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Chapter 1. Introduction

This paper is given to the discussion of the integral equation in which the

kernel K(x, £) is continuous, but possesses first partial derivatives which are

discontinuous along the line £=#. It is closely related to a previous paperf

in which the case of a discontinuous kernel has been treated. The motivation

of the problem and the origin of the work is there discussed. Suffice it to

remark here that the present paper originated in a thesis prepared under

Birkhoff and presented at RadcUffe CoUege in 1921. J

The integral equation with a kernel having the properties of discontinuity

mentioned above is also the subject of a recent paper by A. Hammerstein.§

He considers, however, only the case in which the kernel is also symmetric.

Assuming the existence of infinitely many positive characteristic values he

obtains an asymptotic form for the characteristic functions.

The present paper, without the hypothesis of symmetry, establishes the

existence and derives the asymptotic forms of the characteristic values, and

gives for the characteristic functions an asymptotic expression which is

considerably more expUcit than that obtained by Hammerstein for a more

restricted case. The closure of the set of solutions is discussed and the problem

of the expansion of an arbitrary function in a series of solutions is treated.

The methods used are on the whole the same as those used in the earlier

paper referred to above, and where the procedure is simüar it has been passed

over briefly here. One improvement, however, which is also applicable to the

case there treated may be mentioned, namely, the proof that the set of

characteristic functions is closed has been materiaUy simplified. This

was accompUshed by the use of an extension of Birkhoff's theorem on

* Presented to the Society, December 28, 1926; received by the editors December 1, 1926.

t Langer, these Transactions, vol. 28 (1926). This paper will be referred to in the text simply as

paper 1.
X By Eleanor Pairman, now Mrs. Eleanor P. Brown.

§ Über die asymptotische Darstellung der Eigenfunktionen linearer Integralgleichungen, Mathe-

matische Annalen, 1924, p. 113. Cf. also his paper in Mathematische Annalen, 1926, p. 102, where an

analogous situation for the integral equation in two variables is treated.
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closure, and of a general theorem on the closure of the solutions of an in-

tegral equation.*

The final chapter outlines the theory of an equation which does not

satisfy the general hypotheses made, and shows that under such circumstances

the solutions may differ radically in character from those of the cases more

fully treated.

Chapter 2. The normalization of the equation

1. The type of equation treated. The integral equation to be discussed is

of the form

(1) y(0+X2Jr(/,r)y(r)dr = 0,

where X is a complex parameter, while the kernel Y(t, t) is real and satisfies

the following hypotheses:

(i) Y(t, t) is continuous in the region

_ ( a < t =" ß

l   a^r^ß,

and possesses partial derivatives of order 2 which are continuous in the open

regions

_   (   a = t <l _    (   t < t < ß

R'\ R"\
I  a = í á-j8, l  a-Zt^ß,

and approach finite limiting values on the boundary r = t.

(ii) T,(t,T)~\ =0(0*0.
J r-i-

(iii) The functions

d2T(t,r) -|'='+(t,r) I-""

-'dr'   JT=,_dt2~

each possess a continuous derivative on the interval (a, ß).

0" = 0,1,2)

* Langer, Three theorems on closure of biorthogonal systems of functions, Bulletin of the American

Mathematical Society, vol. 33 (1927), pp. 97-105. We note here that in this paper the require-

ment that the solutions of the equation numbered 8 form a biorthogonal set should have ap-

peared as part of the hypothesis.
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2. The change of variables. Under the hypotheses made the function

cp(t) possesses a continuous derivative of second order.* There is no loss of

generality moreover in assuming tf>(t) >0.  The quantities

(2) x-    f{tt,(t)}mdt,       i=    f{*(r)}1/2dr
J a Ja

may serve, therefore, as new independent variables.    In terms of them

equation (1) takes the form

(3) y(x) = X2 f n(x,0y(Z)dli,
Ja

where

y(x)^y(t), a = 0, b=  Ç {tp(r)}mdr,

and

fi(*,£) - -
{*(r)\m

The kernel Q(x, £) of this equation is continuous, while

](-x+

m - 1.
i-x-

Let the function yp(x) be defined now by the relation

-lt-x+

&**(*,£) =t(x).
J i-x-

Then with the introduction of

/a\ i   ^ »/   \ X.W)f'+ixidz
(4) u(x) = y(x)e

as a new dependent variable the equation (3) in turn takes the form

(5) u(x) = X2   f Q(x,i)u(k)di,
Ja

where

Q(x,t) = Sl(x,Ç)e     «

It is to be observed that

=0.
i-x-

Cf., e.g., paper 1, §2.
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3. The equation of normal form.* The kernel Q(x, £) may possibly be

orthogonal on the interval (a, b) to certain continuous functions either of x

or of £, and if this is the case either equation (5) or its associated equation

will fail to satisfy certain hypotheses which must subsequently be made.

We shall make, then, the following hypothesis concerning the given equation,

namely:

(iv) The kernel Q(x, £) is orthogonal to at most a finite number r of linearly

independent functions ipi (x) or to at most a finite number í of linearly in-

dependent functions <£<(£), these functions being possessed of continuous

derivatives of order 2. If r*0, s*0, then with proper assignment of sub-

scripts the system of functions

[<bi(x),Ux)} (i - 1,2, • • • ,p)

may be made biorthogonal and normal, f where p is the lesser of the two

integers r and s, or p=r=s.

Under this hypothesis we may suppose that

(6) f (t>i(x)P,(x)dx = Sa (i,j - 1,2, • • • ,p),
Ja

where ô<,- is zero or one according as iw*j or i =j.

Consider now the integral equation

(7) «(x) = X2   f K(x,t)uWZ,
Ja

where

K(x¿) = Q(x,l¡) +   Í,<t>i(x)HU.
t-i

If we assume the kernel of this equation to be orthogonal on (a, b) to a con-

tinuous function a(x), it follows that

f Q(x,t)a(x)dx +   ¿ U&  f 4>i(x)o(x)dx = 0.
Ja t—1 Ja

Multiplying this equation by <bk(x) and integrating we find because of (6)

that
,b

(bk(x)o-(x)dx =0 (A = 1,2, ••• ,p),
/

* This step in the normalization was not made in paper 1, but is equally applicable to the

problem there treated.

t Cf. Goursat, Cours d'Analyse, vol. 3, p. 392.
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and hence because of the preceding equation that xr(x) must be orthogonal

also to Q(x, £). Accordingly a(x) must be a linear combination of the func-

tions ypi(x) and since it is orthogonal to <pk(x) it follows that iip=r then a=0.

Simüarly it can be shown that if K(x, £) is orthogonal to a continuous

function co(£), then <o=0 if p = s. It wiU be recaUed that either p=r, or p=s,

or both.

It is clear that the features of discontinuity of the kernel Q(x, £) are

preserved in the kernel K(x, £). If the definitions of the partial derivatives

of K(x, {■) are completed by assigning to them on the Une l-=x their Umiting

values as £—>x, l-<x the equation (7) wiU be said to represent the normal form.

Its distinguishing characteristics are the following :

(A) There exists either no function of x or no function of £ which is con-

tinuous with its second derivative, is orthogonal to K(x, £), and is not

identically zero.

(B) K(x, £) is continuous in the region

a = x ;£ a

a á f ^ b,

and possesses partial derivatives to those of order « ^ 2 which are continuous

in the regions

( oáU* ( x<£ = b
Ri< and      Rs\

( a ^ x ^ a, (  a ^ x á a,

and in the latter region approach finite limiting values at each point of the

boundary £=#.

