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Various authors have considered the following problem : given two sets

of points, M and M', lying in planes S and S' respectively, and a continuous

(1-1) correspondence f T, such that T(M)=M', under what conditions can

the correspondence be extended to the planes? That is, under what condi-

tions does there exist a continuous (1-1) correspondence U, such that

U(S) =S', and such that for points of M, U is identical with T?

A. SchoenfliesJ has shown that in case M is a simple closed curve the

correspondence can be extended to the planes, without any conditions being

imposed.

R. L. Moore § has shown that if M and M' are subsets of arcs, the cor-

respondence can always be extended to the planes. If we consider only

the case where If is a connected set, Moore's theorem applies only to the

case where M is an arc.

Moore and Schoenflies, then, have proved that if M is an arc or a simple

closed curve, the correspondence can be extended to the planes, without

any conditions being imposed on the correspondence. In this paper, we

show that if M is any plane continuous curve, || the correspondence can

* Presented to the Society, May 3, 1924, and February 28, 1925; received by the editors in

March, 1925.

t A correspondence T which sends M into T(M) is said to be continuous, if in case the point P

of M is a limit point of N, a subset of M, then T(P) is a limit point of T(N). See R. L. Moore,

Report on continuous curves from the viewpoint of analysis situs, Bulletin of the American Ma-

thematical Society, vol. 29 (1923), p. 289.  We shall refer to this paper hereafter as "Report."

% A. Schoenflies, Beiträge zur Theorie der Punklmengen, MathematíscheAnnalen, vol. 62

(1906), p. 324. See also J. R. Kline, A new proof of a theorem due to Schoenflies, Proceedings of

the National Academy of Sciences, vol. 6 (1920), p. 529. A simple closed curve is a set which is

in continuous (1-1) correspondence with a circle.

§ R. L. Moore, Conditions under which one of two given closed linear point sets may be thrown

into the other one by a continuous transformation of a plane into itself, American Journal of Mathe-

matics, vol. 48 (1926), p. 67. An arc is a set which is in continuous (1-1) correspondence with an

interval of a straight line.

|| For the various definitions of a continuous curve see Report, pp. 289-295.
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be extended to the planes, provided that we impose the condition that

sides of arcs be preserved under the correspondence. Our theorem includes

Schoenflies's theorem as a special case, since our condition is evidently

satisfied in this special case.

The following example shows the necessity for imposing some condition

on the correspondence T. The continuous curve M in the XY plane consists

of the straight line intervals from (0, 0) to (3, 0), from (1, 0) to (1, 1) and

from (2, 0) to (2, 1). The continuous curve M' in the X'Y' plane is given

by subjecting the points of M to the following transformation: if X9¿2,

x = x' and y = y' ; if x = 2, x = x' and y = —y'. Here F is a continuous (1-1)

correspondence and T(M)=M', but the correspondence evidently cannot

be extended to the entire planes.

Definition. If M and M' are continuous curves lying in planes 5 and S'

respectively, and F is a continuous (1-1) correspondence such that T(M) =

M', we say that sides are preserved under T, if, given any arc AB of M,

and any simple closed curve J in S containing AB as a subset, then there

exists a simple closed curve /' in S' containing T(AB)=A'B' as a subset,

and such that if N designates the points of M interior to /, then the interior

of J' contains T(N) = N' ; and also, if given any simple closed curve J[

in S' containing A'B' as a subset, then there exists a simple closed curve

J x in S containing AB as a subset, and such that if Nx designates the points

of M' interior to J[, then the interior of Jx contains T~1(N[) — Ni.

In the following we shall frequently use this notation : if X is any subset

of M, we shall denote T(X) by X' ; if Y' is any subset of M', we shall denote

T~l(Y') by F.

Theorem I. If M and M' are continuous curves containing no simple

closed curve* and lying in planes S and S' respectively, and if there exists a

continuous (1-1) correspondence T, such that T(M) = M'', and such that sides

are preserved under T, then there exists a continuous (1-1) correspondence U,

such that U(S) =S', and such that if, for any point P of M, T(P) =P', then

U(P)=P'.

