ON THE BOUND OF THE LEAST NON-RESIDUE OF \(n \)th POWERS*

BY

J. M. VINOGRAĐOV

1. In my paper *On the distribution of residues and non-residues of powers* (Journal of the Physico-Mathematical Society of Perm, 1919) I demonstrated that the least quadratic non-residue of a prime \(p \) is less than

\[
p^{1/2\omega_2}(\log p)^2
\]

for all sufficiently great values of \(p \).

Using the same method one can establish a more general theorem:

Theorem I. If \(p \) is a prime and \(n \) a divisor of the number \(p - 1 \) distinct from 1, the least non-residue of \(n \)th powers modulo \(p \) is less than

\[
p^{1/2k}(\log p)^2; \quad k = e^{(n-1)/n}
\]

for all sufficiently great values of \(p \).

This bound may be considerably lowered, by means of very simple changes in our method. For example one can demonstrate the following theorems:

Theorem II. If \(p \) is a prime and \(n \) a divisor of the number \(p - 1 \) greater than 2, the least non-residue of \(n \)th powers modulo \(p \) is less than \(p^{1/8} \) for all sufficiently great values of \(p \).

Theorem III. If \(p \) is a prime and \(n \) a divisor of the number \(p - 1 \) greater than 204, the least non-residue of \(n \)th powers modulo \(p \) is less than \(p^{1/8} \) for all sufficiently great values of \(p \).

We prove finally the general theorem:

Theorem IV. If \(p \) is a prime and \(n \) a divisor of the number \(p - 1 \) greater than \(m^m \), where \(m \) is an integer \(\geq 8 \), the least non-residue of \(n \)th powers modulo \(p \) is less than \(p^{1/m} \) for all sufficiently great values of \(p \).

2. First we shall demonstrate Theorem I. We use the notations

\[
P = p^{1/2}(\log p)^2; \quad T = p^{1/2k}(\log p)^2; \quad k = e^{(n-1)/n},
\]

*Presented to the Society, September 9, 1926; received by the editors in January, 1926.

218
and assume that there are no non-residues of \(n \)th powers modulo \(p \) less than \(T \). Then only numbers divisible by integers greater than \(T \) and less than \(P \) can be non-residues of \(n \)th powers less than \(P \). But evidently, of such numbers, there are not more than

\[
\sum_{q > T} \left\lfloor \frac{P}{q} \right\rfloor,
\]

where \(q \) runs only over primes. Using the known law of distribution of primes, we may bring this expression to the form

\[
P \log \frac{\log P}{\log T} + O \left(\frac{P}{\log p} \right) = P \left(\frac{n-1}{n} + \log \frac{1 + \frac{4 \log \log p}{\log p}}{1 + \frac{4k \log \log p}{\log p}} \right) + O \left(\frac{P}{\log p} \right)
\]

\[
= \left(\frac{n-1}{n} + \frac{(4 - 4k) \log \log p}{\log p} \right) + O \left(\frac{P}{\log p} \right).
\]

On the other hand, according to my previous work, the number of residues of \(n \)th powers modulo \(p \) in the range

\[1, 2, \ldots, [P]\]

may be given as follows:

\[
\frac{[P]}{n} + \Delta; \quad |\Delta| < p^{1/2} \log p.
\]

Thus the number of non-residues in the same range may be expressed by the formula

\[
P \left(\frac{n-1}{n} \right) + \rho; \quad |\rho| < p^{1/2} \log p + 1.
\]

Hence

\[
P \left(\frac{n-1}{n} \right) + \rho \leq P \left(\frac{n-1}{n} + \frac{(4 - 4k) \log \log p}{\log p} \right) + O \left(\frac{P}{\log p} \right)
\]

which brings us to the inequality

\[(4k - 4) \log \log p \leq O(1),\]

which is impossible for sufficiently great \(p \). This proves Theorem I.
3. To prove Theorem II, let

\[P = \rho^{1/2} (\log \rho)^2 ; \quad T = \rho^{1/6}, \]

and assume that there are no non-residues of \(\eta \)th powers modulo \(\rho \) less than \(T \). Then only numbers divisible by primes greater than \(T \) and less than \(P \) can be non-residues less than \(P \). The number of such numbers is evidently equal to

\[
\sum_{q>T} \left(\frac{P}{q} \right) - \sum_{q>T} \frac{1}{q} \log \frac{P}{q} + O \left(\frac{\log \log P}{\log \rho} \right),
\]

where \(q_1, q_2 \) run over primes.

