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Introduction

We treat here the problem of expanding functions in infinite series whose

terms are solutions of the differential equation d3u/dx3+p3u = 0 and various

types of boundary conditions. Birkhofft has treated a general problem of

this nature for the case in which the boundary conditions are regular, and

HopkinsJ has considered a very special case of irregularity. The first part

of this paper is an extension of Hopkins' work in which the distinctive

feature of the boundary conditions is that two bear at only one point and

the third bears at two points. In the second part of the paper is considered

a very special case in which one boundary condition bears at one point, the

second at another point, which is complex, and the third at both points.

And in the third part is considered a case in which the boundary conditions

bear symmetrically at three points, one at each point.

Part I

The boundary conditions are written Wi(u)=0, i = l, 2, 3, where W,(«)

is a linear homogeneous form in u(a), u'(a), u"(a), u(b), u'(b), u"(b) with

constant coefficients, which we shall suppose to be real. Here a and b are

taken real and positive and a<b. By linear combination among themselves

the conditions can be reduced to the equivalent set

ai2«"(a) + anw'(a) + aiou(a) + ßnu'(b) + ßiou(b) = 0,

assu"(a) + a2iu'(a) + a20u(a) + ßssu"(b) + ßsiu'(b) + ßi0u(b) = 0,

aziu'(a) + azou(a) + ßziu'(b) + ßzou(b) = 0.

We shall represent by Wi(u), Ws(u), and Wz(u) the left hand sides of these

three equations respectively, by Wia(u) that portion of Wi(u) which bears

at a, and by Wib(u) that portion which bears at b.

* Presented to the Society, April 16,1927; received by the editors in October, 1926.

t G. D. Birkhoff, these Transactions, vol. 9 (1908), pp. 219-231 and pp. 373-395.
Î J. W. Hopkins, published by D. Jackson in these Transactions, vol. 20 (1919), p. 245, et seq.
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The characteristic equation is A(p) =0, where

Wx(yx)   Wx(ys)   Wx(yz)

AGO Ws(yi)    Ws(y2)    W2(yz)

W3(yi)   Wz(y2)   Wz(yz)

Here yi, y2, and y3 are any three linearly independent solutions of the dif-

ferential equation.  We shall take

y. = guirtx-a)^ where «1 = — 1, w2 = e"13, w3 = e_'i/3.

Inserting these functions and expanding the determinant, we find

A(p) = Aaaa + Aaabe<°i'<-b-a) + Aabaea"'ib-a) + Ai^e"'^*"0)

+ A«* + Anae"'^"-^ + Abahea"><-a-b> + Aa»eu">(a-l>,

where

Aoa0 = 3(w2 — coz)p3Da,

Aaab = («1 — W2)p[— WzDaip* — UxDazp3 — «Alp1 ~ COzDalP — COlAo],

Aaba = («3 — £>»l)p[— «¡¡D^p4 — COiDaZp3 ~ WzDaSP2 — UsDalP ~ CClDao] ,

Ajoo =  («2 — W3)p[7>a4P4 + Dazp3 + Da2p2 + Daip + Dao] ,

AM = (cos - w8)p[D64p4 + Asp3 + Dbsp2 + AiP + Ao],

Afcoi = (uz — a>i)p[— cosDbiP* — wiAsP3 — cozDbsP2 — wïAiP — wiAo],

Atta = (wi — w2)p[— w8A4p4 — toiAsP3 — xasDbsP2 — uzDblp — wiAo],

Ai» = 3(w2 — w3)p3A.

In these expressions the D's are certain real combinations of determinants

formed from the array of coefficients in the boundary conditions.

The regularity condition, which bears on the differential system, plays

an important rôle in boundary value and expansion problems. In the present

case the system is regular if each of the six exponentials in A(p) is present

and multiplied by a polynomial of degree five in p. As mentioned in the

introduction the regular case has been treated by Birkhoff. The cases in

which the multiplying polynomials are of degrees less than five are susceptible

of a treatment similar to that employed by Birkhoff, and the results are

similar to those of the regular case.   They will not be considered here.

We propose to treat some of the cases in which every Da equals zero or

every Db equals zero. These we call the highly irregular cases. One of them

is Hopkins' case. For the sake of definiteness we shall take Dbi = 0,

¿ = 0,1,2,3,4.
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The characteristic equation. Divide the p plane into six equal sectors

defined by lir/3< arg p<(l+l)ir/3, 1 = 0, 1, 2, 3, 4, 5. It is only near the

rays argp = 0, 2tt/3, 4tt/3 that we can hope to find characteristic numbers,

for if \p | is large and p is not near one of these rays in an angular sense, some

one of the exponential terms in A(p) will far outbalance in numerical value

all the others. But since p appears in the differential equation only as p',

we may restrict p to the sector — tt/3= arg p^ir/3.

Consequently we need look for characteristic numbers only near the

ray argp = 0.

We may write

A(p) = «-*<»-> [*(p)+i(p)],
where

4>(p) = Aaab + Aa6oe("i-»»>',(&-">

and

i(p) = (Aaaa + Abbb)e""'<-a-^ + Abaae^-^"<-b-aK

If we lay down the further restriction — 71-/64-8= argp^Tr/3, b being a

small positive constant, \e(p) | will be small for \p | large. If Da}- is that Da

having the largest second subscript and not being zero, we have

¿(p) = (coi - co2) ¿co*2+1ZW+1 + (o>2 - »0«("«-"'>*<*"*> ¿«^„tp^1
*-0 k-0

= («i - <*t)pi+fu,D.f + (-)][^(p) 4- *'(p)],

where (1/p) means a quantity of the size of 1/p for \p \ large, |«'(p) | is small

for \p | large, and

vf+i
p(p) =-g(»t-">)p(*—«)t

co,-

Here íü0=wj, w4=wi, and uo=ut.

We have

P(p)   =^^-  e.p3I/S(6-.)(

whose zeros are given by

p =-log-•
i-SU'Q-a) w¡

This logarithm has one of the values 7r¿/3, —iri/3, or tt¿, / being 0, 1, 2, 3,

or 4. Hence the zeros of ^(p) are real and are evenly spaced along the ray

argp = 0.
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We can now discuss the zeros of A(p).  For we have

(1)        AGO = ("i - t^p**H^*^fmtDmi + (-Y] [*G0 + «"GO ],

where \t"(p) | is smaU for \p | large. Draw small circles all of the same radius

centered at the zeros oí \p(p), and call S the portion of the sector (—ir/ó

+5, ?r/3) which is exterior to these circles. As the imaginary part of p

becomes positively infinite, xp(p)—»w^+i/co,- ; as the imaginary part of p becomes

negatively infinite, \p(p)—*«> ; and \p(p) has a real period. Hence \yp(p) \ has

a positive minimum p in S. Hence from (1)

AGO I > («, - ^^(M [WjDa. + il\\ I . | M _  ! ,//(p) | |

Now let \p | be so large that |e"G>) | < p/2. Then we have

(2) |A(p)|>A|p>+V"0->|,

and this inequality is valid for p in 5 and \p \ sufficiently large, h being in-

dependent of p. This inequality shows that A(p) has no zeros in 5 for \p \

large.

That AG>) for large \p | does have a zero in each small circle and only one

is seen from (1). As p travels just once around one of the circles, argyp(p)

increases by just 27r, i.e., the point \p(p) travels just once around the origin.

Hence the point AGO wul travel just once around the origin provided

|e"G>) | is small enough, and hence AG>) has just one zero in the circle.