Before proceeding with the proof of Theorem I, we shall discuss the

definition of "sides preserved under T" for the case where M is a continuous

* For a discussion of this type of continuous curve, see S. Mazurkiewicz, Un théorème sur les

lignes de Jordan, Fu ndamenta Mathematicae, vol. 2 (1921), p. 119; R. L. Wilder, abstracts in

the Bulletin of the American Mathematical Society, vol. 29 (1923), p. 118, and Concerning

continuous curves, Fundamenta Mathematicae, vol. 7 (1925), p. 340; and R. L. Moore, Con-

cerning the cut-points of continuous curves, Proceedings of the National Academy of Sciences,

vol. 9 (1923), p. 101.
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curve containing no simple closed curve.   In this discussion we have need

of the following lemma.

Lemma A. If Ii and I2 are two simply connected domains, whose boundaries

are Bi and B2, and whose outer boundaries* Ci and C2 have in common an

arc UV such that no point of UV\ is a limit point of Bi+B2 — UV, then UV

is in the boundary of two different domains complementary to Bi+B2, such

that either (1) one domain is a subset of Ii, the other of I2, or (2) one domain

is a subset of both Ii and I2, and the other has no points in common with either

Ii or I2.

Proof. About each point X of UV, let us construct a circle Cx whose

exterior contains Bi+B2 — UV. Then corresponding to each point X, we

can construct a simple closed curve Jx, formed of an arc XiXX3 of UV

and an arc X\XiX3 in Ii} and whose interior is in Ii and the interior of Cx-%

The sum of the interiors of the simple closed curves Jx is a domain D, be-

cause if the boundaries of any pair have an arc of UV in common, their

interiors have a point in common. The domain D contains no points of

Bi+B2 by construction. If we add to D all points which can be joined to a

point of D by an arc having no points in common with Bi+B2, we obtain

a domain Dx complementary to Bi+B2, and such that UV forms part of

the boundary of Di.  Evidently Di is a subset of Ii.

By a construction similar to the above, but taking in this case the arc

X1X2X3 exterior to I,, we obtain a domain D2 complementary to Bi-\-B2,

whose boundary contains UV, and which has no points in common with I\.

Since UV is part of the boundary of I2, either Dx or D2 contains a point

of I2. Since a point of I2 cannot be joined to a point exterior to I2 by an

arc having no points in common with B2, it is evident that either Di or D2

is a subset of I2, and the other has no points in common with I2. We have

accordingly, the two possibilities mentioned in Lemma A.

We shall now consider some consequences of the definition of "sides are

preserved under T" for a continuous curve M containing no simple closed

curve. Let AB be a maximal arc§ in M. Let / be a simple closed curve in

the plane S, containing AB as a subset and containing no other points of M.

* R. L. Moore, Concerning continuous curves in the plane, Mathematische Zeitschrift, vol.

15 (1922), p. 254.

t If UV is an arc, UV denotes UV-U-V.

t R. L. Moore, On the foundations of plane analysis situs, these Transactions, vol. 17 (1916)

p. 131.  See especially Theorem 28.

§ A maximal arc in a set M is an arc which is not a proper subset of any other arc in M. See

S. Mazurkiewicz, loc. cit., Lemma 13, p. 129.
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Let N be the points of M interior to /. Since sides are preserved under T,

there exists in S' a simple closed curve /', containing A'B' as a subset,

and enclosing N'. We shall now show that in case J' contains or encloses

any points of M' — (A'B'+N'), J' can be replaced by a simple closed curve

J" which contains A'B' as a subset, and which encloses N', but which

neither contains nor encloses any other points of M'.

We shall first show that A' and B' are on the boundary of the same

domain of (I'+M')—M', where /' designates the interior of /'. For, if

not, there is an arc C'D' in M', such that (a) C is on J'—A'B' ; (b) D' is

on A'B' ; (c) Ç'D' is in /'. Since N' is entirely in I', C is not a point of N'.

Since N+AB is closed, N'+A'B' is closed, and therefore no point of C'D'

can be in the set iV'.

Now let /' be the J[ of the definition. The curve J' encloses N' and Ç D'.

The corresponding simple closed curve Jx in S encloses N and CD, and con-

tains the arc AB as a subset. The simple closed curves / and Jx in 5 have

AB in common, and therefore satisfy the conditions of Lemma A. Since

their interiors have N in common, and since limit points of N are on AB, it

follows that one of the domains (complementary to J+Jx), whose boundary

contains AB} consists entirely of points common to the interiors of / and Jx.

Since D is a point of AB, and since CD is interior to Jx, it follows that at

least part of CD is interior to / and therefore in the set N. In that case, the

corresponding part of Ç'D' lies in N', contrary to a previous statement.