But, according to the law of the distribution of primes, the first sum may be written

\[
P \log \frac{\log P}{\log T} + O \left(\frac{P}{\log \rho} \right) = P \log 3 + O \left(\frac{P \log \log \rho}{\log \rho} \right),
\]

which for sufficiently great \(\rho \) is less than

\[P \cdot 1.0987. \]

The second double sum may be put into the form

\[
P \sum_{q>T} \frac{1}{q} \log \frac{(P/q)}{\log \rho} + O \left(\frac{P}{\log \rho} \right) = P \sum_{q>T} \frac{1}{q} \log \frac{\rho^{1/6}}{\log q} + O \left(\frac{P \log \log \rho}{\log \rho} \right).
\]

But applying the law of distribution of primes we have

\[
P \int_{\rho^{1/6}}^{\rho^{1/2}} \log \frac{\rho^{1/2/z}}{\log z} \cdot \frac{dz}{z \log z} + O \left(\frac{P \log \log \rho}{\log \rho} \right)
\]

\[
= P \int_{1/3}^{1/2} \log \frac{1 - u}{u} \cdot \frac{du}{u} + O \left(\frac{P \log \log \rho}{\log \rho} \right),
\]

which, for \(\rho \) sufficiently great, is greater than

\[P \cdot 0.147. \]

The last triple sum evidently is a quantity of the order

\[P \frac{\log \log \rho}{\log \rho}, \]
so that the expression (1) for sufficiently great p is less than

$$P(1.0988 - 0.147) = P \cdot 0.9518.$$

On the other hand, the number of non-residues of nth powers modulo p in the series

$$1, 2, \ldots, [P],$$

as seen in § 2, is equal to

$$P \left(1 - \frac{1}{n}\right) + O \left(\frac{P}{\log p}\right).$$

So, for p sufficiently great, we have the inequality

$$P \left(1 - \frac{1}{n}\right) < P \cdot 0.952.$$

The impossibility of this inequality for $n > 20$ proves Theorem II.

4. To prove Theorem III we let

$$P = p^{l/3}(\log p)^2; \quad T = p^{1/3},$$

and assume that there are no non-residues of nth powers, modulo p, less than T. It is easy to show that the number of such numbers is less than

$$(2) \quad \sum_{q > T}^p \left[\frac{P}{q} \right] - \sum_{q > T}^{p^{l/3}} \sum_{q_1 > q}^P \left[\frac{P}{qq_1} \right] + \sum_{q > T}^{p^{l/3}} \sum_{q_1 > q}^P \sum_{q_2 > q_1}^P \left[\frac{P}{qq_1q_2} \right],$$

where q, q_1, q_2 run over primes only.

Applying the known laws of distribution of primes, we can put this expression into the form

$$\sum_{q > p^{l/3}} \frac{P}{q} - \sum_{q > p^{l/3}} \sum_{q_1 > q} \frac{P}{qq_1} + \sum_{q > p^{l/3}} \sum_{q_1 > q} \sum_{q_2 > q} \frac{P}{qq_1q_2} + O \left(\frac{P \log \log p}{\log p}\right).$$

The first sum may be put into the form

$$P \log 4 + O \left(\frac{P}{\log p}\right)$$

which for sufficiently great p is less than

$$P \cdot 1.3863.$$
Then as in the proof of Theorem II the second double sum may be given in the form

\[P \int_{1/4}^{1/2} \frac{1 - u}{u} \frac{du}{u} + O \left(\frac{P}{\log \rho} \right), \]

which for sufficiently great \(\rho \) is less than

\[P \cdot 0.40609. \]

It remains to estimate the third triple sum. We have

\[\sum_{\sigma_1 < \sigma_{1/4}/q_1 > v} \frac{P}{qq_1 q_2} = \frac{P}{q} \int_{1/4}^{1/4 \sigma_{1/4}/q_1} dy \frac{dy}{y \log y} \cdot \frac{1}{ \log \rho - \log q - \log y } \]