--1, Kt(x,&\       -1.
i-z J(-x

]t-z+ -|t-*+ -li-*+

^ Kx((x,lt) = Ktt(x,Q m 0.

4. The relation between the given equation and the normal equation.

Inasmuch as the functions Q(x, ¿) and £*-i0<(*)^i(0 are orthogonal, the

sets of characteristic values and functions of (7) are composed respectively

of the corresponding sets for the two equations, namely (5), and the equation

with kernel T,'-M*)H&*

*

* Goursat, Cours d'Analyse, vol. 3, p. 402.
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This latter equation is found, however, to admit of the single character-

istic value X = l, with <j>x(x), • ■ • , <pP(x) constituting a complete set of

characteristic functions.

Theorem 1. Every integral equation of type (1) whose kernel possesses the

properties (i), (ii), (iii), (iv) may be associated with an equation of normal form

as defined above.

Chapter 3. Transformation of the integral equation into

an integro-differential system

5. The auxiliary differential system. We shall make the hypothesis

that for the normal integral equation in hand the number « under property

(B), §3, satisfies the relation

(v) « = 4.

Then we consider in conjunction with this equation the differential system

y"(x) = 0,
(8) '

Li(y) = p.iy(a) + pay'(a) + vixy(b) + vny'(b) =0 (i - 1,2),

and its adjoint system

z"(x) = 0,

Mi(z) = flnz(a) + pitz'(a) + vixz(b) + vi2z'(b) = 0.

The coefficients p,„ j\, will be regarded as parameters to be chosen arbitrarily

subject to the restriction that they shall not satisfy certain relations (finite

in number) which arise in the deductions. Thus to begin with

(9) pa,Vij shall be chosen so that system (8) is incompatible.

This restriction insures the existence of the Green's function G(x, ¿). If

we designate by Li(cu), when w = w(x, £) is any function of two variables, the

the result produced by the operation Li on a considered as a function of x,

and by M<(co) the result produced by M¿ on to as a function of £, then with

proper definitions for the partial derivatives of G(x, £) on the line £ = x we

have

I. G(x, £) is continuous in R and its partial derivatives are continuous in Rx

and R2.

■ -1, Gt(x,t)\
(=x A(-z
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= 0.
i-x

IV. Li(G) = Mi(G) = 0.

6.    The function K(x, £).   We abbreviate by setting

(10) Wi(x) = Mi(K), Vi(i) = Li(K) (i - 1,2).

These functions are continuous together with their first (« — 1) derivatives

on the interval (a, b). Moreover

(11) Li(W,) = Mi(Vi),

for it is found by direct substitution and the use of properties (C) and (D)

of the kernel K(x, £) that (11) is equivalent to

(11a) PiiPis — Pjsßn — Vjivis + Vjsvn = 0 (i,j = 1,2),

while the validity of this relation may be established as follows. The operators

M j and Li are connected by the relation*

(12) f[zy" - yz"]dx =   ¿ Li(y)Mi-l(z),
J a t-»l

where Li(y) for i = 3, 4 may be considered as given by formulas (8) with any

determination of coefficients p¿„ ?,,-, i = 3, 4, j = l, 2, for which the determi-

nant

0=  \pn,Pis,Vii,Vis\ (¿=1,2,3,4)

does not vanish. By direct integration of the left member of (12) its value is

found to be

(12a) - y'(a)z(a) + y(a)z'(a) + y(b)z(b) - y(b)z'(b).

Solving equations

Li = pny(a) + Pisy'(a) + vay(b) + vi2y'(b) (i = 1, 2,3,4),

we obtain the expressions

y(a) = yi,    y'(a) = y2,    y(b) = y3,    y'(b) = y4,

where
1    4

y¡ = -E CjiL^y),
0   ¡=i

* Cf. Birkhoff, Boundary value and expansion problems, these Transactions, vol. 9 (1908),

p. 375.
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the constant C,< being the cofactor of the element in the jih row and ith

column of 6. If these values are substituted in (12a), we have both members

of (12) expressed as linear forms in L»(y). Equating the coefficients of L((y)

iori=4, 3 we obtain the forms Mj(z),j = 1, 2. As a result we find that we may

cho ose

/la = C6-Í.2, M»2  =   —  C&_i,l,       ViX  =   —  Co Vi2 = C5-i,3

With these values it is evident that (11a) is an identity.

Let the quantity A be defined by the relation

LX(WX)   LX(W2)

(13) A =
L2(WX)   L2(W2)

Inasmuch as the constants ßa, P<y can be expressed as polynomials in p<,-,

Vij, the same is true of A. We shall make the following hypothesis concerning

the given equation, namely that

(vi) A pa 0 in pu, va.

Then we may suppose these parameters chosen so that

(14) A ̂  o.

The function K(x, £) is defined now by the formula

t    K(x,S)    Wx(x)     Wt(x)

(15) K(x,k) = —   Fi(Ö      LX(WX)   Li(Wt)

V,(&      L2(WX)   L2(W2)

With the use of relation (11) it is readily verified that K(x, £) shares with

K(x, £) its characteristics (B) to (D), while

(16) Li(K) m Mi(K) ■ 0 (i = 1,2).

7.    The relation between K(x, £) and G(x, Ç).   The function

co(x,f) -K(x,t)-G(x,Q

is continuous together with its partial derivatives of second order in R, and

satisfies the differential system

d2ü>(x,£)
--^-=Ktí(x¿),

Q2t

Mi(o>)=0 (¿=1,2).

It follows* that we have for G(x, ¿) as a function of x the integral equation

* Cf. paper 1,
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(17) K(x,Q -G(x,Q = - J E(x,t)G(t,i-)dt,

where

E(x,t) = -Ktt(x,t).

From (15) we may write

(18) K(x,t) m K(x,t) - Oi(x)Vi(t) - Os(x)Vs(t),

where we observe in passing that

(19) Li(6i)=bii (i,j= 1,2).

From (18) it is seen that the parameters pu, va are contained in the kernel

of (17) only rationally and only in such terms as are products of a function of

a; by a function of t. It can be shown because of this that the Fredholm

determinant D and the first minor D(x, t) of the kernel E(x, t) are themselves

rational functions of these parameters.* We shall make the hypothesis that

for the given equation

(vii) D ¿a 0 in Pi,,vij,

and shall suppose the parameters chosen so that

(20) Dr*0.

Then the reciprocal F(x, t) of the kernel E(x, t) exists and the relation (17)

may be written in the "solved" form

(21) G(x,t) =K(x,t) - f F(x,t)K(t,S)dt.

8.    Properties of F(x, t). The kernel E(x, t) and hence also the reciprocal

are continuous in R. From (16) we obtain the relation

(22a) Li(E) m 0,

and from Fredholm's identities

(23)        E(x,S) +F(x¿) =  j E(x,t)F(t,t)dt =   J F(x,t)E(t,t-)dt

it follows further that

(22b) Li(F) m 0,

* Cf. the method of proof in paper 1, §8 or Bateman, H., A formula for the solving function of a

certain integral equation of the second kind, Messenger of Mathematics, vol. 37(1907), p. 179.
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and that Fx(x, £) is possessed of partial derivatives to those of order (« — 3)

which are continuous in Rx and R2. Lastly since F(x, £) =D(x, i-)/D, this

reciprocal is rational in the parameters p¿„ va.