Therefore A' and B' are on the boundary of the same connected domain

oi(I'+M')-M'.
The points A' and B' can therefore be connected by an arc* in I' — M',

which forms with the arc A'B' of M' a simple closed curve /". The arc

J"—A B' separates /' into two parts, and the part enclosed by I" contains

all of N'. The supposition that J" encloses other points of M' in addition

to N' leads to a contradiction similar to that obtained above.

Therefore in case M contains no simple closed curve, and AB is a maximal

arc of M, and J contains AB but no other points of M, then we can add to

our definition of "sides are preserved under T," that J' contains A 'B' but no

other points of M', and that the interior of /' contains N' and no other points

of M' ; and similarly for J[ and Jx.

Lemma A and the previous discussion show also that if any two simple

closed curves have a maximal arc A B of M in common and contain no other

points of M, then either their interiors contain the same subset of M, or

* Report, pp. 290-291.
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their interiors have no points of M in common, in which case, since M — A—B

is connected, they contain all of M, save the arc AB.

Definition. If M is a continuous curve containing no simple closed

curve, and N is a closed and connected subset of M, we shall call a maximal

connected subset of M — N a tree with respect to N, or a tree in M — N. A tree

has one and only one limit point in N, which point we shall call the foot

of the tree. A tree plus its foot forms a closed set.

R. L. Wilder* has proved that the number of trees is countable, and

that given any positive number e, there are at most a finite number of trees

of diameter greater than e.

Proof of Theorem I. Since M and M' are bounded we can construct in

the plane S a circle C containing M in its interior I, and in the plane S'

a circle C containing M' in its interior /'. If AB is a maximal arc of M,

we can join A to any point D of C by an arc in (7 — M) +A +D, and we can

join B to any other point E of C by an arc in (I — M)+B+E—AD. The

arc A'B' in M' is also a maximal arc, and if we select any arbitrary points

D' and E' of C, we can join A' to D' and B' to E' by arcs in (I'-M')

+A'+D' and (V-M')+B'+E'-A'D', respectively.

If X and Y are points of C separating D and E, the arcs EXD (of C),

DA, AB (of M), and BE form a simple closed curve /, and the arcs EYD

(of C), DA, AB and BE form a simple closed curve Ji. The interiors of

J and /i have no points in common, and the sum of their interiors contains

all points of M save AB.

If X' and Y' are any two points of C separating D' and E', there exist

Ukewise in S' two simple closed curves J' = E'X'D'A'B'E' and J[ =

E'Y'D'A'B'E', whose interiors have no points in common, and the sum

of whose interiors contains all points of M' save A'B'.

In our previous discussion of "sides are preserved under T,n we have

shown that under the above conditions, one of the simple closed curves

J' or J'x (suppose the former) will enclose all the points of M' which cor-

respond under T to the points of M which J encloses, and the other, J[,

will enclose the points of M' which correspond to the points of M which

Ji encloses.

Let us select an arbitrary positive number e. Suppose either M — AB

or M'—A'B' contains a tree of diameter greater than ^e. Let T be a tree

in M—AB which is interior to /, and let T' be the corresponding tree in

M'—A'B' which is interior to J', these trees being such that the diameter

of either T or T' is greater than ^t.   Let the foot of T be F, and let FG be

* R. L. Wilder, loc. cit., first paper, Theorem II.
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a maximal arc of (T+F) such that the diameter of either FG or F'G' is

greater than -^e. If H is any point of DXE, H can be joined to G by an arc

interior to /, save for H, and having only G in common with M. If W

is any point of D X E a similar arc H'G' can be drawn. The arc FGH

separates the interior of J into two domains, and the arc F'G'H' similarly

separates the interior of /'. It is evident that the points of M interior to

the simple closed curve FGHDAF have their corresponding points in M'

interior to the simple closed curve F'G'R'D'A'F'. Similarly for points

interior to FGHEBF.

