ERRATA, VOLUME 28

M. H. Ingraham, Solution of certain functional equations relative to a general linear set.
Page 287, insert (1) at left of second displayed formula;
Page 289, formula (i) should read v.). $v^{0_{H}}=1$;
last line above footnote should read

$$
\lambda_{1} C_{h} \equiv \prod_{q}{h_{1}()} C_{h(q)} \quad\left(h_{1}, h\right) ;
$$

Page 292, in right member of second displayed equation above the summation sign, for " $h_{1} \pm h$ " read " $h_{1} \neq h$."

Page 293, in the first line of the proof of Theorem 2, after "distinct" insert "determinations of coefficients for";
fourth line from bottom should read

$$
=\sum_{h} v_{h} \sum_{h_{1}}{ }_{h} C_{h_{1}} v_{0}^{h-h_{1}} r^{w\left(h_{1}\right)} v_{1}^{h_{1}} ;
$$

third line from bottom should read

$$
=\sum_{h} v_{h} \sum_{k_{1}} \sum_{h_{1}}^{w\left(h_{1}\right)=k_{1}(p-1)}{ }_{n} C_{h_{1}} v_{0}{ }^{n-\Lambda_{1}} r^{w\left(A_{1}\right)} v^{n_{1}} ;
$$

last line, above second summation sign for " $w\left(h_{1}\right) \equiv(p-1)$ " read " $w\left(h_{1}\right) \equiv k(p-1)$."
T. H. Gronwall, On the zeros of the function $\beta(z)$ associated with the gamma function.

Page 395, line next to the bottom (footnote) for " $[f(z)-g(z)] g(z)$ " read " $[f(z)-g(z)] / g(z) " ;$

Page 397, line 13 , for " $1+O((\log n) / n)^{2}$ " read

$$
O\left(\left(\frac{\log n}{n}\right)^{2}\right) .
$$

