—1. Thus, as to>2>1, x[<p] is at

most of order m + to — 2 ; suppose it is actually of order m + to — 2.

First let x be an exponential, ev. If v[q>] is of order wi + to— 3, x[cp]

is an exponential of order wi + w— 2. If v[q>] is of order wi + to— 2,

then, by § 16, x[q>] = Ce1*2 with £, and £2 of order wi + to — 3.

Again, let x be a logarithmic sum, 2c¿logVi, with independent c's.

According to § 15, no logvi[q>] can be of order m + TO — 1. Let log vd<p]

be of order m + n — 2. If Vi[(p] is of order m + TO — 3, log Vi[cp] is

a logarithmic monomial of order m + to — 2. Otherwise log «j [ cp ] = £i + log £¡¡,

with £i and £2 of order m + n — 3.

If z<-n~2) is a monomial of order n — 2 in the expression for w, and if

zf-n~2)[q>] is of order m + to — 2, then, since to > 2, ,?(,i-2)[gt>] is a monomial

of order m + TO — 2.

In all, we see that w[<p] has an expression in which every monomial

of order m + to — 2 is either the product or the sum of a function of order

m + TO — 3 at most, and a function r[cp], where t is a monomial of order

to — 1 or to — 2. It is the product if it is an exponential, the sum if

a logarithm. Also, the monomial of order m + to — 2 and t are either

both exponentials or both logarithms.

Of all expressions for w[q>] in which the monomials of order wi + to — 2,

yx,---,yr, are of the rather complicated type just described, consider one

for which r is a minimum. We prove quickly, using (26), that each y is

a logarithm, and that
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(27) w[q>] = ft + Cií/i-l-YCrXJr,

where the order of ft does not exceed wi + to— 3.* An easy discussion

would show that because r is a minimum, the e's are independent, but

we get along more simply as follows. We note that each y is a logarithmic

monomial of order m-\-n — 2, and differs by a function of order less than

wi + to— 2 from a function r[q>], where r is a logarithm of a function of

order not exceeding to — 2. The fact that t is a monomial, we do not

stress. Of all the representations of w[q>] of the form (27) with y's of

this type, we take one for which r is a minimum. In that case the c's

are evidently independent.

Using (26) and § 15, and the representation just obtained for w[g>], we

prove that a rational qx exists such that yx and qx log 2r2 differ by a function

of order m + to — 3 at most. Hence, remembering that y is of the form

logt[ffj] — t where v is of order n — 2 or to — 3, and £ is of order less

than m-\-n — 2, we find by (26) that qxw[q>] — logoff/] is at most of

order m + « — 3. Thus qxiv — log?; is the function sought in our lemma,

unless its order is less than n — 1. This is seen, as in § 19, to be

impossible.

We take the case in which xp = logw, with w [cp] at most of order

m + to — 2. We could use a discussion similar to that for the exponential

case, but the following method is shorter.

If w[q>] is of order m + TO— 2, it is of the form e^2 or $xe^2, (£i and £2

of order m + n — 3), according as log w[cp] is of order mi + to— 3 or

m + TO — 2. In any case, the logarithmic derivative of w[q>] is of order

m + TO — 3 at most. Hence, as to > 2, the logarithmic derivative of w is

the function sought, unless it is of order less than to — 1. In the latter

case, according to § 17. we would have w = ^e^, where £s is of order

to — 2, and & of order less than to — 1, so that log w could not be of

order to.

This completes the proof of the lemma.

21. Lemma. Given a (p(z) of order ra>0, if a xp(z) of order two exists

such that xp[q>(z)] is at most of order m, then a xpx(z) of order one exists

such that xpx[q)(z)] is at most of order m — 1.

According to §§ 18, 19, we may assume that xp(z) is a monomial e"'

or logw, with iv[q>] at most of order m.

Let 0 be one of a minimum number of exponentials and sums in w.

Then 0 is algebraic in z, w, etc., so that 6[cp] is at most of order m.

If 0 is a logarithmic sum with independent c's, none of the terms in it

can become of order greater than m when z is replaced by q>(z).

* Liouville's principle applies as usual.
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If, when we substitute q>(z) into one of the monomials in w, we obtain

a function of order m—1, the monomial is the function sought in the lemma.

Suppose that this is not so. Then if one of the monomials 0 is an

exponential, cp is an algebraic function of ?i + log ?¡¡ with ïx and ?ä of

order m — 1, whereas if 0 is a logarithm, q> is an algebraic function of

Ji^1.* But cp cannot have both forms, so that w cannot contain both

logarithms and exponentials.

Suppose first that all monomials are exponentials. If an algebraic func-

tion of ?i + log?2 (as above) is also of the form ?t + log £g, the algebraic

function is of the form az-\- b, with a rational. Hence w can contain only

one exponential, essentially.

Similarly, w cannot contain more than one logarithm.

The results just obtained are a consequence of the mere fact that the

order of iv[q>] does not exceed m. This will be made use of in the

following section.

Consider the case of xp = ew.

Let, then, w = fi&,z), and suppose first that B is an exponential.

If w[<p] is of order m, it is of the form log? or ?i + log?2, with £'s of

order m — 1, because ew^ is at most of order m. Then 0[(p], which has

to be of the form £i ef«, cannot be so, for it is algebraic in w[q>] and q>.

Thus w[<p] is at most of order m — 1.

Thus, if w[q>] is of order m, 6 cannot be an exponential. If 0 is a

logarithm, we find quickly that /(0, z) = «0 + b, with a rational, so that

ew is not of order 2.

Hence, when xp is an exponential, w[q>] is of order m—1 at most. The

logarithmic case goes through with only slight changes.

22. Lemma, Ifcp(z) is of order wr>0, and if a xp(z) of order one exists

such that xp[f(z)] is of order not exceeding m — 1, then (p(z) is an algebraic

function of a monomial of order m.

As noted in § 21, the fact that xp[cp] is of order not exceeding m implies

either that xp has a monomial 0 such that 6[cp] is of order m — 1, or else

that xp is of the form/(0,z). In the former case, we have what the

lemma requires. In the second case, 0[cp] is algebraic in xp[q>] and cp,

so that, by arguments like those of § 21, B[q>] cannot be of order m.

This settles the lemma.

23. Comparing the lemmas of §§ 20—22, we find the

Theorem. Given a function <p(z) of order m, if a function xp(z) of

order w>0 exists such that xp[cp(z)] is at most of order m + to — 2, then

cp(z) is an algebraic function of a monomial of order m.

* The hypothesis prevents <p from being algebraic.
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This theorem permits us to determine all elementary functions with

elementary inverses. For if q>iz) is such a function, of order m>0, since

g>~1q>iz) is of order zero, q>iz) is an algebraic function of a monomial of

order m. But the function of order m — 1 of which the monomial is an

exponential or a logarithm also has an elementary inverse, and is thus

algebraic in a monomial of order m — 1. Continuing thus, we find the

result stated in the introduction.

With a set of lemmas only slightly different from those above (the changes

are all simplifications), we obtain the

Theorem. Given a function q>iz) of order m>0, if a function xp(z)

of order «>0 eocists such that xp[cp(z)] is precisely of order m-\-n — 1,

then q>(z) is an algebraic function of a function of one of the forms

£i(*') + log?2(.z) or ^iiz)e^z). where £1(2) and ï2iz) are of order m—1.
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