
ON THE "THIRD AXIOM OF METRIC SPACE"*

BY

V. W. NIEMYTZKI

1. In his thesis Fréchetf defines a metric space% or class (D) as a class

of elements, the relations among which are established by means of a function

of pairs of elements of this class. For any two elements x and y of class (D)

this function p(x, y) must satisfy three requirements, which we shall call

the axioms of metric space.

Axiom I.   (Coincidence Axiom.) p(x, y)=0, when and only when x=y.

Axiom II.   (Axiom of Symmetry.) p(x, y) =p(y, x).

Axiom III.  (Triangle Axiom.) p(x, y) =p(y, z)+p(z, x).

It is evident that the metric spaces are cases of the topological spaces of

Hausdorff.§ In addition, Fréchet has considered spaces or classes of elements

which he calls classes (E). These are classes of elements, the relations among

which are established by means of a function 8(x, y) satisfying the coincidence

axiom and the axiom of symmetry. A class (E) which is also a topological

space of Hausdorff will be called a symmetric space.

It is the purpose of the present paper to present a generalization of the

seventh theorem of a joint paper by A. D. Pitcher and E. W. Chi tienden ||

concerning the investigation of Axiom III. These authors considered spaces

defined by functions 8(x, y) satisfying Axioms I and II together with one

or more of the following three conditions :

(1) (Ch)f      lim5(x„,x ) = 0,    limä(af»,y„) = 0,    imply lim 8(yn,x ) = 0 ;

(2) lim5(*„,* ) = 0,    limá(y„,x ) = 0,    imply lima (xn, yn) = 0 ;

(3) lim5(x„,y„) = 0,    lim5(y»,z„) = 0,    imply lim5(xB,zn) = 0 ;

where {xn}, {y„}, and {z„} are sequences of elements of the given class (E).

The theorem cited may be stated in the following form : A compact coherent

class (E) is a compact metric space.**

* Presented to the Society, September 9, 1926; received by the editors in September, 1926.

f Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Matemático di Palermo,

vol. 22 (1906).
Î The term is due to Hausdorff; Grundzüge der Mengenlehre, Leipzig, Veit, 1914, p. 211.

§ Loe. cit., p. 213.

|| These Transactions, vol. 19 (1918).

H A space in which this condition is satisfied is coherent in the terminology of Pitcher and Chit-

tenden.

** That is, it is possible to define in terms of the given function S(x,y) an infinitesimally equiva-

lent function p(x, y) which satisfies the three metric axioms.
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The theorem to be proved is as follows.

Theorem. A symmetric space in which the condition (Ch) is satisfied is

a metric space.

I shaU give two demonstrations of this theorem : one, based entirely on

the method developed by Pitcher and Chittenden; another, based on the

methods and results of the Russian school.

2. Lemma. If the condition (Ch) is satisfied in a class (E) the following

condition is also satisfied :*

limoi(x„,y„) - 0,   limoi(y„,z„) = 0,   imply lim Si(xn,zn) = 0.

Let x and y be two arbitrary elements of the given class(£). Let S(x, y)=v.

Consider the foUowing :   (1) the points of type z' satisfying the conditions

&(x,z') á n,   «(y,«') > 2n ;

and set di = lim sup 5(y, z'); (2) the points of type z" satisfying the con-

ditions

S(y,z") = v,    S(x,z") > 2, ;

and set dz = Um sup S(x, z").\   If we write do = (a\+dí)/2, it follows im-

mediately that d0=zri.

Denote da by 5i(a;, y). It is evident that ôi(x, y) = S(x, y). Then, to show

the equivalence of the functions Ôi(x, y), ô(x, y), it is sufficient to prove that

limS(xn,x) = 0   implies   lim 5i( a:,,,*) = 0.

Suppose this is not true.   Then there is an element x and a sequence {xn}

such that

limo(*B,z) = 0,     Si(x„,x) = v > 0    (n = 1,2,3, ••• ).

Therefore by the definition of ôi(x, y) there exist points z„ which are either

of type z' for infinitely many integers n or of type z".

If infinitely many of the points z are of type z', a sequence {zni} exists such

that

lim ¿(a^Zn'i) = 0,    lirn8(xni,x) = 0,

8(zn'i,x) = v > 0 (i = 1,2,3, • • • ).

But this contradicts the condition of the lemma.

* Relative to a different function Si(x, y), equivalent to S(x,y).

t In case there are no points z', z" of these types, let &,(x, y) =&(x, y).
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If infinitely many of the points zn are of the type z" there exists a sequence

{z'B<} such that

lim8(xni,x) = 0, lim8(zn'i,x) = 0, 8(xni,Zni) ^ n > 0       (i = 1,2,3, • • •)•

But this is also impossible by condition (Ch) and a theorem of Pitcher and

Chittenden.*

The equivalence of the functions 8x(x, y) and 8(x, y) is established.