9. Transformation of equation (7). Let u(x) now be any solution of the

normalized equation (7).  TL¿n it follows from (7), (10) and (18) that

(24) X2 f Vi(l)u(m = Li(u)
Ja

and

X2 Ç K(x,i)u(t)dt = u(x) - Lx(u)6x(x) - Lt(u)0t(x).

With these relations we find upon multiplying (21) by X2w(£) and integrating

that

(25) X2 f G(x,&u(Qdt = u(x) - Lx(u)$x(x) - £,(«)*,(*) -   ( F(x,t)u(t)dt,
J a Ja

where

(26) *,(*) = 8i(x) -    ( F(x,t)di(t)dt (i = 1,2).
Ja

We observe that €\(x) possesses continuous derivatives to those of order

(» —2) and that

(27) £,($,) = «„ (i,j= 1,2).

Returning to relation (25) and differentiating it twice weobtain anintegro-

differential equation satisfied by u(x). If we abbreviate by setting

*i"(x) =(bi(x),

(28) F,(*,ö]        =g(x),
J£=x

F„(x,0 =f(x¿),

and associate the equation last obtained with (24) above the result may be

formulated as in the following theorem.

Theorem 2. If the kernel of the normalized integral equation is such that

the conditions (v), (vi), and (vii) are satisfied then every solution of the integral

equation is also a solution of the integro-differential system

(a) u"(x)- \2u(x)=L1(u)(b1(x) + L2(u)(j>2(x)+ f f(x,£)u(t)dt - g(x)u(x),

(29)

(b) Li(u) =\2 f Vi(Ç)u(Ç)d!; (i =1,2).
v a
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Of the functions g(x) and tpi(x), the first possesses continuous derivatives

to order (« — 3) while the others possess continuous derivatives to order

(»—4). The function f(x, £) and its partial derivatives to order («—4) are

continuous in the regions Ri and R2.

10. The associated integral equation. The equation associated with (7),

i.e.

(7) v(x) =X2 f *({,*MÖ#,

is also in normal form if the partial derivatives of the kernel are properly

defined on the line % = x. The deductions already made are easily adapted,

therefore, to apply to this equation as well. Thus we may set K(x, £)

= K(£,x),and let the two sets of parameters píj,ví¡ and ph,vh be interchanged.

If we distinguish the various functions arising then in the consideration of

(7) by superscribing them with a bar, it is readily found that

Wi(x) m Vi(x),        VfâmWfâ,

and, since 7,< and Mi must be interchanged, that A = A. The condition Ap^O

in the parameters is therefore already covered. It is, however, necessary to

make the further hypothesis that

(vii) D fá 0   in   pij,Vij.

The conclusions embodied in Theorem 2 for equation (7) can then be drawn

in an analogous manner for equation (7).

The substitution of the equation (5) for equation (7) in §3 can now be

motivated. If the kernel K(x, £) is orthogonal on (a, b) to a function tr(x)

it follows from formulas (15) and (10) that

f.
b

K(x,Ç)o(x)dx = 0

identically in pi}, Vi,. But differentiating this equation twice it follows that

<Kl) =  f E(x¿)u(x)dx,

and hence that D=0 in ju,-,-, j>,-,-. Similarly if K(x, £) is orthogonal to w(£),

then D =0. If the kernel of equation (5) is orthogonal both to functions of x

and to functions of £, therefore, a discussion similar to that above but applied

to the equation (5) or to ks associated equation would necessarily be stopped

by conditions (vii) and (vii).
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11. The transformation of system (29). The equivalence of system (29)

and equation (7) will be established if it is shown that every solution of the

former solves also the latter. Let us suppose the system (29) given. Then the

functions $<(*), i = 1,2, and F(x, £) may be determined respectively as

the unique continuous solutions of the differential systems

y"(x)=4>i(x),

Li(y)=8ii (¿¿=1,2),

and as the unique solution continuous in Rx and i?2 of the system

d2Y(x,S)

dx2
= /(*,£),

£,(10-0,       Y.(x,&\    + = g(x).
Jf-X

Let a(x) be constructed now by the formula

c(x) = u(x) - X2 fG(x,t)u(Qdt - Z,(«)$>i(x) - £2(«)*2(x)

-    f F(x,t)u(t)dt,
Ja

u(x) being any solution of (29a). By (29a), IV, (22b), and (27), this function

is a solution of the incompatible system (8). Hence it follows that <r(x)=0,

namely that u(x) is a solution of (25).

The function E(x, £) is determined as the reciprocal of F(x, £), and the

functions K(x, £) and 0<(x) are respectively determined by relations (17)

and (26).

Let (17) be multiplied by X2w(£) and integrated with respect to £. Elimi-

nating

X2J G(x,£)«({)o*i

from the result by means of (25), we find because of (26) and (23) that every

solution of (29a) is also a solution of the equation

(30) «(x) - X2 J K(x,t)u(i)di + Lx(u)6x(x) + Li(u)0i(x).

If the function u(x) is a solution of the entire system (29) we may substi-

tute further for Li(u) in (30) the values given by (29b). Because of (18) this

results in reducing equation (30) to the form (7).
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Theorem 3. Under the hypotheses of Theorem 2 every solution of the integro-

differential system (29) is also a solution of the normalized integral equation (7).

12. The general system of type (29). In the preceding section we were

concerned with the system (29) which was deduced from equation (7). This

fact affected the deductions only to the extent that the function E(x, ¿)

reciprocal to F(x, £) was known to exist. In any case the final function is

found from (21), (26) and (18) to satisfy the relation

(31)  K(x,Q = {<?(*,{) - 7i(0*i(«) - F,(Ö#,(*)} + f F(x,t)K(t,S)dt,

which may be solved if F(x, t) possesses a reciprocal. Hence we may state

Theorem 4. If the function F(x, Ç) associated in the manner above with an

integro-differential system of type (29) possesses a reciprocal, then the system is

equivalent to an integral equation of the second kind.

Clearly the equivalence of equation (7) with the integro-differential system

deduced from it may be established similarly under the hypotheses made.

Chapter 4. The existence of a solution of the

integro-differential equation

13. Notation and lemmas. We shall adopt now the foUowing as generic

symbols :

N to represent a positive constant sufficiently large;

77(x, £, X)  to represent a function which is uniformly bounded for

M>tf;
e(x, £, X) to represent a function which approaches zero uniformly as

|X|-oo;

B(x, £, X) to represent a function which for |X | >N is uniformly bounded

and in integrable as to £ uniformly in x and X;*

E(x, X) to represent a function which is uniformly bounded for ¡X | >N,

and which is continuous in x and analytic in X;

M to represent a constant which is positive or zero.

It is convenient also to have at hand the following lemmas, f In them a

denotes the real part of X.

* Cf. Langer and Tamarkin, A notion of uniform integrability, Bulletin of the American Mathe-

matical Society, vol. 32 (1926), p. 335.

t For proofs see paper 1, §17.
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Lemma 1. If o-^M and a^z^b, then

r*o-*>B(x,t,\)dt = e(*,*,X).

Lemma 2. Ifa^—Manda^z^b,then

J*V<'-OB(x,£,X)d| = e(x,z,X).

14.    Transformation of the integro-differential equation.    Let P(u, x)

designate the right hand member of equation (29a) and consider the equation

(32) u"(x) - X2m(x) = P(u,x) + E(x,\).