Moreover, if \p \ is large enough, the zeros of AG>) will be real. We omit the

actual proof, which consists in showing by purely formal manipulations that

A(p) = —A(p), dashes denoting conjugates. We denote the zeros of AG>) by

Pk, k = l,2, ■ ■ ■ .

The characteristic functions. A form of solution of the differential

equation and the first and third boundary conditions is

yi(x)      y2(x)      y3(x)

Wi(yi)    Wx(y2)    Wx(yz)

Wz(yx)   Wz(y2)   Wz(yz)

1
u(x) =

(w2 — w3)p

Substitution of p* for p in u(x) yields the kth. characteristic function «*(*).

We consider the characteristic functions for the case in which

Wx(u) = a]2M"(a) + an«'(a) + ai0«(a),

(3)    W2(u) = assu"(a) + a2i«'(a) + as«u(a) + ßssu"(b) + ßsxu'(b) + ßsou(b),

Wz(u) = aziu'(a) + aSou(a),
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the distinctive feature of which is that two of the W's bear only at one end

of the interval. This is a case in which every Db equals zero. Highly irregular

cases in which at least two boundary conditions bear at both ends of the

interval will be treated in a later paper.

Proceeding to develop the form of the characteristic functions, we have

u(x) =-4i(p)yi(x)4-.42(p)y20r) +A3(p)y3(x), where the .4's are certain quadratic

polynomials in p. We may write

(4) w(x) = aua3Xp28x[p(x — a)] 4- aX2a3op82[p(x — a)]

+ (axxa3Q — aioasi)c53[p(x — a)],

where
/31'2   \

8x(pt) = e"'" 4- e",pi 4- e""' = er" + 2e»tl2 cos (-pt j,

/       x       31'2    \
8i(pt) = e""' - u3e""" — one"'"' = e~" — 2e'"2cos(-1-pt),

/t      31'2   \
83(pt) = eu"" — w2eM"" - cose""' = e-" — 2e",/2 cos I-1-pt\.

These 5 functions are seen to be real if p and / are real, and they satisfy the

relations

d d d
—8x(pt) = - p83(pt),     — 52(p0 = — p8x(pt),     —83(pt) = — p52(p0 ;
dt dt dt

«i(0) = 3,      52(0) = 0,      5,(0) = 0, etc.

Hence u(x) is real if both p and x are real. We may write

m(x) = e~p(-x~a) [ai2a3ip2 4" «120:30p 4- (o¡na30 — aioa3i)]

r (3U2 ) (       v
(5) + 2e'(x-a)l2   aX2a3xp2 cos <-p(x — a) > — ai2a3oP cos<-

31'2 \ ( 7T       31'2 ) "I
4- —-p(x — a) > — (axxa30 — aX0a3X) cos< — + — p(x — a) >   .

Necessary conditions for convergence of formal series. We state the

following

Lemma.  // the series

to

(6) 2~LakUk(x)
k=l
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converges  uniformly  in  some  interval  a^x^ß,  where  0<a<ß<tr,   then

\ak | < pe-^'o-^12, where x0 is any constant less than ß, and p is independent

ofk.

Noting that at least one of the cosine terms in (5) must be present, for

otherwise we should not have more than two boundary conditions (3), the

proof of this lemma is the same as that of the corresponding one in Hopkins'

paper.

In the series (6) we now allow x to be complex. Writing x — a = t, we have

3

\8i[pk(x - a)]\ < £ k"'Pt'l ;
i-i

and, calling t = £+r¡i, I; and 77 both being real,

\8i[pk(x - a)]\ < e-»f 4- eMi-»'"1)/2 4- e«(f+vs1',)/2.

Here A is supposed to be so large that p* is known to be real. Let to = Xo—a,

and choose a number Xi less than Xo but greater than a. Let<!=Xi —a. Then

h—to=xx—x0 < 0. We shall have

enkU-v ■ »l'*)n < ePktjt

e»*<{+!-31',)/2   <  eP*l,/2

provided

í> -hh

f-77'31'2 < tx

S + V'31i2<tx.

All of these inequalities are satisfied if t is within the triangle whose sides

are £= — tx/2, £ — n'31'2 = tx, e+r¡'31'2 = tx, i.e., if x is within the equilateral

triangle centered at x = a and having one vertex at x=xi. Hence we have

within this triangle

|m*(x)| < 3e«(l'-0>'2    and    \akuk(x) \ < — e'*<*i-*.>'2.
A

But the expression on the right is the general term of a convergent series

of positive constants. Thus we have proved

Theorem 1. Under the hypothesis of the above lemma series (6) converges

uniformly in the interior of the equilateral triangle centered atx = a and having

one vertex at x = x0, and represents therein an analytic function of the complex

variable x.

This theorem presents a restriction on the type of function representable

by series (6). But there are further restrictions. We may write

/(*)-¿*"-o c»(*-a) *-E "-!<»*«*(*), where c* = (l/A!)/<»(a). By the first of
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(3) we have aau¿'(a)+auu¿ (a) + aiouk(a) = 0. Use of the differential

equation satisfied by Uk(x) gives

ai2«*(î+8">(o) + aii«*(1+3n)(a) + aioW*(aB)(a) = 0 (n = 0,1,2, • • •)•

Hence

a12/(2+3-)(a) + ail/o+>»)(a) + a1Q/(«»)(a) = 0 (« = 0,1,2, ••• ).

Hence

(7) ai2(2 + 3»)(1 + 3«)c2+3„ + an(l + 3»)ci+8» + «iocs» = 0

(« = 0,1,2, •••).

Now write f(x)=tpi(x)+<ps(x)+(pz(x), where

CO «0

xf>i(x) =   T, c3n(x - a)in, tps(x) =   £ d+»»(x - a)"*»,
n—0 n—0

«>•(*) =   Z c2+3„(^ - a)2+3»,
n-0

and form the expression

00

ccistpz"(x) + ambs(x) + aiotf>i(x) = ai2 £ Cs+z„(2 + 3«)(1 + 3n)(x — a)3n
n-0

00

+ an X ci+3„(l + 3»)(* - a)3n
n-0

oo

+ «10  S C8n(* — O)3"
n—0

oo

=   £ [«12(2 + 3»)(1 + 3n)cs+zn + otn(l + 3n)ci+zn + aiocSn](x - a)3n .
n-0

By (7) the coefficient of every power of (x — a) in this series is seen to equal

zero. Hence

(8') aistpz"(x) + antpKx) + aiotpi(x) = 0.

Similarly

(8") azixfis (x) + azo<i>i(x) = 0.

Convergence proof.    The conditions of analyticity at x = a and identities

(8) together with certain auxiliary conditions imposed on/(it) for the purpose

of accomplishing readily the convergence proof constitute sufficient condi-

tions that f(x) be expansible in a series of type (6). The convergence proof

wül now be given, and the theorem stated after the proof is finished.
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We introduce a Green's function and a contour integral equal to the sum

/„(*) of the first « terms of the formal series arising from/(x).* Let

g(x,s,p) = ± —

yi(x) yi(x) y3(x)

yl(s) y*'(s) yi(s)

yi(s)    y2(s)    y3(s)

yi"(s)

y{(s)

yi(s)

- ± — Ê Vi(x)zi(s) = ± —83[p(x -s)],
2    i 6p2

yi"(s)    y3"(s)

yi(s)   yi(s)

yt(s)    y»(s)

+ if X > s

s.