Noting this, it is easy to obtain

\[\sum_{\sigma_1 < \sigma_{1/4}/q_1 > v} \sum_{\sigma_2 > q_1} \frac{P}{qq_1 q_2} = \frac{P}{q} \int_{1/4}^{1/4 \sigma_{1/4}/q_1} dz \frac{dz}{z \log z} \cdot \frac{1}{ \log \rho - \log q - \log y } \]

The third triple sum may be given in the form

\[P \int_{1/4}^{1/6} \frac{dv}{v} \int_{1/4 - v/2}^{1/4 - v/2} \frac{dz}{z} \left(\log \left(\frac{1}{2} - v \right) - \log z - \frac{z}{2} - \frac{z^2}{(1 - v)^2} \right) + O \left(\frac{P}{\log \rho} \right) \]

Introducing in the first integral the substitution

\[\frac{1}{2} - v = u, \]
and in the third the substitution
\[\frac{v}{h - v} = u, \]
we easily obtain
\[P \int_2^\infty \log \frac{u}{2} \log 2u^{1/2} \frac{du}{1 + u} - P \left(\frac{1}{2} + \frac{1}{4 \cdot 4} + \frac{1}{8 \cdot 9} + \cdots \right) \log \frac{4}{3} \]
\[+ P \int_{1/2}^{1/3} \left(1 + \frac{1}{4} u + \frac{1}{9} u^2 + \cdots \right) \frac{du}{1 + u} + O \left(\frac{P}{\log p} \right). \]
But this expression for sufficiently great \(p \) is less than
\[P \cdot 0.01489. \]
Comparing this result with those obtained for simple and double sums we find that the expression (2) for sufficiently great \(p \) is less than
\[P(1.38631 - 0.40609 + 0.01489) < P \left(1 - \frac{1}{205} \right), \]
whence, reasoning as in Theorem II, we prove Theorem III.

5. Passing to the demonstration of Theorem IV let us prove first the following lemma:

Lemma. If \(k \) be a positive number increasing indefinitely, and \(s \) an integer \(\geq 2 \), then the number \(T \) of numbers less than \(t, \) and not divisible by primes greater than \(k, \) where \(t, \) is any number satisfying the condition
\[k^s < t \leq k^{s+1/(s+2)}, \]
is greater than
\[\frac{t,}{s!(s + 2)^s} \]
for all sufficiently great values of \(k. \)

Demonstration. Let
\[\epsilon = \frac{1}{s + 2}. \]
(i) Taking any number \(t_1 \) such that
\[k < t_1 < k^{2-2s}, \]
we find a lower bound of the number T_1 of numbers which are $\leq t_1$ and divisible at least by one prime greater than $k^{1-\varepsilon}$ and $\leq k$. Evidently

$$T_1 = \sum_{q > k^{1-\varepsilon}} \left\lfloor \frac{t_1}{q} \right\rfloor,$$

where q runs over primes only. Considering certain laws of distribution of primes, this number may be written in the form

$$t_1 \log \frac{\log t_1}{(1 - \varepsilon) \log k} + O\left(\frac{t_1}{\log k}\right).$$

But this last expression is greater than

$$t_1 \log \frac{1}{1 - \varepsilon} + O\left(\frac{t_1}{\log k}\right),$$

which for sufficiently great k is greater than εt_1.

So for sufficiently great k we have

$$T_1 > \varepsilon t_1.$$ (ii) Taking any number t_2,

$$k^2 < t_2 \leq k^{3-2\varepsilon},$$

we find a lower bound of the number T_2 of numbers which are $\leq t_2$ and divisible by the product of any two primes, greater than $k^{1-\varepsilon}$ and $\leq k$. Products differing in the order of divisors, we shall consider as different.

Let q be a prime greater than $k^{1-\varepsilon}$ and $\leq k$. The numbers not surpassing t_2 and divisible by q are

$$q, 2q, \ldots, \left\lfloor \frac{t_2}{q} \right\rfloor q.$$

Consequently, we must find how many numbers of the series

$$1, 2, \ldots, \left\lfloor \frac{t_2}{q} \right\rfloor$$

are still divisible by primes greater than $k^{1-\varepsilon}$ and $\leq k$. Since

$$k = k^{2-1} < \frac{t_2}{q} < k^{3-2\varepsilon-(1-\varepsilon)} = k^{2-2\varepsilon},$$
then, according to (i), we find that this number for sufficiently great k
is greater than

$$\frac{c}{q}t_x.$$

Hence, as in (i), we find that

$$T_2 > e^2t_x$$

for all sufficiently great values of k.