If M-(AB+FG) or M'-(A'B'+F'G') contains a tree of diameter

greater than ^e, the simple closed curves enclosing it and the corresponding

tree in the other set can both be separated by arcs in the manner indicated

above. After a finite number of steps M — (AB+FG+ ■ ■ ■ ) and

M' — (A'B'+F'G'+ • • • ) will contain no trees of diameter greater than

^e, otherwise a theorem* due to R. L. Wilder is contradicted. At this stage,

this state of affairs exists: the interior of the circle C is divided into a finite

number of domains plus boundary points of these domains, where the do-

mains are such that they are bounded by simple closed curves, each of which

consists of a single maximal arc of M, and a single arc having no points in

common with M save its end points ; the interior of C is divided into the

same number of domains plus boundary points, where the domains are

bounded by simple closed curves, each of which consists of a single maximal

arc of M' and a single arc having no points in common with M' save its

end points ; if N represents the set of points of M contained and enclosed

by one of the simple closed curves in the plane S, the set T(N)=N' will be

contained and enclosed by one of the simple closed curves in the plane S',

and this simple closed curve will contain or enclose no points of M' which

are not in N' ; no tree in N (or N') with respect to the maximal arc of M

(or M') belonging to the simple closed curve which contains and encloses

N (or N'), is of diameter greater than ^e.

Let K be any one of the simple closed curves in S ; PQ the maximal

arc of M on K; N the subset of M contained and enclosed by K. Let K'

denote the corresponding simple closed curve in S'. We can select a finite

set of points PX,P2, • • • , F„, and P'x, F2, • • • , P'm such that (a) Pi = P

and P[ = P' ; (b) Pn = Q and P'n = Q'; (c) Ff precedes Pi+X on PQ, and F-

precedes F,+i on P'Q', for i — 1, 2, • • • , n — 1 ; (d) the diameter of each of

the arcs F¿F¡+i and P[P'i+i is less than ^e ; (e) no tree in N—PQ or N'—P'Q'

has its foot at any of the points F, or P\; (f) T(Pi)=P\.   Let the set Ki

* R. L. Wilder, loc. cit., second paper, Theorem II.
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(i = l, 2, • • • , M-l) be PiPi+i plus all trees in N-PQ with feet on P<P¿+i;

and let K[be P'(P[+i plus all trees in N'-P'Q' with feet on P'tP't+1. Evidently

T(Ki)=K't, and the diameter of each of the sets Ki, K2, ■ ■ ■ , Kn_x,

K[, K'2, • ■ • , K'„_x is less than ^e.

The point Pi can be joined to P2 by an arc in the interior of K, having

only its end points in common with M. We shall show that under our given

conditions Pi can be joined to P2 by such an arc whose diameter is less

than f e. Suppose an arc PiRPi has been constructed whose diameter is

greater than f e. This arc forms with PiP2 a simple closed curve H which

encloses K1 — P1P2, but encloses no other points of M. There also exists a

simple closed curve L, enclosing Kh and such that every point of L plus

its interior is at a distance less than -^ e from Ki* and therefore such that

the diameter of L is less than \e. Since the diameter of the arc PiRP2 is

greater than §e, it must contain points exterior to L. The simple closed

curves H and L satisfy the conditions f under which there exists a simple

closed curve Q which is a subset of H+L, contains the arc PiP2 of M,

and every point of whose interior is interior to both H and L. The arc

from Pi to Pi in Q which has only its end points in common with M, has

no points exterior to L, and is therefore of diameter less than § e ; it has no

points exterior to H and except for its end points, has no points in common

with Ki, and therefore has no points in common with M, and lies entirely

in the interior of K.  This is an arc satisfying the conditions stated.

The point Pi can therefore be joined to P2 by an arc P1W1P1 in the in-

terior of K which forms with the arc PiP2 of M a simple closed curve Ci,

enclosing Ki — PiP2 but no other points of M, and containing PiP2 but

no other points of M, and such that the diameter of Ci is less than e. In

the same way an arc P2WiP3 can be constructed in the interior of K (save

for P2 and P3) and exterior to Ci (save for P2), which forms with P2P3

of M a simple closed curve C2, enclosing and containing the set K2 and no

other points of M and such that the diameter of C2 is less than e. In this

way we construct the simple closed curves Ci, C2, • • • , Cn-i, all of diameter

less than e. In the same way we construct in S' the simple closed curves

C'i, C2, ■ • • , Cn_x, all of diameter less than e.

Note that if from the interior of K we remove the simple closed curves

Ci+C2+ • • • +C„_i and their interiors, there remains a domain whose

* R. L. Moore, Concerning the separation of point-sets by curves, Proceedings of the Na-

tional Academy of Sciences, vol. 11 (1925), p. 469.

t R. L. Moore, On the Lie-Riemann-Helmhollz-Hilbert problem of the foundations of geometry,

American Journal of Mathematics, vol. 41 (1919), p. 299.  See especially Theorem 26.
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boundary is the simple closed curve consisting of the arcs K—P±Pn, PXWXP2,

P2W2P3, • • • , Pn-XWn-XPn ; similarly for K'.