Looking upon it as a differential equation we may write

(32a)     u(x) = ciex* 4- c2e"Xl H-f [ex<*-f> - r*«—«][P(«,0 + £(Í,X)]¿Í,

the coefficients Ci and c2 being arbitrary but constant with respect to x, and *

representing a constant which may be chosen arbitrarily for each term of the

integrand. Confining the attention to the case a^M we assume for the

moment that equation (32a) is possessed of a solution for the following values

of the arbitrary elements:

Ci = Ae_Xo (A a constant),

C2= 0,

* =a for terms of the integrand involving eX(l_*),

* =b for terms of the integrand involving e_X(a!-{).

With the abbreviations

¿   Ja

E(x) = - j e*l-«!£(*,{)#,

/(*,{) = yi f f(t,&e"*-«dt - «({y-«i|,

the equation may then be written

u(x) = Aex<*-<» + —<Lx(u)$x(x) + Li(u)fa(x) + £(x)

(32b) X l i§

+ j /(*,Ö«(Ödf|
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Looking upon this as an explicit evaluation of u(x) and forming from it the

expressions 7,<(w), we obtain

(33)

where

Li(u) = £,(«)*« + L2(u)*i2 +Ti+   f Rt(i)u(Qdi      (i - 1,2),

— , — Mil
*ij = cncbj(a) + ci2tb,(b), en =-pi2,

A

^¿(£) = Cii/(a,0 + ci2/(o,£), ci2 = — + r«,
A

2\ = (¡m + \pi2)k + \cak*<*—> + CiiÊ(a) + ci2S(a).

The equations (33) compose an algebraic system for the quantities Li(u)

with determinant

C =
1 — $n        — $i2

— $2i     1 — $22

By Lemmas 1 and 2, 0i(a;) =e(x, X), and hence i><,=e(X) and C-I = 77(X).

Hence the system (33) may be solved if |X | > TV. If we denote by y<,- the

minor of the element in the ¿th row and yth column of C, the solution is

(33a) Li(u) = C-1 ¿ ya \j,+ j *,({)«({)(*£ ].

With these values equation (32b) becomes

(32c) u(x) = $(x,\) +    f Ö(*,£,X)«(Öd£,
Ja

where

(34) 6(x,\) = *«*<-•> + Aî}_ + L! ¿ 4>i(*)ynT,,
X X ¿,,_i

and

(35) Ö(*,£,X) - -{/(*,{) + C-i   E W*)7iiRKÖ }■
X v i,,=i ;

15.    The existence of a solution of equation (32). Returning now to the

equation (32) let the functions 8(x, X) and Q(x, £, X) be constructed from its
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coefficients by the formulas above.   It is readily found then that for a^M

and |X | >N, d(x, X), dx(x, X)/X, Qx(x, ?, X)/X are bounded, while

|0(*,€,X)| <
2(6 - a)

Hence the equation (32c) possesses a solution u(x), which satisfies the rela-

tions \u(x) I <A, |«'(x)/X| <A', and which is analytic in X for |X | > A7. To

show that u(x) satisfies also equation (32) it is necessary only to reverse the

deductions above.

The case a = —M may be treated similarly to that above, the arbitrary

elements in (32a) being chosen as follows:

ci = 0,       c2 = AeXa,

* = o for terms involving eX(l_£),

» = a for terms involving e~X(l-{).

The results also are similar to those there obtained.

If the function E(x, X) vanishes identically the equation considered

coincides with (29a) and we may summarize our results as follows.

Theorem 5. // the parameter X is restricted to any region bounded by a line

parallel to the axis of imaginaries and exterior to a circle sufficiently large with

center at X = 0 then the equation (29a) admits of a solution u(x) which is

analytic in X and satisfies the relations

«'(*) I
-  < A (a constant).| u(x) | < A (a constant),

If E(x, X)f¿0, the choice A = 0 is possible. If we assume further that

E(x, X) is integrable in x uniformly with respect to X, then by Lemmas 1

and 2, E(x) =e(x, X), and with A =0, 6(x, X) =e(x, X)/X. In this case we have

the

Theorem 6. // the parameter X is confined to a region as described in Theorem

5 and if the function E(x, X)p¿0 is integrable in x uniformly with respect to X,

then equation (32) admits of a solution u(x) which is analytic in X and which is

such that

u(x) = -*—,       u'(x) = <x,X).
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Chapter 5. The solution of the integro-differential

equation

16. The probable form of a solution. To derive the probable form of a

solution of equation (29a) we consider the scheme of successive approximation

defined by the formula

«,'(*) -\2Uj(x) = P(Ui_i,x),

where P(u, x) is the right hand member of (29a). A particular function

Uj(x) in terms of u,-i(x) is given by

1   rx
(36) u,(x) = ex* + — I   [^'-^ - e-^x-^]P(u^i,t)dt,

L  %) *

with any constant choice of * for each term of the integrand. The initial

function «o(#)=0 leads to Ui(x)—eKs. With the use of Lemmas 1 and 2

and with proper choice of * from the values * = a, * = b and * = §(a+b) it is

found that iorj = 2, (36) admits of a solution of the form

us(x) = e^fftz.X) + e*bH(x,\) + e**H(x,\) + ^(^«-^^(x.X).

In the further repetition of the process the introduction of terms of a type

not already represented is avoidable. We are thus led to expect the existence

of a solution with the functional form of Us(x) above.

17. The formal determination of coefficients. We shall write the func-

tions H(x, X) now as series in descending powers of X, and seek to evaluate

the coefficients. With the notation

W(x)\ -z;-— »
j-0       A'

we have then

(37) u(x) = *'[y(x)] + «*<*—«>[«(*)] + e™\ß(x)] + «*•[<*(*)].

Substituting this into equation (29a) and integrating by parts the terms

involving f(x, £) [y(|)] andf(x, £) [5(£)] we obtain the result

*42k[y'(x)]+[y"(x)) + g(x)[y(x)]

"      1      * o -it-*+ ",

-S^S(-1,*l/(-lh-(i,1l. i
+ ex(M-a-x){     }+ex»{     }+eXo{     }=0.
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Equating to zero the coefficient of eXx/\l for 1= — 1, 0, 1, 2, ■ • ■ , we obtain

equations from which the quantities 7i(x) may be successively determined.

In particular the choice 70 = 1 is possible. Further equating to zero the coef-

ficient of eX(M~°_l)/X! we find as a possible choice Oj(x)=0 for all i, while the

terms in ex&/X' and eXo/X! similarly yield formulas for the determination of

the quantities /3,(x) and a,(x). With the values already chosen we find in par-

ticular j3o=Q!o = 0.

18. The function û(x). The extent to which the formal process thus

developed is actually applicable is limited by the number of derivatives

which the coefficients of equation (29a) admit. Referring to §9, therefore,

and considering the formulas obtained, we find that yi(x) possesses (« — 1 — i)

derivatives while ß2i-X(x), /32,(x), a2»-i(^), a2i(x) possess derivatives of order

(» — 2 — 2¿). The last of these coefficients which may be differentiated twice

are therefore yn-3(x), ß„_4(x), a„_4(x) if « is even and yn-3(x), /8„_6(x), an-&(x),

if « is odd. To avoid duplication in the discussion we shall suppose that for

the case in hand « is even. Then the function

(38, M,).,.{1+2Èt + ... + ï£±}

+ e» IM± +... + há± )
I    X X"-4    j

(ax(x) an-i(x) \
+ eXa<-1-+ -— >

I    X X"-4    j

is twice differentiate. It is readily seen to satisfy an equation of the form

(39)        m"(x) - X2m(x) = P(ü,x) -\-eX6£(x,X) 4- eXo£(x,X){ ,
Xn-5

the functions B(x, X) being analytic in X for | X | >A7.