(iii) Arguing thus, we finally find that, if t_x is any number satisfying
the condition

$$k^s < t_x \leq k^{s+1-(s+1)s},$$

and T_s denotes the number of numbers $\leq t_x$ and divisible by the product
of s primes greater than k^{1-s} and $\leq k$ (considering as different the products
with different order of divisors), then for sufficiently great k

$$T_s > e^2t_x = \frac{t_x}{(s + 2)^s}.$$

Noting that

$$T > \frac{T_s}{s!},$$

we prove the lemma.

Demonstration of Theorem IV. We have seen that, if n is a divisor
of $p - 1$ differing from 1, the number R of residues of nth powers modulo p
less than $p^{1/2}(\log p)^2$ can be written in the form

$$R = \frac{p^{1/2}(\log p)^2}{n} + O \left(p^{1/2} \log p \right).$$ (3)

Taking any integer $m \geq 8$, and letting $k = p^{1/m}$; $s = m/2$ for m even;
$s = (m+1)/2$ for m odd, according to the lemma the number of numbers
less than $p^{1/2}(\log p)^2$, divisible only by primes less than $p^{1/m}$, is for p suffi-
ciently great, greater than

$$\frac{p^{1/2}(\log p)^2}{s!(s + 2)^s}.$$

Assuming that among the numbers less than $p^{1/m}$ there are no non-residues
of nth powers modulo p, we have

$$R > \frac{p^{1/2}(\log p)^2}{s!(s + 2)^s}.$$
Comparing this inequality with equation (3) we have
\(\frac{1}{n} + O\left(\frac{1}{\log p} \right) > \frac{1}{s!(s + 2)^s} \) whence \(n < s!(s + 2)^s + \delta \), where \(\delta \) goes to 0 with increasing \(p \). But applying the formula of Stirling, we have \(s!(s + 2)^s < m^m \), from which it follows that, for sufficiently great values of \(p, n < m^m \), which is impossible for \(n > m^m \). This proves the Theorem IV.

Remark. Evidently the bound \(n > m^m \) is very rough. Thus, with \(m = 8 \), we get here the inequality \(n > 16777216 \) instead of the inequality \(n > 204 \) found above.

6. We know that to find a primitive root of a prime \(p \) it is enough, having found different primitive divisors \(2, q_1, q_2, \ldots, q_r \) of the number \(p - 1 \), to find one further non-residue \(v_0, v_1, \ldots, v_r \) of each of the powers \(2, q_1, \ldots, q_r \). By means of the numbers \(v_0, v_1, \ldots, v_r \) it is quite easy to find the primitive root. Applying the established theorems it is easy to prove that

(i) If \(p \) is sufficiently great, all the numbers \(v_0, v_1, \ldots, v_r \) are found in the range
\[
1, 2, \ldots, \lfloor p^{rac{1}{2e} / (\log p)^2} \rfloor.
\]

(ii) If \(p \) is not of the form \(8N + 1 \), and the numbers \(q_1, q_2, \ldots, q_r \) are sufficiently large, then instead of the range (4) we can take shorter ranges, depending on the lowest bound \(Q \) of the numbers \(q \). For example, if \(Q > 20 \), we take the range
\[
-1, 1, 2, \ldots, \lfloor p^{1/e} \rfloor;
\]
if \(Q > 204 \), then
\[
-1, 1, 2, \ldots, \lfloor p^{1/8} \rfloor,
\]
and finally if \(Q > m^m \), when \(m \) is an integer \(\geq 8 \),
\[
-1, 1, 2, \ldots, \lfloor p^{1/m} \rfloor.
\]

These results can be formulated in a different manner.

(i) If \(p \) is a sufficiently great prime, then a complete system of residues modulo \(p \) can be got by multiplying the powers of the numbers of the range (4).

(ii) If \(p \) is not of the form \(8N + 1 \), and all the numbers \(q_1, q_2, \ldots, q_r \) are not less than \(Q \), then instead of the range (4) we can take the range (5) for \(Q > 20 \), the range (6) for \(Q > 204 \), and finally the range (7) for \(Q = m^m; m \geq 8 \).

Leningrad, Russia