Contents of Volume 31, Number 2
HTML articles powered by AMS MathViewer
View front and back matter from the print issue
- A note on closest approximation
- Dunham Jackson
- Trans. Amer. Math. Soc. 31 (1929), 215-222
- DOI: https://doi.org/10.1090/S0002-9947-1929-1501477-2
- Homogeneous polynomials with a multiplication theorem
- O. C. Hazlett
- Trans. Amer. Math. Soc. 31 (1929), 223-232
- DOI: https://doi.org/10.1090/S0002-9947-1929-1501478-4
- Generalized factorial series
- Tomlinson Fort
- Trans. Amer. Math. Soc. 31 (1929), 233-240
- DOI: https://doi.org/10.1090/S0002-9947-1929-1501479-6
- On extending a continuous ($1$-$1$) correspondence. II
- Harry Merrill Gehman
- Trans. Amer. Math. Soc. 31 (1929), 241-252
- DOI: https://doi.org/10.1090/S0002-9947-1929-1501480-2
- A determination of all normal division algebras in sixteen units
- A. Adrian Albert
- Trans. Amer. Math. Soc. 31 (1929), 253-260
- DOI: https://doi.org/10.1090/S0002-9947-1929-1501481-4
- Expansions in generalized Appell polynomials, and a class of related linear functional equations
- I. M. Sheffer
- Trans. Amer. Math. Soc. 31 (1929), 261-280
- DOI: https://doi.org/10.1090/S0002-9947-1929-1501482-6
- Systems of infinitely many linear differential equations of infinite order, with constant coefficients
- I. M. Sheffer
- Trans. Amer. Math. Soc. 31 (1929), 281-289
- DOI: https://doi.org/10.1090/S0002-9947-1929-1501483-8
- On general topology and the relation of the properties of the class of all continuous functions to the properties of space
- E. W. Chittenden
- Trans. Amer. Math. Soc. 31 (1929), 290-321
- DOI: https://doi.org/10.1090/S0002-9947-1929-1501484-X
- Properties of functions represented by the Dirichlet series $\sum (a\nu +b)^ {-s}$, or by linear combinations of such series
- J. I. Hutchinson
- Trans. Amer. Math. Soc. 31 (1929), 322-344
- DOI: https://doi.org/10.1090/S0002-9947-1929-1501485-1
- Concerning zero-dimensional sets in Euclidean space
- R. L. Wilder
- Trans. Amer. Math. Soc. 31 (1929), 345-359
- DOI: https://doi.org/10.1090/S0002-9947-1929-1501486-3
- On the linear partial $q$-difference equation of general type
- C. Raymond Adams
- Trans. Amer. Math. Soc. 31 (1929), 360-371
- DOI: https://doi.org/10.1090/S0002-9947-1929-1501487-5
- Les fonctions polygènes comme intégrales d’équations différentielles
- G. Calugaréano
- Trans. Amer. Math. Soc. 31 (1929), 372-378
- DOI: https://doi.org/10.1090/S0002-9947-1929-1501488-7