It will now be shown that the function 8x(x, y) satisfies the condition of

the lemma. Suppose that it does not, then two cases may occur.

(i) There are sequences {*„}, {yn}, and {z„}, which do not satisfy the

requirement of the theorem either by the old definition of the distance

function or by the new one. Then we have

lim5(zB,yB) = 0,    lim8(y„,zn) = 0 ,   8(xn,zn) > ij (« = 1,2,3, • • •) ;

limSi(*n,y„) = 0,   lim5i(y„,z„) = 0,    5i(*„,z„) > i?       (n = 1,2,3, • • •)•

Let us take N large enough to have

8i(xn,yn) á n/2,       Si(y„,zB) = n/2 (n = N).

The same inequalities are satisfied by 5(^5i), that is,

«(*»,?») = n/2,    8(yn,Zn)èn/2 (n^N).

There are two sub-cases:

(1) 8(Xn,yn)   = í(yn,Zn)   \ (2)   8(Xn,yn)  > 8(yn,Zn).

In the first case we denote ô(y„, z„) by e' and obtain

8(yn,Zn) = e', 8(xn,yn) = e', 5(z„,z») > r, = 2e'.

It then follows from the definition of the function oi(*, y) that ¿¡i(x„, y„) >n,

a contradiction.

If we denote o(a;„,yn) in the second case by e" a similar contradiction is

obtained.
(ii) There exist sequences {«„}, {y„}, {z„}, which satisfy the conditions

of the theorem by the old definition of the distance function, but not by the

new one.   Then we should have

* Loc. cit., Theorem 1. This theorem is equivalent to the following statement: In every coherent

class (E) it is possible to define the function S(x, y) so that condition (2) is satisfied.
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limô(*n,y„) = 0,   limS(y„,zB) = 0, lhnS(xn,Zn) = 0 ;

lim5i(*„,y„) = 0, limoi(yB,z„) = 0, Si(xn,zn) > v > 0      (n = 1,2,3, • • • ).

It foUows that a sequence {wni} exists such that

limo(a;Bi,wB<) = 0,    o(a»Bi,zBj) > 0 > r¡    (i = 1,2,3, •• •),

or vice versa. Because of the complete symmetry, we need consider only the

first case. About the sequence (íü«) we can make the two following sup-

positions :

(1) lim5(wn.-,yB.) = 0 ;    (2) «(a»Bj,yB<) > ij > 0  (i - 1,2,3, • • ■).

Let us consider them separately. In the first case it follows readily from the

definition of 8i(x, y) that

lim sup5i(yB<)zBi) |tj>0,

which contradicts the hypothesis.   In the second case we have similarly

Urn sup Si(xni,yni) = ij > 0.

This completes the proof of the lemma.

Pitcher and Chittenden have proved that the distance function of the

lemma is equivalent to a uniformly regular écart.* It therefore follows from

the lemma and the fundamental result of Chittendenf on the equivalence

of "écart régulier" and distance that the theorem proposed is completely

proved. Í
3. In this section the theorem of § 1 is demonstrated by means of new

methods and with a new formulation of special interest.

Definition. A topological space R satisfies the local axiom of the triangle,

if for every element x and positive number e a number -qx may be found such that

(F) 5(x,y) g 7J*,    S(x,y) = r\x  imply S(x,z) = e.

To facilitate the following proof we write the condition (F) in the follow-

ing form.

* Theorem 4, loc. cit.

t These Transactions, vol. 18 (1917).

X In the statement of this theorem we have supposed that the class (E) is topological in the sense

of Hausdorfi, but we have not used this condition. It is not difficult to prove the following theorem:

A class (E) satisfying the condition (Ch) is a topological space of Bausdorff.
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For every element x and positive number e there exists an vx and a region*

Gx such that if 8(x, y) <nx and 8(y, z) <vx, then

(N) tcG, cS(x,t).\

Theorem. Every symmetric space R in which the local axiom of the triangle

is satisfied is a metric space.

From condition (N) there exists for every point of the space R a sequence

of spheres

Si ,SS ,Si , ■ ■ ■ ,Sxk = S(x,ek* ), • • • (lim ./ = 0),

satisfying the following condition :

(B) Every sphere St contains a region G* such that for every point y of

Sxi+i,S(y, *7+,)cG?.

The families of regions

n, = (GO, Ht = (GÍ), ■■■ ,uk = (G¡), ■ ■ ■

form a sequence of coverings of the space R whose properties we shall in-

vestigate.t

Let z be an element of Gkx,Gyk. Then for the corresponding spheres

5| and Syk, we have zcSkx'Syk. Let the radius of Sxk be 71, and the radius

of S\ be 72, and let the notation x, y be chosen so that 72 Í 7,.