(+üx>

l-if x<

Here the definitions of the functions zx(s) are obvious, and the reduction to

the 5 function is straightforward. It turns out that

Zi(s) =

Let

gW,p(o-») _

G(x,s,p)
1

Hp)

Then

yi(x) y2(x) y3(x) g(x,s,p)

Wx(yx) Wx(yi) Wx(y3) Wx(g)

Wt(yi) Wt(yi) Wi(yt) Wi(g)

W3(yx) W3(yi) W3(y3) W3(g)

I«(x) = —; I      f 3p2G(x,s,p)f(s)dsdp,
¿1TI Jyn   Ja

where yn is an arc of a circle centered at p = 0 and extending from arg p = — tt/3

to arg p=7r/3. It is supposed that the radius of yn is greater than |p„ | but

less than |p„+i |.

Before considering the integration we alter the form of G. Multiplying

the first, second, and third columns of the determinant in G by %zx(s),

izi(s), and %z3(s) respectively, and adding to the fourth column, we get

yi(x) y2(x) y8(x) g(x,s,p) + hlZ\.xyi(x)zi(s)

Wx(yx) Wx(yi) Wx(y3) 0

Wi(yx) Wi(yi) Wt(y3) 2W»d)

Wt(yx) W3(yt) W3(y3) 0

G =

which on being expanded gives

1
G - g + - Z y¿x)zi(s) +

¿    i

2(ui — w3)pWib(g)
u(x).

• See Birkhoff, loc. cit., p. 379 and p. 390.
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Further, A(p) = (cc2-cûz)p[3p2Da-Wsb(u)], so that

1 2Wsb(g)u(x)
G = -bz[p(x - s)]-\-if x > s,

3p2 3p2A - Wsb(u)

2Wsb(g)u(x)
G = -—- iíx < s.

3P2Da - Wsb(u)

Thus we obtain the form of contour integral with which it is convenient to

work, namely,

/-(*) = — -. f    f 4»[p(* - s)]f(s)dsdP

2« J7b Ja        3p2Da - Wsb(u)

The following six functions are introduced :

Pi(x) = p2tpi(a)bs[p(x -a)]- ptpi(a)bz[p(x - a)] + tp{(a)bi[p(x -a)],

Ps(x) = P2tj>i(a)bz[p(x - a)] - ptpl(a)bi[P(x - a)] + tpz"(o)bs[p(x - a)],

Pt(x) = P2tpi(a)bi[p(x -a)]- ptpl(a)bs[p(x - a)] + 4>z"(a)b3[P(x -a)},

Ri(x) = - p f bz[p(x - s)]<px"(s)ds +  fbi[p(x - s)]tps'"(s)ds
Ja Ja

1   rx
-I  bs[p(x-s)]<pziy(s)ds,

P   Ja

Rs(x) = - p  f bi[p(x - s)]tpx"(s)ds +  f bs[p(x - s)]tps'"(s)ds
Ja Ja

1   cx
-I  bz[P(x-s)]cbziv(s)ds,

P   Ja

Rz(x)-p f bs[P(x - s)]tpx"(s)ds +   f bz[p(x-s)]cbs'"(s)ds
Ja Ja

1   cz
-bi[p(x- s)]<j>ziv(s)ds.

P   Ja

Using f(x)=cf>i(x)+tp2(x)+cpz(x), and integrating by parts the term

containing <£i(s) twice, that containing tp2(s) three times, and that containing

tpz(s) four times, we find that

f bz[P(x - s)]f(s)ds = —/(*) - — tpi'(x) - —\Pz(x) + Rz(x)\,
Ja P P P3
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and

3p2 j 2W2h(g)f(s)ds = ßJ— {^"(b) + <t>3"(b)}-\Px(b) 4- Ri(b) }1

+ ßn \-f'(b) + ~{P2(b) + i?2(6)}]

+ Ao [-j/(6)
*3'"(6)

| -—3{P3(&) + i23(6)}].

These results are to be substituted in (9), and the terms separated into three

groups, one containing/(x), the second containing<f>i" (x) and terms involving

the values of the 0's and their derivatives at x = 6, and the third containing

terms involving the P's and R's.

The p-integration is taken in two steps, one being an integration over y„ ,

which is that part of yn on which arg p>0, and the other an integration

over 7/, on which arg p<0.   We consider first the integration over y„ •

Since the inequality \u(x) \ <l\p2ea""-x~a) \, where I is independent of p,

and inequality (2) are both valid on yn', we have

(10)
«(x)

3p2Da - W2b(u)
< Z-31'2

p3g^p(x -a)

A(p)

Z-31'2 .

A    ' ''

The exponential in the last expression has an exponent whose real part is

negative over the entire arc yn'. For this reason the second group of terms

arising from (9) yields in the p-integration over y„' only terms which tend

uniformly to zero as «—»°o, x being restricted to a closed interval interior

to (a, b) not containing either a or b. We shall refer to terms arising from

(9) which tend to zero in this manner as terms which can be neglected.

The terms of group three are all put over the denominator 3p2Da — W2b(u),

and it is then seen that that part of the numerator which contains Da leads

to terms which can be neglected. The terms of the numerator containing

P's are

— [fe|P3W/(6) - p2Pi(6)m(x)} 4- ßn\Po(x)u'(b) + pPt(b)u(x))
P3

+ ßio{Po(x)u(b) - P3(b)u(x)]].

If in this expression we replace each P and each u by its value in terms of the

8 functions, the coefficients of the ß's are each seen to equal zero. Con-

sequently we hav.î
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(11) 1
7B'(*) =-/(*) +«„(*)

éfà

ßss[pMx)Ri(b) - u"(b)Rz(x)] - ßsi[pu(x)R2(b) + u'(b)Rz(x)]--fí2*1 Jy'   { P«f3p2A- Wsb(u)]

, ßso[u(x)Rs(b) -u(b)Rz(x)Y

p*[3p2Da- Wsb(u)]

!}*,

in which en(x) stands for that portion of 7„' (x) arising from the neglected

terms.

The coefficient of each ß in the numerator of this integrand is to be con-

sidered by itself.  We define variable y by means of the equation

y — a = (x — a)ei(T-"' p)

In the following we also change the variables of integration by the trans-

formations s — a+Wi2(t — a).  We have

where

I bs[p(x - s)]tpx"(s)ds =   £ xoíe"«-* I   e-""'t?x'(s)ds
Ja 1 Ja

8 p a— tiit¡(x— o)

=   £ e<*ip(x-a)  i e^'-^cbi (t)dt
1 Ja

3

= bi[p(x - a)]pi +   2 eai'^a^ii,
i

ßi =    f"«»«—)^/«-»(/)<ft

and
Joa— w,'(«— o)

ep(«-«)^,(;+o(/)¿/.
V

In order to render these steps and the following ones valid we require each

of the functions tp¡(t) to be analytic in a circle centered at t = a. Let r<b — a

be the radius of this circle. We require the real number x to be within this

circle. Then the complex variable y, as well as the numbers a—iOi(x — a)

will be within the circle. Hence, taking the paths of ¿-integration as straight

Unes, these paths will lie entirely within the circle. By steps similar to those

above we find

I     b3[p(x - s)]tt>s"'(s)ds = 52[p(s - a)]p2 + 2>rV<te"«,(-"),
Ja 1
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and
r.Z S

I    fii[p(x - s)]d>3lv(s)ds = 83[p(x- a)]p3 -   5><x<,e<"<'><*-<»>.
Ja 1

From these we get

(12) R3(x) = — p5i[p(x — a)]px + 82[p(x — a)]pt-5j[p(x — a)]pt + At,
P

where

(13) A3 =  ¿«-*»(—>f- pviX + (¿¡vu + — UiPi3\.

where

The reason for breaking up R3(x) in this way is that the portion of R3(x)

containing the p terms does not yield in the p-integration a quantity which

has zero for its limit as w—»oo, but does cancel against a similar portion of

the other part of the coefficient of the ß under consideration. The A3 portion

of R3(x) does yield in the p-integration a quantity which has zero for its

limit as »—»«o.