19. The true solutions. If u(x) is any solution of equation (29a) the

function u(x) —u(x) is a solution of equation (39) and conversely. On the other

hand if equation (39) is multiplied by Xn~5e~Xa it takes, for a^M, the form

(32) with

£(x,X) = ex<6-°'5(x,X) 4- B(x,\).

This function E(x, X) is integrable in x uniformly with respect to X. It follows

by Theorem 6 that this modified equation possesses a solution of the form

e(x, X)/X, with derivatives of the form e(x, X). Hence we conclude that for

cr^M equation (29a) possesses a solution given by
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e(z,X)eXo
u(x) — ü(x) =

u'(x) — ü'(x) —

X"-4

e(x,\)eka

For a = — M a similar argument may be applied to equation (39) multi-

plied by \n~se~M.    Hence we conclude that equation (29a) possesses  for

a=—M a solution given by
e(x,\)eXb

u(x) — ü(x) =

u'(x) - ü'(x) =
((x^e^

Xn-6

It is clear that we may summarize these results as follows.

Theorem 7. If X is confined to a region of the type described in Theorem 5

then the integro-differential equation (29a) admits of a solution Ui(x) of the form

,,    .  r , 7i(*) , 7«-4(«) "i
ui(x) = ex* \l + —— + ■■■ + -rj-r-j

.... Xb ( ßi(x) ßn-<(x) + e(x,\) I
(40) + ex» < —-1-1-—-}

{    X X"-4 )

( ai(x) an-i(x) + t(x,\) \
+ eXœ -;-h-1-> >

I    X X"-4 J

the first derivatives of the functions e(x, X) involved being of the form \e(x, X).

The equation (29a) involves X only to the even power two. It follows that

we have a second solution of this equation, namely

(41) u2(x,\) = ui(x, — X).

Clearly these two solutions are linearly independent.

20. The associated equation. Inasmuch as this chapter and the pre-

ceding one involve no new hypotheses concerning the equation (7), it is clear

that a precisely analogous discussion of the associated equation (7) is possible.

The corresponding integro-differential equation admits, therefore, of solutions

Vi(x), Vs(x) whose form may be obtained from Ui(x) and u2(x) by replacing

7,-, ßi and a{, by y,-, d¿ and a¿ respectively.

Chapter 6. The characteristic values

21. The characteristic equation. Since the equation (29a) is linear we

have as a solution the expression
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(42) m(x) = Ci«i(x) 4- c2«2(*),

where Ci and c2 are arbitrary constants. By Theorems 2 and 3, such a solution

will satisfy the given integral equation if and only if it satisfies also the

equations (29b). Setting

(43) Wi/(X) = Hu,) - X2 f VtQufâdt (i,j =1,2),
Ja

and substituting in (29b) the form (42) we obtain as the relations to be satis-

fied

(44) CiWii(X) 4- ciuii(\) =0 (¿ = 1,2).

These equations compose a homogeneous system for the constants Ci and cä

and admit of a solution if

(45)
con(X)        wi2(X)

«2l(X) C022(X)

- 0.

This equation in X we shall call the characteristic equation. Its roots, which

are the values of X for which (42) includes a solution of the integral equation,

are the characteristic values.

To deduce the functional form of (45) we substitute for X2«,(£) in (43)

its value as the second term in (29a). Upon integrating twice by parts the

resulting term in «/' (£) we obtain the formula

(43a) coa(X) = kiXux(a) + knux(b) + ki3u{ (a) + k«u{(b) -  j   i2<(£)Mi(£)d£,

where

(46) A<4 = viX - Vi(b) + vXi f Vi(C)4>i(C)dt + va f Fi(S)c>2(¿)d£

(i =1,2),
and ki,-,j = l, 2, 3, are given by similar forms, and where

m) = vm + vt(&g(t) - j f(t,k)Vi(t)dt      a -1,2).

Substituting in (43a) the forms

,      . «i(x) = ex* 4- eX6e(*,X) + eXoe(*,X),
(40a) . .

Ki'(x) = X{ex* 4- eXhe(x,\) + eXae(*,X)},

obtained from Theorem 7, we find that

(43b) coa(X) = Xex-{ ki3 + e(X)} 4- XeXk{Aj4 4- €(X)}.
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For the reductions here involved it is convenient to use the results of the

following lemma.

Lemma 3*. If Zi and z2 are any points of the interval (a, b), then

J"

(viii) *o.t

ex'77(£,/,X)a7 = <*'>H(zs,t,\) + cx"F(zi,£,X).
*i

From (41) and (43) it is readily seen that toi2(\) =con(—X). Hence (43b)

yields for the characteristic equation the form

[eM»-.>  _ e-Mb-a)]  _|_ eX(6-a)€(X)  _|_ t(X)  + C-X(i-«)e(X)   =  0.

The quantities ka are rational functions of the parameters pa, vu, as is

seen from formula (46) etc. The vanishing or non-vanishing character of the

determinant (&i3 k2i — ku k23) must, however, be independent of the choice

of these parameters, since it vitally affects the structure of the characteristic

equation, which depends only on the integral equation given.t We shall

make the hypothesis that the given integral equation is such that

kiz       ku

#23 &24

The characteristic equation may then be written, for |X | > N, in the form

(45a) e2X«-°> + e(X)ex<6-"> - [l + e(X)] = 0.

22. The characteristic values. The equation (45a) is formally a

quadratic in gx (»-<•).   Factoring it we obtain

eMb-a)  =   I + e(X)} ^(»-a)   =   _  J + t(X).

From this it follows that

2miri
X = --+ e(X),

a — a
(45b)

(2m + 1)tí
X =-h «(X)     (m = ± M, ± (ilf + 1), • • • ).

a — a

It is readüy shown§ that for \m \ sufficiently large these equations

admit respectively just one root in the neighborhood of 2miri/(b — a), and

(2m+l)iri/(b — a).  These are the characteristic values.

* For the proof of this lemma see paper 1, §23.

t The analogous situation arising in paper 1, §33, is illustrated in paper 1, appendix.

X A case in which this condition is not met is discussed in chapter 10.

§ Cf. paper 1, \35.
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By the classical theory of integral equations, associated equations have

the same characteristic values. We observe, therefore, that our results are

obtainable by the methods outlined when either equation (7) or equation (7)

satisfies the hypotheses made. If we designate by Xm the characteristic value

in the neighborhood of miri/(b — a), we may formulate the result as follows:

Theorem 8. Under the hypotheses (v), (vi) and (viii) and either (vii) or

(vii), the normalized integral equation (7) admits of infinitely many characteristic

values. For \m \ sufficiently large these values are given by the formula

mir i
(47) Xm =-+ tm    (m= ± M, ±(M+1), •■■),

b — a

where  limimi.,,,,6«, = 0.

23. A more precise formula for Xm. The deductions just made if carried

out with the assumption of a greater number of derivatives of the kernel of

the integral equation will lead to a more precise formula. Thus if » = 6, then

by Theorem 7 there exists a function Wi(x) given by the theorem for « = 6.