If the interior of any of the simple closed curves Ci, • ■ • , C„_i contains

points of M, we shall separate its interior as we have separated the interiors

of / and /' into a finite set of domains free from points of M, plus a finite

set of simple closed curves (such as Ci) of diameter less than \t, the same

being true of M'. We shall then continue this process with such of these

simple closed curves as enclose points of M.

We shall now define a continuous (1-1) correspondence Z7, such that

U(S)=S', and we shall show that if, for any point F of M, T(P)=P',

then U(P)=P'.

For points of the circles C and C, U is any continuous (1-1) corres-

pondence between C and C subject only to these conditions : (1) U(D)=D' ;

U(E) =E' ; (2) if F is a point of EXD, U(P) is on E'X'D' ; (3) if F is a point

oiETD, U(P) is on E'Y'D' ■ (4) U(H) =H' ; and similarly for points of C

other than H that were joined by arcs to points on trees of M of diameter

greater than ^e, or such that the corresponding trees in M' were of diameter

greater than ^e.

Having defined U for points of the circles C and C, we define U for

points exterior to these circles, as being any continuous (1-1) correspondence

between 5 and S' subject only to the condition that for points of C and C

the correspondence be the one defined in the preceding paragraph. That such

a correspondence exists, follows from Schoenflies's theorem.

For points interior to C, and on one of the simple closed curves K, consist-

ing of an arc PQ of M, an arc QX interior to C save for X, an arc XY on C,

and an arc YP interior to C save for Y, we define U as being any continuous

(1-1) correspondence between K and K' subject only to the following condi-

tions : (1) for points of PQ, U is identical with T ; (2) for points of XY,

U is identical with the correspondence previously defined for points of C.

For points interior to one of the simple closed curves K, and on the arc

PXWXP2W2P3 ■ ■ P„-XWn-XPn, we define U as being any continuous (1-1)

correspondence between PXWX ■ ■ Pn and P'XW[ ■ ■ P'„ subject only to the

following conditions : U(PX) =PX • ■ ■ , U(Pn)=P'n ; and if C¿ encloses points

of M, the correspondence between PiWiPi+x and P¡W¡P'i+x must be such

that U(HX) =H'X, where Hx is a point of PjWjPi+x which was joined, by an

arc interior to C<, to a point of a tree, in M—PiPi+x, of diameter greater

than xV«.
For points interior to the simple closed curve formed by K — PiPn,

and PxWiP2, ■ ■ ■ , Pn-iWn-XPn, V is defined as being any continuous (1-1)
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correspondence between 5 and S' subject only to the condition that for

points of the simple closed curves, the correspondence be the one defined

in the preceding paragraphs.

If the interior of any of the simple closed curves Ci, C2, • • • , C„, say Ci,

is free from points of M, U is defined for points of the interior of Ci as being

any continuous (1-1) correspondence between 5 and S' subject only to the

condition that for points of Ci and C[ the correspondence be the one already

defined for points of Ci and C[.

In case the interior of any of the simple closed curves Ci, • ■ ■ , C„

contains points of M, we have already indicated the method of separation

of its interior into a finite number of domains, and we have indicated above

how U is defined for every point of S, save for points interior to simple closed

curves of diameter less than e, enclosing points of M. We shall now show

that by a continuation of the above process, U is defined for such points.

If P is any point of S — M, there is some value of k such that e/2* is less

than the distance from P to a point of M. Therefore at the step where the

diameters of the simple closed curves enclosing points of M are less than

e/2*, P will not lie in the interior of such a simple closed curve, and hence

U will have been defined for the point P. Similarly for any point in S' — M'.

If P is a point of M, and if U has not already been defined for P, then

P lies at each step in the interior of a simple closed curve, consisting of an

arc of M and an arc in S — M. Let the sequence of simple closed curves be

Di, D2, • • • , where Di+i lies in J5¡ plus its interior ; let the diameter of D{

be less than e/2; ; and let the arc of M on Dt be XiYi. Evidently P is the

only limit point of this sequence. The corresponding simple closed curves

in S' are Du D2, ■ • ■ , and Di+l lies in the interior of Du the diameter of Dt

is less than e/2\ and the arc of M on D\ is X\Y't, where X't=T(Xi), and

Yi = T(Yi). The sequence D[, D'2, ■ ■ ■ approaches a single point P' as a

sequential limit point, and we define U(P) as P'.

