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In my first paper under the present title I gave criteria in connection

with both cases of the Last Theorem. Here by extensions of the methods

previously employed, I shall obtain more general criteria.   If

(1) xp + y + zp = 0

is satisfied in integers x, y and z prime to each other, z^O (mod p), p an

odd prime, then in another papery I gave the relation

k-l     t'P/t]

(2) II    II  (* + «I1!r,y) -*~*M<*m*H,)«*»
F-l        r— 1

where k is an integer, l<k<p;

k»-l-l

?(*) =-,
P

[s] is the greatest integer in s; « is an integer in the field ß(a); a = e2iTlp;

[1: f] is the integer i in the relation fi = l (mod p). Also, throughout the

paper, if a fraction a/b appears as the exponent of a, it stands for an integer

u which satisfies a = bu (mod p).

1. Let n be an odd prime ^ 0 or 1 (mod p) and suppose that xyféO

(mod n) ; then

(3) x"-1 - y"-1 s 0 (mod n).

If ß is a primitive (n-l)th root of unity then in the field tt(aß) we have,

since n — 1 is prime to p,

(n) = pipa •••*>«,

where
(f>((n - l)p) = ef,    n* ml (mod (n - l)p)

* Presented to the Society, January 1, 1926; received by the editors February 6,1926.

t Annals of Mathematics, (2), vol. 21 (1919), p. 78.
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the p's being prime ideals in the field ü(aß), of degree/.    The relation (3)

gives
n-2

E (* + ß'y) - 0 (mod («))
«-0

= 0 (mod p)

hence there is an integer in the set 0, 1, • • ■ , n — 2, such that

(4) x + ß'y m 0 (mod p).

It is known that if (0) is an ideal in Q(aß) prime to (p) and p, 0 an integer

in ß(a/3), then there is an integer s such that, if w = 2V(p) — 1,

0»/p = a. (mod p) >

where N(p)=nf, the norm of p.    Also 0 is congruent to the pth power of

an integer il (aß) if and only if

<. - > = 1, where < - > = a', in general.

Since (») is prime to (p) then p is prime to (p) and p is also prime to (x+a'y),

CféO (mod p), since the norm of *-t-acy has all its factors of the form 1+wp.

Consequently we may set am for a in (2), m any integer ^0 (mod p), and

take pth power characters of each member of (2) with respect to p, which

gives

*-l     Irp/k]     I  x    l     amll'r]v\ I „ "v -m*»i(*)/(»+*)

We may write

(x + a'y\        (x + ß«y+ y(a' - ß") \

and by (4) the right hand member reduces to

Now
y»lp m yC-Dd =  1 (mod«),

since N(p) — 1 is divisible by n — 1 but « — 1 is prime to p.   Hence

{;} = '■
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and therefore
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íx + acy\        (ac — ßa\

Applying this to (5) and using the notation

we have, if we set
*-l     [rplk]

Z for  £     £ ,
v~.l r-1

(6)

Set

„, mkyq(k)
22l(<xmli:r] - ß") ■-^-I(a)

x + y
(moa p).

p-i
D. =   Ya d'I(ad - ß*).

d~l

To determine I(ac—ß") in terms of the D's, let di be any of the integers

1, 2, • ■ ■ , p — 1 and consider the sum

p-t    p-i
E     2Z dip-l-'d'I(ad - ß'),
,_0        d=l

which may be put in the form

-^      ay-1 - d»-1
(p- 1)1 (a"' -ß°)+ Z di-:--- I (a" - ß")

diT^d di — d
(mod p),

whence

- I(ad - ß°) = D0 + d*~2Di + d'-3Dt + • • • + dDp-t,

modulo p.   Applying this to (6) we may write, if p = (p — l)/2,

ti(k - l)Dom*-1 +  E(m[l :r])r-2Di

+  Z(«[l : r})*-*Dt + •• • + m( £[l : ryD^t - ^^-I(a)) m 0,
\ x + y       /

(7)

modulo p.   Let m range over the integers 1,2, • • • , p — 1.   We obtain,

from (7), (p — 1) congruences and since the determinant
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1

22

1

23

1

2p-i

(p - l)p-i

=  l\\i -J)(P-D\,

i > j,P-Í       (P-1)2       (P-  l)3

is not divisible by p, we have, modulo p,

Do =   Z[l : r]*->D_i m 0 (mod p)

(8) (s=2,3,--- ,p-2);

Yi[l:r]DP-2-^I(a)

But we also have*

(1 - ¿%

* + y

E[l:r]-

(mod p).