With this form it is found that

^      ,.(,          ki3yi(a) + An      H(\) \
coii(X) = XeW ki3 +-h- >

( x x2   ;
(43c)

,  ,u(t kiai(b) + kit      H(\)\
+ XeTi4 + —x—+^7'

and hence that the functions é(X) in (45a) are of the type A/\+(A +e(\))/\2,

where A and A are constants. This leads to a formula

2miri        A        A + e2m

■i
b — a      2m        (2m)

with a similar form with distinct constants for X2m+i. We observe now, how-

ever, that since the given integral equation involves X to an even power, —Xm

is also a characteristic value. Clearly we may conclude from Theorem 8

that for \m | sufficiently large —Xm=X_m. Hence it follows that in the formula

above ^4=0. We have, therefore,

Theorem 9. //, for the integral equation considered in Theorem 8, » = 6,

then the characteristic values are represented by a formula

miri        Ax + ( - \)mAt       em
(47a) Xm = --4--+ —->

b — a m m2

where Ax and At are constants and lirri| m|^„ em = 0.



1927] DISCONTINUOUS KERNELS 705

Chapter 7. The characteristic functions

24. The solutions of the integral equation. The values Xm have been

determined so that for suitable choice of the constants Ci and c2 formula (42)

yields a solution of the integral equation. From (44) we find, moreover,

because of (45) that

(48) ci:c2 = — [Âiwi2(Xm) + h2co22(\m) ] : [Aio>n(Xm) + Ä2iw2i(Xm) ],

with any choice of the constant multipliers hi and h2. We shall choose these

multipliers so that

hiku + h2k2i = 1,
(49)

hikiz + h2k2z = 0,

which is possible because of (viii).  If we observe then that eXmX is uniformly

bounded we find from (49) with the use of (43b) that

dies = [e-^b + í(X„)]: [ex"> + c-(\m)},

and hence from (42) with the use of (40a) that

u(x,\m) = ex»<i,-l) + e-x».<»-*> + e(x,\m).

Substituting for Xm its value as given by (47) this reduces to

mir(b — x)
u(x,\m) = 2 cos-\-((x,m).

b — a

25. The associated equation. The characteristic values of the equation

(7) being also those of the associated equation (7), the considerations of this

and the preceding chapter apply equally well to either equation if both

satisfy the hypotheses made. Under this assumption we may conclude,

therefore, that the equation (7) admits of a solution v(x, Xm) of precisely the

form of u(x, Xm) above. Integrating the product of these solutions we find

that

u(x,\m)v(x,\m)dx = 2(a — a) + e(m).
Ja

The solutions may, therefore, be normalized by multiplying them by

[2(0 - a) +c-(m)]-1'2  .

Since the given equation involves only X2 it follows that the solution for

Xm is identically that for X_ro. Setting um(x) =u(x, Xm) =u(x, X_m),

vm(x) =v(x, \m) =v(x, X_m), we may summarize our results as follows:
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Theorem 10. Under the hypotheses (v), (vi), (vii), (vii) and (viii) the

normalized characteristic functions of the given integral equation and its

associated equation are given respectively for m sufficiently large by the formulas

(    2   y'2       »nr(ô - x)
«m(s)=(--1     cos-—-Ye(x,m),

\b — a/ b — a
(50)

/    2    Y'2       mr(b - x)
»»(*)=( 7-)     cos—-Yt(x,m).

\b — a/ b — a

26. The more precise formulas. If for the equation in hand «^6, more

explicit formulas may be deduced by the method above. Thus we obtain

from (48) and (43c)

r Ae-^b+2e-^'     H(\m)l

c,:i,-r-^-~+^rJ
J ^        A*-*+A*-'       H(\m) "I

L Xm Xm      J

and using the form of «i(x, Xm) given by Theorem 7 for « = 6, we obtain

«(x,Xm) = [eW*-*) 4- «-*•<*-*>] 4-      ~ 7       [^-t6-^ - e-x-(»-»)]
Xm

1 r x ,    ï x ,    m   ,   H(-Xm)_gXm(x— a)   _   g—Xm(x— a)      J_.

X X>Am «m

Substituting in this the value of Xm as given by (47a) and observing that

mir(b — x) mw(x — a)
( — 1)m sin-= — sin-,

o — a b — a

we obtain the result

mir(b — x)      H(x)        mir(b — x)
«(x,Xm) = 2 cos-1-sin-

o — a m b — a

H(x)        mic(x — a)      H(x,m)
+-sin —-4--—- •

m b—a ml

Precisely as in §27 we conclude that the associated equation admits of a

solution which is of the form u(x, Xm) above with distinct functions E.

Moreover

J  u(x,\m)v(x,\m)dx = 2(6 — a) +
H(m)

m¿
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Hence we have the following theorem.

Theorem 11. If for the equation considered in Theorem 10, «^6, the

normalized solutions of the equation and its associated equation are given for m

sufficiently large by the formulas

1/2       mrc(b — x)      1 f mir(b — x)(    2   y'2       mir(b - x)      1 r
Um(x) = (-)     cos —-1-Ei(x) sin

\b — a/ o — a        «L

x-a)l

- a   A

b — a

+ Hs(x) sin—--   -1
mic(x — a)~\       H(x,m)

b — a   A m2

1/2        mir(b — x)        1 r_ #i7r(a — x)

(50a) b — a   A m

(    2   y'2       mic(b-x)       ir_
x>m(x) = I-)     cos-1-Hi(x) sin

\b — a/ b — a m\_

+ Hs(x) sin

a — a

mv(x — a)~]      H(x,m)x - a)l

— a   Ab

Chapter 8. The closure of the set of characteristic functions

27. Application of a theorem of Birkhoff. We shall assume now that

for the given integral equation

(va) « ^ 6.

To show that the sets um(x) and vm(x) are closed we shall employ the foUow-

ing extension of a theorem of Birkhoff.

Theorem. Let \um(x), vm(x)}, m — 0, 1, 2, ■ • • , be a normalized

biorthogonal system of continuous functions and {üm(x) vm(x)} be a

second biorthogonal normalized system which is such that (a) the series
CO

S [um(x) — ûm(x)]vm(y), a ^ x,y =b,
m—0

converges uniformly to a function H(x, y) less than l/(b — a) in absolute value,

and (b) the convergence is such that the series upon being multiplied by any

continuous function may be integrated term by term as to x to yield a

uniformly convergent series. Then if the set \un(x) ) involves a ¿-fold lack

of closure, the lack of closure of the set {ûm(x)} is at most ¿-fold.*

28. The integro-differential system with an additional parameter.

Consider the system

u"(x) -\2u(x) = vP(u,x),

(51)
Li(u) = t,X2 J Vi(S)u(i;)dÇ (i =1,2).

* Langer, Bulletin of the American Mathematical Society, vol. 33 (1927), p. 97.
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For 77 = 1 this is system (29). For 77 = 0 it is, if we set u(x, 0)=y(x), the

differential system

y"(x) - X2y(x) = 0,

(52)
Li(y) = 0,

which is equivalent to the integral equation

«(x,0) =X2 Ç G(x,£)«(£,0)d£
Ja

We may suppose the parameters p¿„ va chosen subject to previous restrictions

so that

(53)
M12     vxi

P22      Vu

*0,

and also so that the system (52) has only simple characteristic values. With

such a choice the solutions wm(x, 0) of system (52) and the solutions

vm(x, 0) of the adjoint system compose a set of functions which is biorthogonal,

normalized and closed. We wish to show that for 77 otherwise suitably

chosen in the circle C: \v | = 1 the system (51) still defines a set of solutions

um(x, r¡), and that there exists an associated biorthogonal normalized set

Vm(x,  V).