We have also

(14) Rt(b) = -p f 8t[p(b - s)]4>x"(s)ds +  f's3[p(b - s)]4>t'"(s)ds
Ja Ja

i  rx
-5i[p(6 - í)]<p,ív(s)¿í 4- C3,

p   Ja

C- -pf 8i[p(b - s)](bx"(s)ds +  f 5,[p(6 - s)]4>i'"(s)ds

i  r"
-«i[p(6 - s)]<p3*(s)ds.

P   Jz

f 8t[p(b - s)]<bx"(s)ds = 5i[p(6 - a)]Mi 4- ¿W»«»-),
Ja 1

(15) f 83[P(b - s)](t>i'"(s)ds = S2[p(6 - a)]pi + ¿co,»v<2e-^(»-»>,
Ja 1

px S

{  8i[p(b - s)] (biv(s)ds = á3[p(6 - a)]«3 - Y.o'W^*-*•
Ja 1

Hence (14) becomes

(16) R3(b) - -p8x\p(b - a)]pi 4- 52[p(6 - a)]pi-5,[p(6 - a)]p3 + Bt + Ct,
P

But
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where

(17)      Bz=  T,e'*i',(i-a)\-Pvn + o>?>>i2 + — «•*«]•

From (4), (12), and (16) we get for the coefficient of d2o in the numerator

of the integrand in (11) the expression

p2{5i[p(* — a)]bs[p(b — a)] — bs[p(x — a)]ái[p(¿ — a)]} {ai2a3ip2

+ aisazopi] + p{bz[p(x - a)]5i[p(o — a)] — bi[p(x — a)]bz[p(b — a)]}

• {ai2a3iju3 — (ana3o — «io«3i)pi} + {á3[p(s — a)]52[p(ô — a)]

— bs[p(x — a)]bz[p(b — a)]} {anazoPz + («naso — aioasi)^}

+ u(x)(Bz + Cz) -u(b)Az.
Now

aziPs + xxzoPi =   f e"('-o)[«3i«/>2'"(0 + cxzo<t>î(t)]dt,
Ja

which is seen to equal zero provided (8") is satisfied. For similar reasons

aiittsiMs — (anO!3o — «100:31) Mi = 0 and «12030^3+(o¡uO!3o — «100:31) M2 = 0. Hence

(18) reduces to u(x)(Bz+Cz)-u(b)Az.

In exactly the same way the coefficients of d2i and d22 in the numerator

of the integrand in (11) reduce, and we obtain

no,    r>^     inj     (,      l     C     { ^\s?u(x)(Bi+Ci)-u"(b)Az]
(i9) i:(x) = y(x) + (n(x) - — i   <^ —-T—-———:—

2ttí J7¿    (       p2[3p2Da— Wsb(u)\

ßsi[pu(x)(Bs+C2) +u'(b)A3] +ßio[u(x) ( Bz+Cz)-u(b)A3

where
P3[3p2Da- Wsb(u)\ )dp'

Bs =   ¿«"•"(fr-«)  pupa + Vi2-u^viz \,

Bi =   ¿e"tf<»-«>   - pa?i>n - cava-va   ,

Cs= - P ( bi[p(b - s)]tPi"(s)ds + j bs[p(b- s)]cbs'"(s)ds

1   rh
-bz[P(b - s)]tpziv(s)ds,

P    Jx

Cx= - pj b3[p(b - s)]<t>i"(s)ds + j bi[p(b- s)]tt>2'"(s)ds

1    rb
-bs[p(b- s)]<t>ziv(s)ds.

P   J X
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•/ y

Consider next the portions of the integral in (19) arising from the terms

containing A3. We see from (13) that ^43 itself contains nine integrals of

the type
»a—«¿(x—a)

ep(i-. )^/m)(<)¿7.
V

In every one of these integrals |e',(t_o) | takes on its largest value along the

line of integration at the upper limit. For, as t runs from y to a—co¡(x —a),

p(t—a) runs from — |p|(x —a) to — «¿p(x — a). The points in the complex

plane representing this latter pair of numbers are at equal distances from

the origin and the former is on the negative axis of reals. Consequently the

real part of p(t — a) increases steadily as t runs from the lower limit of integra-

tion to the upper. Hence, if |<p,-(i+1>(0 | <M, a constant, for all j entering

in this discussion, we have |j/i}-1 <2M(b — a) |e-»*p<*-«> |. Hence \A3 \ <K \p |,

where K is independent of p and of x. The portion of the integrand containing

A, is

Wit(u) A»

3P2Da - Wih(u) ' p3 '

We have seen that the first of these factors is a bounded function of p for

\p | large and on y„ . Hence the portion of the integrand containing A3 can

be neglected.

Consider now the remaining portion of the numerator of the integrand

in (19). Formal reductions yield

u(x) [ß,ip2Bx - ßiipBt + ßioB3]

o

=     £«.«,<*-•> {aSDaip" - UiDaV* + DaiP3 + Wi2DaXp2
i-l

— WiDaop] \8i[p(x — a)]v¿i-52[p(x — a)]vn + —83[p(x — a)]vi3\,
P P*

and show that w(x) [ß22p2Ci — /82ipC24-/820C3] equals a sum of five products of

which the ¿th is of the form

Dttipi+1(8x[p(x - a)] J 8Mb ~ s)](bx"(s)ds

- -8t[p(x- a)]  f Sk[p(b - s)]4>t'"(s)ds
P J X

+ -283[p(x -a)] j 8t[p(b - *)W*(*)Js|,
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j, k, I having the values 1, 2, 3 in various orders in these terms.   Hence

I u(x) [d22plBi - d2ipB2 + ßsoBz] |

3

< 6M(b - a)\ e»»'(*-°>| £l e«.p(»-»)| • | A,p,+1| • | «-"#<*-■> |
t-i

< K\ p^e*^*-*] ,

where K is independent of p and of x. Also

| u(x)\ß»pKi - ßsipCs + d2oC3]| < K'\ pH-i^d-.)! ,

K' being independent of p and of x. Hence the portion of the integrand in

(19) containing the B and C terms is less in numerical value than some

constant divided by |p2|, and can be neglected. This leaves ¡n(x)=\f(x)

+en(x), where en(x) tends uniformly to zero as a limit when »—►<».

The portion of In(x) arising from integration over the arc 7„" is treated

in a fashion quite similar to the above treatment of I„' (x) and with similar

results. We omit the consideration of it, and state immediately

Theorem 2. If the boundary conditions can be written in the form (3)

with at least one Da not zero ; iff(x) =tpi(x)+tps(x)+cp'z(x), where tpi(x) =2o°°c«n

.(x-a)3n, xj>s(x)=]Fl"ci+zn(x-a)1+3n, 03(z) =£0°°c2+8n(s-a)2+3n are power

series convergent in and on the boundary of a circle centered at x = a and of

radius r<b — a which satisfy the identities aiscpz'(x)+antps (x)+axoxpi(x)=Q,

azitps (x)+a3oxpi(x) =0 ; and if also tp{' (x), <p{" (x), <pziv(x) are continuous for

real values of x from a to b, then the formal series for f(x) of type (6) converges

uniformly to f(x) along the segment of the real axis from atoa+r.

From Theorem 1 it foUows as a corollary to Theorem 2 that the formal

series wiU converge uniformly to f(x) in the equilateral triangle whose center

is at x = a and one vertex of which is at x = a+r.