By the axiom of symmetry we have

8(z,x)<yx,       5(z,y) < 72 ^ 7i-

If we describe about the point z a sphere of radius 71 it will contain the points

x and y. From condition (B) we have

Sf-i = Sh*+S(z,yi).

Let the radius of 5f_i be 73 (72^7i<73)- Describe about the point y a

sphere of radius 73. This sphere will by construction include the sphere

Skv.  A second application of condition (B) shows that

S£-t = Sé>-i + S(y,yt).

* By a region we understand the complement of a closed set.

j Consider the sphere S(x, e) of center x and radius e. As the space R is topological in the sense of

Hausdorff, there exists a region Gx which contains x and is a subset of S(x, e). Likewise, Gx contains a

sphere S(x, t'). Let us choose, in accordance with condition (F), a number vx such that if S(x, y)^i¡„

*(y, z) â Vx, then S(x, z) < e'. The number r\x evidently satisfies condition (N).

J P. Alexandroff and P. Urysohn (Comptes Rendus, vol. 177, p. 1274) have defined a covering

as a collection of regions such that every point of the space belongs to at least one of them.
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Furthermore, there exists a region Gk-s such that

(K) Sf-, = Gis a Sf + Skv a Gkx + Gkv.

We now consider the chain of coverings

ni, n,', • • • ,uk', ■ ■ ■

obtained by setting

Uk    =   IIgfc+1.

It will be shown that this chain is regular and complete.* That the chain is

regular follows from its construction. Let us prove it complete.

Let Gi, Gs, • • ■ , Gk, • • ■ be a sequence of regions such that Gk contains

a point x for every value of k, and Gk belongs to the covering 11*. Since each

of the sets Gk is a region, every Gk contains a neighborhood of the point x.

Suppose that U is a neighborhood of x which contains no set Gk. Consider

the sequence of spheres S?k of radius e* (lim «* = 0), such that

GkVk c SO/".

Then lim 8(x, y)=0, obviously, and therefore yk must, for sufficiently large

values of k, belong to U. Let z* be a point of Gk, which does not belong to U.

Since U is a neighborhood of the point x it contains a sphere S(x, e). We

have h(zk, x) = e. But lim 5(z, y*)=0, lim S(yk, z*)=0. This contradicts

condition (F).

Since P. Alexandroff and P. Urysohn have shownf that every topological

space of Hausdorff which admits a complete and regular chain of coverings

is a metric space the proof of the theorem is complete.

To complete the proof of the theorem of § 1 it is required to show that

the condition (Ch) is equivalent to the local axiom of the triangle.

If condition (Ch) is fulfilled, condition (F) is also satisfied. Otherwise

there exist a point x and a positive number e, such that for every smaU

positive number -q there will exist points y and z satisfying the inequalities

S(x,y)<ry,    8(y,z)<ry,    S(x,y) =■ e.

* P. Alexandroff and P. Urysohn (loc. cit.) have called a chain of coverings complete if for any

point x of the space R, and any regions Vi, V¡, ■ • • , Vn, • • • containing * and belonging to n,, Hi,

• • • , n„, ■ • • respectively the sequence {7»} defines the point x in R, that is, it is a complete

system of neighborhoods of the point x; and a chain of coverings regular if the following condi-

tion is fulfilled: for every integer n and for arbitrary regions V„ and Wn of a covering n„ there exists

in n„_i a region Vn-i containing both Vn and Wn.

t Loc. cit.
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Choose vi, Vi, V», ■ ■ • , Vn, ■ ■ ■ (lim »?n = 0), yx, y2, • • • , y„, • • • and zx,

zi, ■ ■ ■ , Zn, ■ ■ ■ correspondingly, so that we will have

lim sup5(a;,yn) = 0,    lim sup S (y„,z„) = 0,    lim supo (x,z„) ^ t.

Then the condition (Ch) is not satisfied as we assumed.

Suppose that condition (F) is satisfied and that condition (Ch) is not.

Then there are a point *, a positive number e, and a pair of sequences {y„},

{z„} of points such that

lim supÓ"(#,y„) = 0,    lim sup 5(y„,z„) = 0,    lim sup5(¡c,z„) = e.

For this value of e one cannot choose a number r¡x to satisfy condition (F),

contrary to hypothesis.

This completes the proof.

But the investigation of the third axiom is not completed, for those

topological conditions which imply the local axiom of the triangle are left

undetermined. I intend to investigate this question more closely in my next

paper.

Moscow, Russia