It remains to be shown that T(P) is the point U(P)=P'. The points

Xi, X2, ■ ■ ■ of M approach P as a sequential limit. Since T is continuous,

the point in M' approached by X[, X2, • • • is T(P), and we have called this

point U(P)=P'.   Therefore U is identical with T for all points of M.

The correspondence U as defined above satisfies the conditions of

Theorem I.

Definition. If M and M ' are continuous curves lying in planes 5

and S' respectively, and T is a continuous (1-1) correspondence such that

T(M) = M', we say that interiors are preserved under T if, given any simple

closed curves J oí M and J' of M', such that T(J)=J', and if N is the set
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of points of M interior to /, and 2V' is the set of points of M' interior to /',

then T(N)=N'.

Lemma B.  // sides are preserved under T, interiors are preserved under T.

Proof. Given T(M) = M' and sides are preserved under T. Suppose P,

a point of M interior to /, is such that T(P)=P' is exterior to /'. We shall

show that this leads to a contradiction.

Let PQ be an arc in M, having only Q in common with /, and therefore

interior to /, save for Q.  Then P'Q' will be exterior to J', save for Q'.

Let A and B be two points of /, A^Q^B, and let D be a point of /,

such that D and Q separate A and B. In the exterior of / we shall construct

an arc AXB, such that BQA (of /) plus AXB forms a simple closed curve C

containing in its interior the interior of J, and therefore ADB and QP+-P.

Since sides are preserved under T, there exists a simple closed curve

C in S' containing B'Q'A' and whose interior contains A'D'B' and

£F'+F'. The curve C is composed of the arcs B'Q'A' of /'^and B'X'A'

in the exterior of J'. The interior of C therefore contains the interior of J',

in fact A 'D'B ' divides the interior of C into two parts, the interior of

J' = A'D'B'Q'A' and the interior of A'D'B'X'A'. Since gf'+P' is ex-

terior to /' and interior to C, it must lie within A'D'B'X'A'. Since T is

continuous, the limit point Q' oî&P'+P' must lie on or within A 'D'B'X'A ',

whereas the arc B'Q'A' ¡s exterior to A'D'B'X'A'. This is the desired

contradiction.

Theorem II. // M and M' are continuous curves lying in planes S and S'

respectively, and if there exists a continuous (1-1) correspondence T, such

that T(M) = M', and such that sides are preserved under T, then there exists

a continuous (1-1) correspondence U, such that U(S)=S', and such that if,

for any point P of M, T(P) =P', then U(P) =P'.

Proof. Since we have considered in Theorem I the case where M contains

no simple closed curve, we shall assume here that M contains at least one

simple closed curve. The proof of Theorem II follows, in the main, that

of Theorem I. We shall go into detail only when the proof differs from that

of Theorem I.

By Schoenflies's definition of a continuous curve,* S — M consists of one

unbounded domain and a countable set of bounded domains, the same

being true for S' — M'. The outer boundary of each bounded domain is a

simple closed curve / whose interior contains a countable set of maximal

* Report, p. 290 and p. 295.
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connected subsets of M — J (which we shall call "trees"), each having one

and only one limit point on the simple closed curve.

If M is a continuous curve, and N is a closed and connected subset of M,

we shall call a maximal connected subset of M — N which has one and only

one limit point in N a tree with respect to N or a tree in M — N. The limit

point in N is called the foot of the tree. The number of trees is countable,

and if N is the outer boundary of a domain complementary to M, then

not more than a finite number of trees can be of diameter greater than any

given positive number. In case M contains no simple closed curve this

definition is equivalent to the one given previously.

If ais the boundary of Di, the unbounded domain in 5 — M, then T(a)=a

is the boundary of Du the unbounded domain in S' — M'. For suppose it

were possible that for some point P of a, T(P) =P' is not in ß', the boundary

of D[. Then P' is separated from any point Q' in D[ by ß', and P' and Q'

are therefore separated by some simple closed curve /' which is a subset

of ß'.* The point Q' is not interior to /'; therefore P' is interior to /'.

But P is in a and is therefore not interior to T~l(J') =7 or any other simple

closed curve in M, and in this case interiors (and, therefore, sides) have not

been preserved under T, contrary to hypothesis. A similar contradiction

is arrived at if we suppose that for some point P' of ß', T~l(P') = P is not

a point of a.  Therefore ß' = a.