We come next to the case in which two of the boundary conditions bear

only at x = b. We do no more than state the results. Let the boundary con-

ditions be written in the form

di2«"(a) + dnw'(ô) + ßiou(b) = 0,

<*siu"(a) + asiu'(a) + asou(a) + ßs2u"(b) + ßsiu'(b) + ß20u(b) = 0,

ßszu'(b) +ßzou(b) =/0.

The characteristic numbers are found to lie along the rays arg p = 7r/3,

ir, Sir/3. We restrict p to the sector 27r/3 = arg p = 4ir/3, using the

characteristic numbers along the ray arg p = 7r.
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On the assumption of uniform convergence of 2~2îbkUk(x) in an interval

a^x^ß, where a<a<ß<b, we obtain a restriction on the ¿Vs which is of

sufficient strength to allow us to show that the series converges uniformly in

the equilateral triangle centered at x = 6 and having one vertex at x = a. A

formal property of the characteristic functions then shows that the series

necessarily represents a function of the form/(x) =<pi(x) +<p2(x) 4-<p3(x), where

00 oo

*i(«) -  X>3n(x - 6)»», c>2(x) = 2>+3„(*-6)i+»»,
o o

*■(*) -   ¿c2+s„(* - 6)2+"*,
0

each 4> being analytic in the triangle, and that the <p's must satisfy the

identities

/W(«) + ßu<t>i(x) + ßio<t>i(x) m 0,   ßutH(x) + ß3o<t>x(x) = 0.

If we now take a function/(x) satisfying the above conditions and in addition

such that(pi"(x),<p2'"(a;),and<p3iv(a;) are continuous from a to b, the formal

series for f(x) of type 2~l?bkuk(x) will converge uniformly to f(x) in the

interval (b—r, b),r being the radius of the circle in which thetp's are assumed

to be analytic.

Part II

We have made reference to a very special case treated by Hopkins in

which the boundary conditions can be written w(0)=m'(0) = w(7t) = 0. The

characteristic functions in this case are uk(x) = 83(pkx), A = l, 2, • • -, and

they satisfy the functional equations uk( — w2^) = — a3uk(x), uk( — w3x)

= —W2Uk(x). Hence uk( — w2ir)=uk( — u>3'7r)=0. Also, denoting differentiations

with respect to x by accents, u¿'( — o)3x) = u¿'(x). Hence uk" ( — a3ir) = 0.

From these we select

(20) «(irj = u(- w3ir) = 0,      «"(tt) = u"(- w,ir),

which we shall take as boundary conditions. They will be seen to lead to a

larger class of characteristic functions than Hopkins', but one which includes

his.

Use of the first two of (20) gives

(21) u(x) = (e2"^» — e~u***)e'°ii"' + (e2"^*" — e~"",T)eM«''14- (e2wi',T — e,-"i»»)e"»e*,

at least to a factor independent of x.   The characteristic equation is
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A(p)-

e«,p» gUtpT eU,l>T

e"»"* e"ipr e™»'"

coi,p2(e""" — «">")    W2ip2(ew«'" — e">")      (¿ip2(eu»T — e"»")

(22) =" («3 - »i)pVpt)«»(- ptt) = 0.

The fact that the characteristic equation factors in the particular way in-

dicated here is what suggested the choice of boundary conditions under

consideration. This choice, of course, is only one of many that might be

made. The factor 83(pir) of (22) has for its zeros precisely Hopkins' charac-

teristic numbers, which we denote by pxk. The other factor 63(— p7r) has the

negatives of the numbers pxk for its zeros; we denote these by p2*, and write

P2* = — Pi*.

We have

and
g«",«*«- _ W2e»iPu» _ u3eaiWtT = 0,

the first being Hopkins' characteristic equation, and the second being ob-

tained by multiplying the first by — w2 and rearranging the terms. From

these two equations we get

1 : — co2: — ci>3 = e2aiw*T — e~a*nkT •.e2"'nk'' — e~a"litT:e2u^n'cT — e~ "i«**.

Consequently if in (21) we replace p by pi* and remove the proper factor

independent of x, we get what we shall take as one set of characteristic func-

tions, namely uXk(x) = 83(pxkx). These are Hopkins' characteristic functions.

If we transform by means of the transformation

(23) X'  = C027T —   x

to the point w27r as a new origin, we find by steps similar to those above that

the rest of our characteristic functions are given by uîk(x) = 83(pxkx') =

83[pik(uiir—x)].

From Part I we know that if the series

«0

(24) 2>u «i*(se)
i

converges uniformly in some segment of the axis of reals from 0 to x, it

represents a function analytic in x and of the form x2<p(x3), cp(x3) being a

convergent power series in x3, and that the series also converges uniformly in

an equilateral triangle centered at x=0 and having one vertex on the axis

of reals between 0 and tt.   Noting that the transformation (23) consists of
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a parallel shift x"=x — u2ir followed by a rotation through 180°, x' = —x",

we see that if a series

(25) X>2* usk(x)
1

converges uniformly in some segment of the straight line between w2tt

and —w37T, it represents a function of the form (w27r —x)2 yp[(ct)sir — x)s],

where ^[(w27r —x)3] is a convergent power series in (w2t—x)3, and the series

also converges uniformly in an equüateral triangle centered at x = cústt

and having one vertex on the segment from w27r to — w87r. If the triangle cen-

tered at x=0, which we call triangle I, and the triangle centered at x = usir,

which we call triangle II, are so large as to have one side in common, it is

conceivable that on this common side a series of the type

00

(26) Y^[aikUik(x) + askUsk(x)]
i

may represent functions of a wider class than those represented by either

series (24) or (25) individually or than a linear combination of functions

representable by series (24) and (25).

Let, therefore, triangles I and II be so large that they have a common

side C, which will be the segment from 7r to — «37r. Putting f(x) equal to

series (26), how shall we determine formally the a's? To answer this question

we proceed to a definition of adjoints.

Write L(u)=u'"+p3u and M(v) = -v'"+p3v.  Then

f  [vL(u) - uM(v)]dx =    f [vu'" - <uv'"]dx = [uv" - «V + u"v]c.
Jc Jc

If we require that u(ir)=u( — w37r)=0, u"(w)=u"( — uzir), and v'(ir) =

v'( — o)zir)=0, v(ir)=v( — o)zir), we have

X[vL(u) - uM(v)]dx = 0.

If we require also that u satisfy L(u) = 0, u will be a characteristic function

Uu(x) or usi(x). The functions v satisfying the above conditions at x and

—«37T and also the differential equation M(v)=0 we define as the adjoints

of the u characteristic functions. Mere formal manipulations suffice to show

that the characteristic numbers for the v differential system are the same as

those for the u system. Adopting an obvious notation for the v characteristic

functions, we have
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I   [v2jL(uii) — uXiM(v2j)]dx = 0.

But

Hence

(27)

I  [v2¡L(uXt) — uxiM(v2j)]dx = (pu — pli) I uXiV2jdx.
J c Ja

I uX{»2idx = 0       for all i and / ; and similarly
Jc

I uuvXjdx = 0       for all ¿ and j,
Jc

Jux#ixjdx = 0       if if*j, and
c

1 Ui&tjdx = 0       if is*/.
Jc

All integrations over C are to be made from — w3tt to it. The functions v

are found to be given by vXk(x) = 8x[pXk(coiir—x)] and %*(x) = 8x(pxkx), except

possibly for factors independent of x, of which we take no account. The

relations (27) enable us to determine formally values for the a's in series (26).