(mod />),

where bx= —§, Z>2a=( —1)°+1 5a, 62o+i = 0 (a>0), the B's being the numbers

of Bernoulli, Z?i = l/6, 52 = l/30, etc. Let k be a primitive root of p; then

¿'-1^0 (mod />), l<p-l, and alsof

-kq(k)=.   £[l:r] (mod />) ;

and since we may take another value of k to be p — 1, we have ?(/> —1)^0

(mod p), so that (8) becomes, modulo p, after division by kl — l and ?(£),

(8a) Do ■ b,+xD, = 0

y

(s= 1,2, • •• , p-3),

Dp-t = -
x + y

Ka).

2.    Now assume that in (1), y is divisible by p; then it is known that

/z -f- alx\

Kï=7) - "'
where q¡ is an ideal in fl(a), /^0 (mod />), and we also havej

ITil[i:*i ~ 1,

* Annals of Mathematics, (2), vol. 18, p. 114, relation 11.

f Annals of Mathematics, (2), vol. 18, p. 114, relation 12.

X Annals of Mathematics, (2), vol. 21 (1919), p. 74.
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where h ranges over the positive integers h<p which satisfy h+\rh\>p,

or, what is the same thing, the integers h such that, for q = l, 2, • ■ • , r,

q p a p
<h < —, 0 < r < p -1.

f+1 r

Here |fA| is the least positive residue of rh, modulo p and [1 : h] stands

for the integer i in hi = l (mod p). Then following the same method em-

ployed in the article just cited in deriving (2) of the present paper we find

with w an integer in 0(a)

[ (-)       = a»«'<»-»
k    \ l-oIi:*V

(9)

where g is some integer.   Let the ideal (p) = (l— a) and reduce each side

of (9) modulo (p2).    On the left we have

z + a[1:*]x z + x
-=-% = — x (mod (p2)),
I _ a[i = M        i _ aii-h]

since z+x is divisible by p and (p) = (p)p_1.    Also

a» = (l _ p)» = l _ gp (mod (p2)).

Then (9) gives, since a>p(p-1) = l (mod (p2)),

( - x)^"" « 1 - gP (mod(p2));

or
g = 0 (mod(p)),

and since g is rational,

g = 0 (mod p),

so that (9) may be written in the form

(10) n (z + «[1:A]x)p-1 = II (1 - of111*1)*-1«!',
h h

ü)i = cop_1.

Now if s is one of the Â's then p — s is not.    Also

(1 - a1) = a'(erl - 1)

so that

JJ (1 - a[i:*l) = aSIi:»l   TJ (a-li:*l - 1).
k h

But

n (i - a[i:A))(«_[i:*] -1) = ( - îyp,
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and therefore

II (1 - all:*1)p-1 = ( - l)'Va'î[i:il.

Then (10) gives

(11) IT (z + a[i:A]*)p-1 = ( - 1)»V*«BS*W».
k

Now employ the same process on (11) as was used to derive (8a) from (2).

Use the same ideal p and take ^th power characters in (11), noting that p

is prime to (z+acx), c^O (mod p).    We have

{;}-■
since

pa/p = p(n-l)d =  I (mo(J „)

sa 1 (mod p)

where d is an integer because n — 1^0 (mod p).   Also

1

since A7(p) — 1 is even for n odd.    Hence (11) gives

z + ali:h^x)2     (a)sli:hlJz + a[i:A1*|2     (ay
(12)

P

Now as in (4) iizy^O (mod n) there is an integer b in the set 0, 1, • • -, « — 2,

such that z-f^'y^O (mod p), and (12) gives

V  I P ) = Ipt

or putting ctm for a in (11)

2 2Zl(amli: h] - ß") = m 2~2 [l ■ h]l(a) (mod p).

In the same way that (7) was obtained we find if

p-i
Di =   E d*I(ad - ßh),

d=l

»Dim*-1 +  £ («[1 : h])*~2D{    + ¿Z (m[l : h\y~3Dl +■■■

(13)
/ ^ r D 1 : h\l(a) \

+ »ÍZ[1: A]ö,'-2 + 2 -) = °        (mod #.
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and in the same way that (8) was derived we have

D¿ =  Z[l : h]»->D!-i = 0 (mod/>)

(13a) (5 = 2,3, ••• ,p-2),

^r        ! Z[1:*U(«)
£ [1 : h]D¿ -t + -=±--— m 0 (mod p).

But also*

^r        . b,(r*—- (r+ l)p-«+ 1)
(13b) £[l:A]p- = --^—--— (modp),

s

(13c) S [1 : A] = - 'îW + (f + l)?(r + 1) (mod p).

Hence, selecting r so that rp~'— (f+l)p_'+1^0 (mod p), and proceeding

in a similar way with (13c) we obtain

D¿ =0,  b,+iDi s 0 (modp)

(14) (s= 1,2, ••• , p-3);

2Z>j,'_2 = - 1(a) (mod p).