We shall next show that if a is the boundary of D2, a bounded domain

in S — M, then T(a)=a is the boundary of a bounded domain in S' — M',

which we may call D,¿. The boundary a contains a simple closed curve J,

and a contains J'. If N denotes the points of M interior to J, N consists

of a countable set of trees. Since N' is identical with the points of M'

interior to /', any maximal connected subset of N' is a tree with respect to

/', otherwise T is not (1-1) and continuous, and therefore N' also consists

of a countable set of trees. Let these be N[, N2, N3, ■ ■ ■. Let L[ be N't plus

its foot on /' plus any points of S' — M' lying in a complementary domain

of M' whose boundary is in N't. The sets L[, L2, L\, • ■ ■ are closed and con-

nected and have no points in common. Furthermore, only a finite number

of these sets can be of diameter greater than any given positive number.

Under these conditions, L[+L2+L'3+ ■ ■ ■ is not connected.! Therefore

not every point of the interior of J' lies in LÍ+i2'+ • • •. Let P' be a point

of the interior of J' not in L\+L2+ • ■ ■ , and let D'2 be the domain in S' — M'

* R. L. Moore, Concerning continuous curves in the plane, loc. cit., Theorem V.

f See  abstract  by  J.  R.  Kline,   Bulletin of the American Mathematical

Society, vol. 31 (1925), p. 300.
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containing P'. The outer boundary of D2 is a simple closed curve K'.

If K' were entirely interior to J' or had one point in common with J', then

K', D2, and P' would be points of one of the sets L't, contrary to our selection

of P'. If K' had an arc in common with J', but were not identical with

/', K' would contain an arc interior to J' joining two points of /', and such

an arc cannot exist in any of the trees N[, N2, ■ • • . Therefore, K' is iden-

tical with /'. If we suppose that any point F of a is such that P' is not in

the boundary of D2, or that any point Q' of the boundary of D'2 is such that

Q is not in a, we obtain a contradiction by the same argument as that used

in the case of the boundary of the unbounded domain. Therefore the boun-

dary of D2 is a .

We shall next discuss the definition of "sides are preserved under T"

for the case where M is any continuous curve.

Let D be any domain in S — M, and A and B two points on its boundary

ß ; then any arc AXB such that AXB is in D, divides D into two domains,

Dx and D2, such that D = DX+D2+AXB. The boundary of D( (i = l, 2)

is composed of AXB and ßi, a subset of ß. Evidently, ß=ßx-\-ß2. Suppose

that A and B are two points such that ßx and 182 are the same for any choice

of the arc AXB. This will be the case if each of the points A and F is a

non-cut point of ß, i. e., a point whose removal does not disconnect ß.

If in ßi(i = l, 2) we draw the arc A YB (there is only one such arc), and

draw in D an arc AXB forming a simple closed curve J with A YB, then

the discussion under Theorem I of "sides are preserved under T" holds with

slight modifications. Therefore, under the above conditions, we can add

to our definition of "sides are preserved under T" that /' contains A'B'

but no other points of M', that J'—A'B' lies in D' (where D' is the domain

in S' — M' whose boundary is T(ß) =ß'), and that the interior of J' contains

N' and no other points of M'.

As in the proof of Theorem I, we can construct a circle C containing

M in its interior I, and a circle C containing M' in its interior /'. Let a

denote the boundary of the unbounded domain in S — M. Since a is a non-

dense continuous curve separating the plane, a contains a simple closed

curve /.* Let A and B be two points of / which are not feet of trees in

a — J. We can join A to D, any point of C, by an arc in (I — M)+A+D,

and we can join B to any other point E of C by an arc in (7 — M) -\-B -f-E — A D.

If D' and E' are arbitrary points on C we can draw similar arcs A'D'

and B'E'. Each of the arcs AB of / forms with AD, BE, and the proper

one of the arcs DE of C a simple closed curve, and these two simple closed

* Report, pp. 295-296.
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curves Ci and C2 contain and enclose all points of a. Similarly in S' are two