We proceed to study series (26) under the hypothesis that it converges

uniformly in some segment of C. Writing x = £4-(7r—£)¿/31/2, which yields

x on the line of C if £ is real, we have

(28)
r       7T - i ir - n

«»(*) = «-'»^cos pr^TJT ~ isinp*~^7/l~J

L      \3       31'2     2-31'2/

.  . / t       P*£        PtT \1
4- t sinl-]

\3      31'2     2-3»/vJ

,.r      i*   , 2p£       pktr \
- e'*T/í cosí — 4-)

L     \3      31'2     2-31'2/

I'*_ 2pk£ PkTT   \~|

\3    " 31'2      2-31/2/J
— ism I
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and

usk(x) = e»»«-"»   cos I-] - » sin (-+-)
L     \2«31/2     31'2/ \2•31/,     31/2/J

(29) r     (ic      pktc      pi£\ ,..(*   . p*t      p*£\~|
— e '**   cosl-1 + t sin I-J

L     \3      31'2     31'2/ \3      31'»     31'*JA

^ris\~     (* j    P*T       2p**\      • •   i/7r   .    "*"■        2P*Z\~]
— et""12   cosl-I — t sin I-1  .

L     \3      2«3>/2      31'2/ \3      2-31'2      3l'«/J

Here we have used p* to stand for pit, and we suppose not only that

— 7r/2<£<7T, so that x will be on C, but also that £ is so restricted that *

is within the range of assumed uniform convergence of (26).

Take k so large that there will be a value £' of £ in its restricted range

such that
(7T         pt7r         2p*|\

-1 = 1.
3      2«31/2      31/2/

cosl

If x' is the value of x which corresponds to £', we find

«i*(*') - e'*"2[«2 + Eik]   and   «»(*') = e"-"2[- 1 + EM],

where Eik and 7¿2* both can be made as small numericaUy as desired by taking

k sufficiently large.   Consequently

(30)   ai*(«2 + Eu) + osk(- 1 + Esk) = e-'*T/2ktMit(*') + a2*«2*(x')].

If k is large enough, we can repeat the work of this paragraph with another

value £" of £, such that

/it      2pt$"        p*7r \
¡i-1 = 1,
\3        31'2       2-31'2/

and if x" is the corresponding value of x, we shall obtain

(30')      aik(- 1 + E\k) + ask(x»s + £*) = e-'**/2k*«i*(*») + a2t«2Jk(*')].

Equations (30) and (30') are to be solved as non-homogeneous linear equa-

tions for the an and a2* which appear in their left hand members. If the

solution is made in the usual way by determinants, we find ai* given by a

quotient of two determinants times e~l"tTl2. The determinant in the de-

nominator of this quotient is seen to have a numerical value greater than

some positive constant, while the determinant in the numerator is less

numerically than some positive constant, since \aikUik(x)+a2kU2k(x)\ <g,

where g is independent of both x and k, holds for both x = x' and x=x".

Similar remarks are valid for the solution for a2i. Thus we have proved the
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Lemma.   // series (26) converges uniformly in some segment of C, then

| «i* | <hxe~PkTl2 and |aM| <hi~nTl2, hx and A2 being independent of A.

From this lemma we may prove the following theorem by the method

of reasoning used in the work immediately following the lemma of Part I.

Theorem 1. If series (26) converges uniformly in some segment of C, then

series (24) converges uniformly in the interior of triangle I and represents a

function analytic in x and of the form x2<p(x3), and series (25) converges uni-

formly in the interior of triangle II and represents a function analytic in x

and of the form (w27r—x)2\f/[ (co27r—x)3 ].

Let us now write purely formally /(*)=£r [«i*«i*(*)+<***«»(*)],

and determine the a's by means of relations (27). We shall suppose that

f(x) is continuous together with its first two derivatives on the closed segment

C.   We find

(31) I f(x)vxk(x)dx = au I uxk(x)vik(x)dx,
Jc Jc

and

(32) I f(x)vîk(x)dx = oik j Uik(x)vik(x)dx.
Jc Jc

Carrying out the integrations appearing on the right hand sides of these

equations explicitly, we find

(33) I   uXk(x)vik(x)dx =    j «2*(x)»i*(x)ax= (w2 —ci)8)xfis( —p*ir).
Jc Jc

Also, making two integrations by parts,

Jf(x)vik(x)dx =-[ws/OO +/(— to»«-) ]52(p*tt)
c                              p*

+ —r {h[pk(<*2* - x)]f"(x)dx,
Pk2   Jc

and

I f(x)Vik(x)dx =-[f(it) + cos/(- wS7r) ]ô2(p*tt)
Jc Pk

Pk'

We may, therefore, write

+ —- f 83(pkx)f(x)dx.
Pk   Jc
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.... w3/(tt) + /(— co37r) 52(pt7r)
(31')      ai* =

(co3 — cos)ir Pkbz(— PkTf)

1
+

(w2 — w8)7rp*258(— p*7r)

and

/W> /W  + U3f(~ W37t) 52(p*ir)
(32 )      ask =

(S3[p*(a»27r - x))f(x)dx,
Jc

(Uz  — W2)7T Pkbz(—  PkTf)

1
+

(w2 — uz)irpk2bz(— PkTt) Jc
(bz(pkx)f(x)dx.

Jc

We now insert these expressions for the a's into series (24) and (25),

and test these for convergence on C. Before actually doing this, however,

we investigate the sizes of axk and a2i¡. Consider the integral in (31'). It

contains in its integrand the sum of three exponentials, no one of which at

any point of C exceeds C*W2 in numerical value. Hence

j   bz[pk(cosir — x)]f"(x)dx
Jc

< Me'1"'2,

M being independent of k. Also

1

bz(— PkTx)
= er»'[i +c-(pk)],

where e(pk) has the limit zero as &—>co. Hence the term of (31') which con-

tains the C integral can be written (l/pk2)e~'tTl2 M(pk), where M(pk) is

bounded for k large. Now

(34)
82(p*7r) r (pm. 3mr       n       /Pktr.31'2       w\

e-pkns    _ 2 cosí-J
bz(— PkTf)

œze~2u'l'i"-+Pkri^ -\- W2e""2"3',*T+p*T/2 — e-»**'2

bz(—  PkTf)

Hence (31') can be written

]■

,J ««/(*)+/(-»i»)      (pK«'$m      ix\     M'(pk)-\
(35)        aik = e->"<2\2—-cosí----) +-—   ,

L        (co2 — coz)irpk \      2 3 / Pk     A

where M'(pk) is bounded for k large.
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But from (28) we have on C

(36)    uxk(x) = e>»*l2\- cos (— + — - -^-\
L \3       31'2      2-31'2/

,   . .   / T   ,   2p*?        p*x \ H
4- í sin (-) + e*(£)   ,

\3       31'2      2«31'2/ J

where €*(£) tends to zero uniformly as an exponential function when A—»°o

if x is restricted to a closed interval on C which does not include the end

points of C. From (35) and (36) it is clear that series (24) will converge

uniformly on those segments of C on which

*     1 /ptTr-31'2       tt\ /t       2Pkl        Pkir \       j
?_. — cos I-I cos I-1 and
ip*       \     2 3/       \3       31'*      2«3W

"      1 /pkT'31'2        X\    .     /7T 2pkt pkT   \
¿. — cos I-1 sin (-)
iP*       \2 3/       \3       31'*      2«31'V

both converge uniformly.   From the equation whose roots are p* we get

/ PkT'31'2      ir\ 31'2/        1 X1'2      1
cos (-) = ( — 1) *-( 1-e-3"*» )-e-3"*"2.