The system (51) is obtained formally from (29) by replacing/(x, £), g(x),

<t>i(x), and Vi(£), i = l, 2, respectively by these functions multiplied by rj.

This has the effect of replacing F(x, £) in chapter 3 by nF(x, £), and <P¡(x),

i = 1, 2, by $i(x, 77), polynomials of the first degree in 77. If the neighborhoods of

a finite number of critical points are excluded from the circle Cand the remain-

ing region is denoted by C, then it can be shown that for 77 in C the following

facts obtain.f

(a) The function r¡F(x, £) possesses a reciprocal E(x, £, 77) which is analytic

in 77. Hence by Theorem 4 the system (51) is equivalent to an integral equa-

tion

(54) u(x,v) = X2 j K(x,è,v)u(S,t,)dt,

in which the kernel is analytic in 77.

* This is the condition that system (52) be regular. Cf. Birkhoff, Boundary value and expansion

problems, these Transactions, vol. 9 (1908), p. 383.

t Paper 1, §39.
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(b) The integral equation associated with (54) is equivalent to an integro-

differential system of the type considered in the foregoing chapters.

(c) kiz(rf)ksi(v) - ku(i))k2z(ri) 9¿ 0,

where kji(r¡) is given by formulas (46) etc. with the formal introduction of 77 as

noted above.

Hence by chapters 6 and 7 the characteristic values \m(y) exist and for m

sufficiently large the solutions of (51) are given by formulas (50a), the func-

tions H(x) and 77(*, m) being replaced by functions H(x, r¡) and 77(:r, m, r¡),

which are continuous in x and v.

Since the asserted facts have been established for the system (29) the

region C may be chosen to include the value i¡ — í.  Moreover, since

kiz(0)k2i(0) — ku(0)k2z(0) = pi2v22 — pssvxs,

from formulas (46) etc. it follows from (52) that r¡ = 0 may also be included

inC.

29. The application of the theorem of §27. Let T represent now any

closed curve connecting the points r¡ = 0 and rj = 1 and lying entirely within

the region C, and let the values of r¡ hereafter considered be restricted to

this curve T. Using the symbol bh(x) when h(x, r¡) is any function of x and r¡

to designate the difference in the value of h for 77 = 77 and 77 = 77, i.e.

h(x,rj) — h(x,r¡) = bh(x),

we obtain from the formulas (50a) with 77 introduced as noted under (c)

above the relation

23 [«m(x,jj) - um(x,y)]vn(y,ij) = bH(x) £

mic(b — x)       mir(b — y)
sin-cos-

b — a b — a

mir(x — a)       mir(b — y)
(55) sin-cos-

+ bH(x) Z
m=M

00

+ z

b — a

m

H(y,m)bH(x,m)

m-M m'

Of the series occurring here on the right the last converges uniformly to

a value which becomes uniformly small with |ij —1»|. Each of the remaining

series may be transformed into a pair of series of the form ¿Z.Z=m(sm mirz)/m.

Such series are known to converge everywhere uniformly save in the im-

mediate vicinity of z = 0, ±2, +4, ■ • • , and the sum of any number of terms
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is uniformly bounded. It follows* that the right hand member of (55) con-

verges in the manner demanded by the theorem of §29, provided that

177 — 77l<5, where 5 is a positive constant chosen sufficiently small. Since

the set {um(x, 0)}, m = 0, 1, 2, ■ ■ ■ , is known to be closed, the sub-set for

m = M, M4-1, • ■ • , involves an Af-fold lack of closure. It follows, therefore,

first, that the lack of closure of the set \um(x, -n)}, m = M, M+l, • • • , for

1771 < 8 is at most Af-fold, and subsequently, after a finite number of repeated

applications of the theorem, that the set {um(x, 1)}, m = M, M+l, ■ • • ,

involves at most an Af-fold lack of closure. Clearly the same deduction for

the set [vm(x, 1)} is possible.

We observe now that under the conditions (vii) and (vii) the kernel of

the normalized equation cannot be orthogonal to any continuous function.f

If we assume also that

(ix) all characteristic values are simple,

then the set of solutions is biorthogonal, and since a sub-set of the charac-

teristic functions involves only a finite lack of closure the entire set is

closed.X Hence the sets {um(x, 1)} and {vm(x, 1)} are closed and we have

the following theorem.

Theorem 12. If the kernel of the normalized integral equation satisfies the

conditions (va), (vi), (vii), (viii), and (ix) and the kernel of the associated

equation satisfies the condition (vii), then the sets of characteristic functions

um(x) and vm(x) are closed.

30. Other characteristic values and functions. It is conceivable that the

methods employed may not lead to the detection of all existent character-

istic values and functions. That this is not the case, however, may be easily

shown with the use of Theorem 12.§

Chapter 9. The expansion of an arbitrary function

31. The equi-convergence property. We consider now in connection

with the given integral equation the ordinary differential system (52) with

solutions ym(x) and the adjoint system with solutions zm(x). The function

<P(x, £, p) we define by the relation

(56) <t>(x,S,P)  =     £   [«m(*K(£)  -  ym(x)Zm(£)].
m— 0

* See paper 1, §41.

t See the discussion in §10.

t Langer, Bulletin of the American Mathematical Society, loc. cit.

§ See paper 1, chapter 11.
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Inasmuch as the functions um(x, 77), vm(x, 77) become ym(x), zm(x) for 77 = 0,

and um(x), vm(x) for 77 = 1, we obtain from formulas (50a) for M a fixed

number sufficiently large and p>M

4 *     H(x£,m)
(56a)      tp(x,t,p) = <Kx,S,M) +   £*,(*, £,/>) +   S

Í-1 m-.M+l mÁ

where each of the functions ypi is of the form

*L  sin mrdi cos mirun
(57) H*¿,P) = ff(*,Ö £-'

ro-Af+1 m

and 0,-, ù>i are linear functions of x or f. As previously observed in the

discussion of formula (55) the sums in (57) can each be written as a pair of

sums of the form £(sin mrz)/m. It follows from the properties of series of

this type as already noted, and from formulas (56a) and (56), that

(58) |<K*,£,/>)| <A       (a constant),

and that for any choice of the points a and ß on the interval (a, b)

lim   f 4>(x,S,p)dt = €>(*),
*-.« ja

the convergence being uniform and $(x) therefore being continuous on (a, b).

To evaluate $(x) we denote byf(x) the function defined as follows:

(   1 for a < x ^ ß,
f(x) = \ ~     ~

( 0 f or a ^ x < a and ß < x = b.

Since the system (52) is regular by (53) and has only simple characteristic

values we have

¿   f/(Ö«-tt)d£-y«(*)-/(*),'
m—0   J a

where f(x) is bounded and differs from f(x) at most in the points a, ß, a, b.

Except in the neighborhoods of these points moreover, the convergence is

uniform as may be seen by using formulas (50a). But

whence

f'/({)*(*,«,*)#= ( <t>(x,a,p)di,
Ja Ja

*(*)-   Z    f f(IÜvM)d!;-un(x)-f(x).