simple closed curves C[ and C2 such that the points contained and enclosed

by C'i (i = 1, 2) are the points corresponding to those contained and enclosed

by C<.
Let us select an arbitrary positive number e. Let Dh D2, ■ ■ • , Dn be a

finite set of domains complementary to M, and D¡, D2, ■ ■ ■ , D'n a set of

domains complementary to M', such that (1) if a¿ is the boundary of Di

(i = 1, 2, • • • , «), then P(a<) =a't is the boundary of D\ and (2) all domains

complementary to either lot I' and of diameter greater than e occur

in one set or the other. In each of the bounded domains, such as D2, select

two points A and B on the outer boundary J2, which are not feet of trees

in a2 — J2, and join A to B by an arc in D2 save for its end points. If we

join A' to B' by an arc in D2 save for its end points, this arc divides the

interior of J2 into the interiors of two simple closed curves, such that the

points of M' contained and enclosed by either one of them are the points

corresponding to those contained and enclosed by the corresponding one

of the simple closed curves in S which AB forms with J2.

Let us now consider any one of the above simple closed curves K formed

by an arc AXB in M and AYB in S — M, and its corresponding simple closed

curve K' = A 'X'B'Y'A ' in the plane S'. Let the points of M contained and

enclosed by K be denoted by N. Then T(N) = N' is the set contained and

enclosed by K'. Suppose either N—AXB or N' — A'X'B' contains a tree

of diameter greater than ^e, and let this tree and its corresponding one

be denoted by T and T'. For definiteness let us suppose that the diameter

of T is greater than ^e. Let the foot of T be F. Let Gi denote some point

of T which belongs to a, the boundary of the complementary domain of M

in which AYB was drawn, and such that an arc FGi of a is of diameter

greater than ^e. If a — Gi is connected, we shall denote Gi by G. If a — Gi

is not connected, it consists of a countable set of trees. Let W denote the

one which contains F. The set a —IF is closed and connected. It has

therefore a non-cut point G distinct from Gi. The sets (a — W—G) and

(W+Gi) are connected and have Gi in common. Therefore their sum,

a — G, is connected, and G is a non-cut point of a. Moreover, any arc in

a from F to G passes through Gi and therefore a contains an arc FG of diam-

eter greater than y^g-e.

If H is any point of A YBt H can be joined to G by an arc interior to K,

save for H, and having only G in common with M. In S', a similar arc

H'G' can be drawn. The points of M on and interior to GFAHG will have

their corresponding points on and interior to G'F'A'H'G'. Continuing this

process a finite number of times we eventually arrive at the point where none
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of the simple closed curves K and K' contain a tree of diameter greater

than ^e.

The choice of sets Kx, K2, ■ • ■ , K'm_x, and the simple closed curves

Ci, C2, • • • , C^_i is made as in Theorem I without any modifications. The

correspondence U is defined as in Theorem I for all points of S — M and for

all points which are boundary points of domains complementary to M.

If there are any other points in M, we shall define U as being identical with T.

The correspondence U defined in this way is evidently (1-1), and for

points of M, U and T are identical. It remains to be shown that U is con-

tinuous, i. e., if Fi, P2, ■ ■ • is a set of points of S approaching F as a se-

quential limit, then P[, P2, ■ ■ ■ approach T(P)=P' as a sequential limit.

In case F is a point of S — M, all except a finite number of the points of

Fi+F2-f •lie in the same domain as does F, and we have defined U

for the complementary domains in such a way that P[, P2, ■ ■ ■ will approach

P'. In case F is a point of M and an infinite number of points of F1+F2+ ■ • •

lie in M, then P' is a limit point of Px+P2+ ■ ■ ■ because U is identical

with T for points of M, and T is continuous. In case F is a point of M,

and an infinite number of points of Px+P2+ • • • lie in a single domain

of S — M, then F is a boundary point of that domain, and again U has

been defined in such a way that P[, P2, ■ • ■ have P' as a limit point. In

case, finally, F is a point of M, and only a finite number of points of Fi

+F2+ ■ • • lie in M or in any single domain of S — M, then we can pick

out an infinite subsequence Qx, Q2, ■ • • , such that each Q, is a point of

S — M, and no two points Q(, Q, lie in the same domain. Let us associate

with each Q, a point Fj of the boundary of the domain in which Qi lies.

For any given e only a finite number of the points F¿ can be selected in such

a way that the distance between Qi and F¿ is greater than e. Therefore the

set of points Rx, R2, ■ ■ • also approach F as a sequential limit. Similarly

in the plane S', the two sequences Qx, Q2, ■ ■ ■ and R[, R2, ■ ■ ■ approach

the same limit. Since R'x, R2 ■ • • are points of M', their limit is P'. There-

fore in each case, U is continuous.
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