3. Consider now the first case of the Last Theorem. The relations

(8a) were derived under the assumption that xy was prime to n. By as-

sumption x, y, and z are prime to each other. If one of these is divisible

by n then q(n) =0 (mod p) by Furtwängler's theorem. If a = 0, or (n —1)/2,

then the congruences 23>0=o«+i D„=0 (mod p) all vanish identically, that is,

if x + y=0 (mod n). Of the numbers x2—y2, x2—z2, and y2—z2 select one

not divisible by p, which is always possible. Let x2—y2 be such a number,

when, if n divides x2—y2, we have q(n)=0 (mod p) by Furtwängler's

theorem.    Hence the

Theorem I.   If
xp + yp + zp = 0

is satisfied in integers none zero and each prime to the odd prime p, then

q(n)D0 = 0, a(»)J?(,+i)/2Z), = 0 (modp)

(s= 1,3, ••• , p-4) ;

where

Dt=   £d«/(ad-/3"), |-1 =«'<«>,
*-i Kp)

* Vandiver, Annals of Mathematics, (2), vol. 18 (1917), p. 114, relation (13) and the one imme-

diately preceding.
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p is a prime ideal divisor of (n) in the field Q(aß), n being a rational odd

prime, ¿¿0 or 1 (mod p),

a —  e2irlp .      ß  _  gtiwUn-l)   .

0 is any integer in the field Q(otß), such that (0) is prime to p, a is some integer

in the set 1, ■ ■ • , n — 2, other than (n — l)/2; the B's being the numbers

of Bernoulli, Bx = 1/6, B2 = 1/30, etc.

Note that the above criteria are independent of *, y and z.

Now consider again the relation (8a).    If z = 0 (mod p) then q(n)=0

(mod p), since z^O (mod p) by Furtwängler's theorem,* and we have

Theorem II. // xp+yp+zp = 0 is satisfied in integers none zero and each

prime to the odd prime p, then

q(n)   £ ((1 - v)Dp-2 + 1(a)) m 0 (mod p),
a=l

where v has any one of the six values •', 1/t, l—l, 1/(1 —t), (t—l)/t, t/(t — l);

—x/y = l, the other symbols being defined as in Theorem I.

4. We now will treat the second case of the Last Theorem. Assume

in (1) that y is divisible by p and that :ryz^0 (mod n) ; then (8a) holds

with Dp-t=0 (mod p). If xy is prime to n and z=0 (mod n) then (8a)

also holds. Suppose, however, that y is divisible by n; then (14) holds.

If #=.0 (mod n) then a set of relations similar to (8a) hold. The relations

(8a) and (14) vanish identically, however, if a = 0 or (n —1)/2; that is,

ii x2—y2, z2—y2 or x2—z2 = 0 (mod n). Now suppose that x+z^0 (mod n).

If x—z=0 (mod n) we may employ (8a) instead of (14), since if x±y=0

(mod n) we have q(n)=0 (mod p).    Whence we have

Theorem III. If pis an odd prime and xv+yv+zv = 0 with y = 0 (mod p)

and xZféO (mod p), then either x+z=0 (mod n) or

q(n)Do = 0, q(n)Bis+x)/2Ds = 0 (mod p) (s = 1,3, ■ • • , p - 4),

and in addition one of the two relations

q(n)Dp-2 =• 0,  q(n)(Dp_t + 1(a)/2) = 0 (mod p),

is satisfied, the other symbols being defined as in Theorem I.

* Wiener Sitzungsberichte, Ha, vol. 121 (1912), pp. 589-92.
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In Theorems I and III, D, may be shown to be divisible by p for particular

values of 5 and n. For example, if n is a primitive root of p, it is easy to

show that D,=0 (mod p), s = l, 3, • • • , p—4.

From Theorem II of this article it is possible to deduce Theorem I of

the first paper under the present title,* but the proof is obviously much

more complicated than that given in the first paper.

5. In all the theorems given here and in the first paper it was assumed

that n?£l (mod p). However it is also possible to give analogous results

involving integers n which are of the form 1+wp. In this case the field

fi(iS) includes 0(a), and if we go through the same type of argument that

was employed to obtain (8a) and (14) we note that {y/p} is not necessarily

unity.    But we have

x+y = vv,

where v is an integer, whence y(l— ß")=vp (mod p) and therefore

{;} = {^T
Also if ß" is a power of a then q(n)=0 (mod p), provided y^O (mod p).

We then put
P-l /ad _ ßax

ad^ßa, and proceed as in the proofs in the present paper.

»These Transactions, vol. 28  (1926), pp. 554-560.

University of Texas,

Austin, Tex.