* Birkhoff, these Transactions, vol. 9 (1908), p. 390.



712 R. E. LANGER AND E. P. BROWN [October

Multiplying this relation by v¡(x) and integrating as we may because of the

uniformity noted above, we obtain, since the system {ui(x), vt(x)} is

normalized and biorthogonal, the result

/.

b

$(x)vi(x)dx = 0 for all   I.

Since the set vi(x) is closed it follows that <p(x) =0, namely that

(59) lim   f 4>(xJ,p)dt = 0
p—.CO     I

va

uniformly in x and for all a and ß on (a, b).

The relations (58) and (59) are the hypotheses of a theorem by Lebesgue*

which asserts that

lim   f/(£)<*>(*,£,/>)# = 0
p-°° Ja

uniformly for any function/(x) which is summable over (a, b).   We have,

therefore, the following theorems.

Theorem 13. If f(x) is any function which is summable over the interval

(a, b), and if

Fip(x) =   ¿ f/(!K(£)d£ •«„(*),
fflaO •* a

Pip(x)=   E f /(£)zm(!)d£-ym(x),
m=0 J a

where um(x), vm(x) are respectively the normalized solutions of the integral

equation in normal form and the associated equation and ym(x), zm(x) are

respectively the normalized solutions of a related differential system (52) and

its adjoint system, then

lim [Fip(x) — F2p(x)] = 0    uniformly.
p—»so

A more explicit but less inclusive formulation may be had by drawing on

the expansion theorem of the related differential system, f Thus we may state

Theorem 13a. If f(x) is a function which on the interval (a, b) consists of

a finite number of pieces, each real, continuous, and with a continuous derivative

then the expansion

* Annales de la Faculté des Sciences de Toulouse, vol. 23 ((3), vol. 1) (1909), p. 52 and p. 68.

t Birkhoff, loc. cit.
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è   f /(£K(£)d£ • un(x)
m—0   J a

converges to

to

and to

\[f(x + )+f(x-)]     fora<x<b,

aif(a + ) + a2/(6 — )     for x = a,

bif(a + ) + 62/(6 - )     forx = b,

where ax, a2, 61, o2 are constants independent off(x).

Chapter 10. The asymptotic forms under alternative hypotheses

32. The characteristic values. The form of the characteristic equation

(45a) and hence also the forms for the characteristic values and functions

above were obtained as a result of the hypothesis (viii). If this hypothesis

is not met, the character of the solutions is in general quite different. This

will be illustrated in the following discussion.

Let us assume that the integral equation in hand is such that

Ai3¿24 — AmAm = 0,

(x) _      I An    Ai4 I   A12    An
C = + * 0.

If the forms (43a) are substituted in (45) then, certain terms in the expansion

of the resulting determinant vanish because of the first of conditions (x).

Substituting in the remaining terms the forms (40a) we find that the

characteristic equation is of the type

(60) [C + e(X)]ex<6-«> - 2[B + e(X)] + [C + tf»]«"^»-' = 0,

where
A13    An

A23    £21
B = +

ku

¿24

¿12

kit

If Q and 1/Q denote the roots of the quadratic

B
z2 - 2 — Z+ 1 = 0,

C

it can be shown by the method of §22 that for [X|>A7 the equation (60)

admits of just one root in the neighborhood of each of the points

1     r
Pm = 7-[2miri + logo]      (m= ±M,±(M+!),■■■),

b — c
(61)

Pml =

b — a

1

b — a
[2miri — log Q].
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We shall denote these roots respectively by Xm and Xm,. Observing now that

on the one hand — Xm must be a characteristic value since the equation (7)

involves X only to an even power, whüe on the other hand pm,= — p_m, it

becomes clear that Xm,= —X_m.   Hence we have the following theorem:

Theorem 14. Under the hypothesis (v), (vi), and (x), and either (vii) or

(vii), the normalized integral equation (7) admits of infinitely many character-

istic values.  For \m \ sufficiently large these values are given by the formulas

1     r
,    % Xm = --[2w7ri + logÇ]+em   (m = ± M, ± (M + 1), • • • ),
(62) b — a

33. The characteristic functions. It is not possible in this case to choose

the constants hi and h2 to satisfy (49). Instead we may choose them so that

(63) hikiz + hsksz — 0, hiku + h2k2i = 0.

With this choice we obtain in place of (48) the relation

ci'.cs = — Us(\m): Ui(\m),

where

Ui(\) = (hikn + hsksi)Ui(a) + (hikn + hskss)ut(b)

b

[Aißi(f) + A2í22(£)]M<(£)d£.

Substituting in this the forms (40a) and observing that

gKmib-a) = f2 + e(m)

we find

ci:c2 = — (ki + e):(ks + «),

where

ki = (hikn + hsksx) + (hxkxs + hskss)Q~1,

ks = (hxkxi + hsksi) + (hiki2 + h2k22)Q.

Under condition (x) these two constants cannot vanish simultaneously.

Inasmuch as

e*mX  =   epmx -\- e(m ; x) ,

we obtain from (40a) and (42) a form for the solutions as given in the

following theorem:

-X
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Theorem 15. Under the hypotheses (v), (vi), (vii) and (x) the character-

istic functions of the normalized integral equation are given for \m \ sufficiently

large by an expression of the form

(64) Mm(x) = Aie'-»<x-a> — A2e-""'(l-o) 4- t(x,m),

the coefficients kx and A2 being constants, not both zero*

34. A further case. It is clear that the method employed will in fact

be applicable whenever the characteristic equation is of the form

[cx + c(X)]^»-»> + [ct + e(X)] + [c3 + e(X)]r*»-> = 0, and ct c3 * 0.

The following is an example in which this holds although conditions (viii)

and (x) both fail to be fulfilled.

Let K(x, £) be any kernel satisfying condition (vi) and the further condi-

tion

(65) K(x,a) = K(x,b) m K(a¿) = K(b,Q ■ 0.

We shall choose the parameters p</, »»<,■ so that pxx = vn = l, while the others

all vanish. This choice is contrary to (13) but the discussion is nevertheless

found to be valid. We obtain then K(x, £)=K(x, £), 0¡(x)sO, <j>i(x)=0,

F<(£) =0, i = 1, 2, and Aii = A2i = 1, while the other quantities k,,- are all zero.

The equations (43) reduce to coi, = w,(a), co2, = «,(6), and the characteristic

equation is found to be of the form (45a). Hence the characteristic values

are given by (45b).

In determining the characteristic functions we may choose Ai = 0, A2 = 1 to

satisfy (63). This leads to

ci:c2 = — (e-Xmb + i):(eXmi> 4- «),

and with these values we find as the normalized characteristic functions

/   2   Y/2    W7r(° - *)
um(x) = I-)    sin—-hí(x,rw).

\b — a/ b — a

It is clear that throughout this chapter more precise forms for the

characteristic values and functions are obtainable by the methods used

precisely as in §23 and §26.

* If the kernel of the equation considered in paper 1 is written Kx(x, {), the iterated kernel

K(x, Í) =/„ Kx{x, t) Kx(t, £)dt is readily found to satisfy the hypotheses made concerning the equation

discussed in the present paper. Hence the characteristic values and solutions obtained in paper 1

must be included among those derived here. A comparison of the results shows them to be included

here among the equations satisfying condition (x).

Brown University,

Providence, R. I.