\2 3/2\4 / 4

It is clear, therefore, that both series (37) will converge uniformly on those

segments of C on which

-    (-   1)» /2P4f P*7T   \ -      (-   1)*     .       /2prf PkT   \
Z.-cos I-I   and     y. -sin I-I
i      pk V31'2      2-3"2/ i       pk \31'2      2-3"V

both converge uniformly. Since pt = (l/31/2)(l/34-2A)-l-e*, where e* is

given by
Tret-31'2      (-  1)*+»

sin-=-g-spi"-/2
2 2

we see by simple reductions that these series will converge uniformly on

those segments of C on which

»      (_   J)* »      (_   J)* J
2~^ -cos As  and    2~1 -sm ^s> s = —(^{ — «"),

1 Pk 1 Pk 3

both converge uniformly. However, these series are known to converge

uniformly except possibly in neighborhoods of the points s = 2ltr and

s=(2l — l)ir*   These exceptional points correspond on C only to the end

* Bôcher, Introduction to the theory of Fourier series, Annals of Mathematics, (2), vol. 7 (1906),

p. 111.
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and mid-points. SimUar considerations are valid for a2* and «•.*(*) on C,

the work being based on (32') and (29).  We may, therefore, state

Theorem 2. Iff(x) is continuous together with its first two derivatives, and

if aik and ask are given by (31') and (32'), then series (24), (25), and also (26)

converge uniformly in all closed intervals of C not containing the end or mid-

points of C.

If series (26) converges uniformly on C, andf(x), the function to which it

converges, has a continuous second derivative on C, then the determinations

(31') and (32') of d* and ask wiU be valid. Hence series (24) and (25) wül

both converge uniformly in all closed intervals of C not containing the end

or mid-points of C, and wiU represent on these intervals continuous functions

of x. Referring to Theorem 1, we see that we may now state

Theorem 3. If series (26) converges uniformly on C to a function which has

a continuous second derivative on C, then series (24) and (25) both converge

uniformly in all closed intervals of C not containing the end or mid-points of C,

series (24) converges uniformly in triangle I to an analytic function of x of the

form x2tp(x3), and series (25) converges uniformly in triangle II to an analytic

function of x of the form (icsir—x)2yp[(iOsir—x)3].

We see, therefore, that under the hypotheses of this theorem, series (26)

must represent on C a function which is capable of being written in the form

(38) x2tp(x3) + (u>iT - z)V[(«27r - x)3]

on C, where xj>(xs) is an analytic function of a; in triangle I and yp[(usTr—x)3]

an analytic function of x in triangle II, both being of the forms indicated.

Let us now begin with a function f(x) oí the form (38) on C and such that

xp(x3) and yp[(u2ir—x)3] both have continuous second derivatives on C. Will

the series (26) with coefficients given by (31) and (32) converge to f(x) on

C? Let us write x2tp(x3) =X]i°° aikUu(x). It is known that if

fli* =    I   x2tp(x3)bz[pk(v - x)]dx -4-    I   Uik(x)bz[pk(T-- x)]dx,
Jo Jo

then this series wül converge uniformly to x2tf>(x3) along a certain segment

of the real axis between 0 and tt.* We shall prove that an thus given equals

an as given by (31). To this end we need only prove that

* Hopkins, loc. cit.
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I  f(x)vxk(x)dx I   uxk(x)83[pk(r — x)]dx
J c Jo

=   I uxk(x)vxk(x)dx I   x2<p(x3)53[p*(ir — x)]áx.
Je Jo

JuXk(x)83[pk(v — x)]dx = jtS2(p*7t).
o

But

'o

Hence, in view of (33), we need only prove

(39)    Ô2(p*tt)   i f(x)vxk(x)dx = (co2- o>%)83(— pkir)   J x2<p(x3)53[p*(ir — x)]dx.
Jc Jo

But

I f(x)vxk(x)dx =    I \x2(p(xz) + («27T — x)V[(w27T - x)3]}5i[p*(w2tt — x)]¿x
Je Je

=    I x2<p(x3)5i[p*(co2ír - x)]dx,
Je

since (co27r—x)2^[(w27r—x)3] 5i[p*(co27r—x)]¿x is the differential of a single-

valued function of («27r—x)3.  Also

fx2cKx3)ai[p*(a.27r - *)]d*=|    f        4-    f    \x2<b(x3)8x[pk(u2T - x)]dx
Je L J-ui,r Jo    A

=       J   X2<p(x3){¿5l[pt(c02T  —   X)]   —  5l[p*(c027T 4" Cd3x) ] } ¿X
Jo

by Cauchy's integral theorem together with a change of integration variable.

Hence to establish (39) we need merely prove

52(p*7r){5l[p*(c027T  —   X)]   —  Ol[p*(c027T 4" «3x)]}

= («2 — oo3)83(— P*7r)53[p*(7T — x)],

the truth of which.is readily established by use of the equation defining the

numbers p*.

But with axk as given by (31) we know that series (24) converges uniformly

along C except possibly at the end and mid-points. In view of the above it

follows that (24) converges uniformly to x2<p(x3) on C except possibly near

the end and mid-points. In a similar way we may show that with a2* as

given by (32), series (25) will converge uniformly to (w27r—x)2 ̂ [(aj27r —x)3]

on C except possibly near the end and mid-points. We may, therefore, state
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Theorem 4. If f(x)=x2cp(x3) + (co2w—x)2 yp[(cû2w—x)3] on C, where

xp(xs) is continuous together with its first two derivatives on C and analytic in x

and of the form indicated in triangle I, and where yp[(tc2ir—x)3] is continuous

together with its first two derivatives on C and analytic in x and of the form

indicated in triangle II, then the series (26) with the formal determinations of

the coefficients will converge uniformly to f(x) on all closed intervals of C not

containing an end or mid-point of C.

Part III

The type of expansion considered in Part II is one of a class in which the

characteristic functionsare determined by the differential equation u" +p3M=0

and three boundary conditions imposed at two of the points t, —w27r,

—w8tt. We shall not consider this type further, but take instead a case in

which the boundary conditions bear in a symmetric fashion at these three

points.   We take u(ir)=u(—w27t) = m( — w37t) = 0.

Here the characteristic equation is

A(p)=-

ß<a,pr gwjpr gù),px

gUtpr gu.pi ewlPT

gUjpr      eu,pw      eca,pT

= 0.

Simple reductions give

(40) A(p) = 3 - e3""" - e3"«" - e3"«" m - bi(pir)bs(pir)bz(pir).

Accordingly, the characteristic numbers fall into three sets, all distributed

along the positive axis of reals, and determined respectively by the equations

bi(pir) = 0, S2(p7r) = 0,

They are given respectively by

53(ptt) = 0.

(41)

Pi* = tttS1 + 2*) + *»*>   P2k
3 '

Pzk

=-\ — +2k\ + tsk,
3"2\3 )

=-(— + 2k)
31'2\ 3 /

+ X-Zk,

where e,* tends to zero as a limit when k—><x>, i being 1, 2, or 3.

Use of the conditions m(7t)=w(—«27r) = 0 gives

(42) u(x) = e">iP*(e2o>,pT _ g-«,?») -j. e<*,pxfesw,pT _ g-»lPl)

+ gulpI(g2»tfT — g-"*?*),
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except possibly for a factor independent of x. The characteristic numbers

Pi* satisfy the following pair of equations ; the second is obtained from the

first by a rearrangement of terms:

e»ip» + e"*' + e"** = 0,

gujp» _j_ g",pT _j_ g«iP» = o.

Hence

1:1:1 : = e2a'nkr—e~'*snkX : e2uinkT—e~u'nkT : e2"vlkT—e~"wlkT.

