Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Contents of Volume 28, Number 2
HTML articles powered by AMS MathViewer
View front and back matter from the print issue

New division algebras
L. E. Dickson
Trans. Amer. Math. Soc. 28 (1926), 207-234
DOI: https://doi.org/10.1090/S0002-9947-1926-1501341-6
The first and second variations of a double integral for the case of variable limits
H. A. Simmons
Trans. Amer. Math. Soc. 28 (1926), 235-251
DOI: https://doi.org/10.1090/S0002-9947-1926-1501342-8
On extending a continuous $(1\text {-}1)$ correspondence of two plane continuous curves to a correspondence of their planes
Harry Merrill Gehman
Trans. Amer. Math. Soc. 28 (1926), 252-265
DOI: https://doi.org/10.1090/S0002-9947-1926-1501343-X
Systems of equations in an infinity of unknowns, whose solution involves an arbitrary parameter
I. M. Sheffer
Trans. Amer. Math. Soc. 28 (1926), 266-286
DOI: https://doi.org/10.1090/S0002-9947-1926-1501344-1
Solution of certain functional equations relative to a general linear set
Mark H. Ingraham
Trans. Amer. Math. Soc. 28 (1926), 287-300
DOI: https://doi.org/10.1090/S0002-9947-1926-1501345-3
Combinatorial analysis situs
J. W. Alexander
Trans. Amer. Math. Soc. 28 (1926), 301-329
DOI: https://doi.org/10.1090/S0002-9947-1926-1501346-5
Geometries of paths for which the equations of the paths admit $n(n+1)/2$ independent linear first integrals
L. P. Eisenhart
Trans. Amer. Math. Soc. 28 (1926), 330-338
DOI: https://doi.org/10.1090/S0002-9947-1926-1501347-7
Multiply transitive substitution groups
G. A. Miller
Trans. Amer. Math. Soc. 28 (1926), 339-345
DOI: https://doi.org/10.1090/S0002-9947-1926-1501348-9
An extension of Lagrange’s expansion
H. Bateman
Trans. Amer. Math. Soc. 28 (1926), 346-356
DOI: https://doi.org/10.1090/S0002-9947-1926-1501349-0