Thus we obtain from (42) for one set of characteristic functions »i*(x) = 8x(pxkx),

a suitable factor independent of x having been divided out of the right hand

side of (42). Similarly we obtain from (42) and the equations for the other

sets of characteristic numbers w2*(x) = S2(p2tx) and u3k(x) = 83(p3kx).

We have thus three sets of characteristic functions ; each set consists of

the complete set of characteristic functions of an expansion problem of

the type considered in Part I. Let/(x) be a function analytic in x at x=0.

We may write f(x) = <bx(x3)+x<bt(x3)+x2(p3(x3), each <p standing for a con-

vergent power series in x3. If each <p satisfies certain continuity conditions

from 0 to 7T, Theorem 2 of Part I tells us that x'-1 <p¿(x3) may be expanded

in a series of type

00

(43) Z ««««(*) (¿ = 1,2,3).
*-i

We may, therefore, state

Theorem 1. Subject to the continuity conditions on the interval (0, it)

of Theorem 2, Part I, any analytic function of x may be expanded in a series

of the type
00

(44) 2~2 [auUik(x) + a2kUtk(x) + a3k.u3k(x) ],
i

and the series will converge uniformly to the function in the interior of an equi-

lateral triangle centered at x = 0 and having one vertex on the segment from 0

tO IT.

The following theorem, which we will now prove, states essentially that

a series of type (44) necessarily represents a function which is analytic in x.

Theorem 2. // series (44) converges uniformly in an interval (a, ß),

0^a<ß^w, each of the three series (43) converges uniformly in the interior

of an equilateral triangle centered at x = 0 and having one vertex in the interior

of the interval (a, ß).



1927] IRREGULAR BOUNDARY VALUE PROBLEMS 743

Let *«, Xu, Xzk be three values of a; in (a, ß), k being fixed, such that

«¿t(*it)=0, i = 1,2,3. It is clear that if k is sufficiently large, three such values

of x will exist. Then, calling

Uk(x) = aikUik(x) + askUsk(x) + a3kU3k(x),

we have

Calling

we get

(45)

uk(xik) = askUsk(xik) + a3kUzk(xik),

Uk(x2k) = aikUik(x2k) + aSkUzk(xsk),

uk(xzk) = aikUik(x3k) + askUsk(xzk).

A m

1
an = —

A

0      Usk(xik)  u3k(xik)

Uik(xsk) 0      Uzk(x2k)

uik(xzk)  u2k(xzk) 0

Uk(Xik)    U2k(Xik)    Uzk(Xik)

uk(x2k) 0      w8*(*2*)

Uk(Xzk)   u2k(x3k) 0

with similar formulas for a2k and a3¡¿.  We shall use these expressions to de-

termine the sizes of the a's.

We have

uik(xsk) = c-"'*1'* + 2c"'*1»*'2 cos I—pikXtk j .

But from (41)

xsk   .  3W2r-31/2

PskX2k-—- H——- x2k(eik — e2k)   .i3     \    rCOSl— pikXsk   1= cos

Also, from u2k(x2k) =0, we get

/       7T       31'2 \        1
cos I  - — + —p2kX2k\ = —e-3"'kx,kii,

( 7T 3"2 \ /
sin I   — — + —p2kX2k\ = 11 —

whence
1 X1'2
— e-3|>î**,i/2 )       ,

4 /

We may choose the positive sign before the radical by selecting x2k properly.

Hence
/      31'2 \ tic      x2k\

rsTplH = "smVT"TJ + e'

where e is a symbol which we shall use for any quantity which can be made

as small numerically as desired by taking k large enough. Hence
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«u(*2») = e"*1.*'2    - 2 siní -^-— J 4- «

In a similar way we find

Mi*(x3*) = e"**>*/2

[October

«2*(*i*) = e"»*1'*'2

«2*(x3*) = e"**»*'2

u3k(xxk) = e«*1'*'21

«3*(*2*) = e***'*'21

['*(t-t) + -}

[-'■Kt-tH-
r      n   .  /2tt      2x3A        "I

r „. / t   Xik\ ,
l2'm{-J-T) + '\'

r     .  /2tt      2x2*\        "1

L2s"\7-t) + 'J-

r       /*■   xn\
A = g(pi*it*+Pi*xu!+Pi*ii*)/2    — 2 sinl-J -f- « I

L V3 3/        J

4- eCpui,¡t+Pui1*+Pi*i1i)/2    2 siní-) 4- «

{-«(ï-tHHt-tH
By means of obvious transformations this can be written

X  —   Xu 7T  —   X2*     ,       7T —   X3*

Hence

A = 16 sin sin sin
3 3

elPlk<-xlk~ X\k>+Plk('xtk— Xlk>+P,k<-X

efpuii*+Pii*ii+Pi**u>/2

— x3k(     t — x3k       V
lt-^i*)/2! cos-(-el

Now

/      7T — x2* \
— gtfui^it-'u'+Piiti^ii-^üt'+Pi*^!*-1,*'/2! cos-+ « )

Pl*(*2*  —   XXk)  + p2*(*3* —   X2jfc)  4" P3*(Xu —   X3k)

3-31'2
(2x3* — xi* — X2*) + e,
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and

Pu(xtk — xik) + psk(xik — xsk) + Pzk(xsk — xzk)
2

= JTJTTs (*u + *" " 2Xih) + •'

We will make 2xik—Xik—Xsk>Xik+x3k — 2x2k by taking Xsk+x3k>2xik. To

secure this we divide (a, ß) into three pieces, each a closed interval and each

separated from the others by some small fixed amount. We require xu¡

to be chosen from the left hand one of these subintervals, and x2k and x3k

from the other two. This renders the inequalities true. We will denote these

three subintervals by I, II, and III in order from left to right. Evidently

cos ((it—Xu)/3) and cos ((tt—x2k)/3) are both positive. We require that x2k

and Xzk be chosen from intervals II and III respectively. This assures us that

cos ((ir—Xzk)/3) > cos ((w—x2k)/3). It is now clear, if k is large enough, that

(46) |a| > Ae('i*Ii*+',»*Ii*+'>«*a:3*>/2)

where h is independent of k.

Returning to (45) we have for the determinant there written out ex-

plicitly, which we shall call N,

N = Uk(Xsk)Usk(Xzk)Uzk(Xik) + Uk(Xzk)u3k(Xsk)Usk(Xik) — Uk(Xik)Usk(xzk)U3k(Xsk) .

On account of the assumed uniform convergence of series (44), |«t(*,t)|

is less than some number which is independent of k. Further,

| usk(xsk) | < ge»»***12, | u3k(xik) | < ge'»*1'*'2,

| m8*(*2*) | < ge'«**»*'2, | usk(xik) | < ge"**'*'2,

the same g, which is independent of k, serving in all cases. Hence

| u2k(x3k)u3k(xik) | < g2e^*x*<<+<'si>xy'>12 < /ie<p>**»*+<»*Ii*>''2,

| u3k(xsk)u2k(xik) | < g2e^tx,k+p,k',k)ii < Me(?.t*2*+pJ*^i)/2)

| usk(xzk)u3k(xsk) | < g2e<»«*J**+'»**«*>'i < ite<'>.*I>*+»>:**3*>'2,

p being independent of k. These inequalities in conjunction with (46)

yield \au\ <vie~'ltxal2, where vi is independent of k.

In a similar way we find |a2*| <vse-l"lkxikl2 and |a34| < v3e~"3kXlkl2. Moreover

it is clear that by taking k sufficiently large we may choose xik so that ß—xik

is less than a preassigned positive constant. The theorem now follows by

an argument like that used following the lemma of Part I. Evidently the

triangle of this theorem may have one vertex as near to ß as is desired.

University of Iowa,

Iowa City, Iowa


