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Introduction

When one seeks to generalize a Taylor's series

(1) I>»z",
n-0

a natural method of procedure is to replace the set of integers n that appear

as exponents by a more general set of numbers,

(2) 0 g Xo < Xi < X2 < • • • ,     lim X„ = oo .
n = oo

If, however, X» is not an integer, zx» is a multiple-valued function, and compli-

cations arise. This difficulty is easily met by making the transformation

z = e~", which transforms the circle of convergence of (1) into a half plane. In

this way one is led to Dirichlet's series

CO

(3) f(s) =   XX«-*-.
71-0

It is only natural to proceed further and to replace the discrete set (2)

by a continuous set, replacing Xn by a variable t, which may vary from zero

to infinity, and the sign of summation by the integral sign. The result is a

function of the form

(4) f(s) =   f   a(t)e-"dt.
Jo

Functions of this type were first studied by Laplacef and Abel,t who

designated the function/(i) as the generating function of a(t), and a(t) as

the determining function oif(s).

* Presented to the Society in part February 25, 1928, under the title The singularities of functions

defined by the Stieltjes integral f™e~"da{t) ; in part March 29, 1929, under the title On the composition

of singularities of functions defined by factorial series; received by the editors in May, 1929.

t Laplace, Théorie Analytique des Probabilités, Paris, 1812.

X Abel, Oeuvres, 2d edition, 1881, vol. 2, p. 67.

694



A GENERALIZATION OF DIRICHLET'S SERIES 695

By the introduction of the Stieltjes integral

(5) fis) =   f   e-"dait),
J o

functions of types (3) and (4) may be considered simultaneously. Moreover,

this integral serves to generalize both (3) and (4) since it includes a class of

functions not included in either. It was shown by M. Fréchet* that an in-

tegral of type (5) with ait) a function of bounded variation may be decom-

posed into the sum of three terms

(6) fis) =   Í   e~atait)dt +  E«»«-*"* +  f   e-"duit),
Jo Jo

where ait) is a summable function, the X« are the points of discontinuity of

ait) with an = a(Xn+0)—a(Xn —0), and w(i) is a continuous function of

bounded variation which has a derivative zero except at a set of measure

zero. In this way it is seen that (5) is more general than (3) or (4) from

two points of view. The first integral in (6) corresponds to (4), but the

summation, although it may be a Dirichlet's series, is not so in general.

For, the points of discontinuity Xn of a(i) may lie at a denumerable set of

points which can not be arranged in the order (2), as for example at the

rational points. Again, when the last term of (6) is present, fis) is on

this account different in nature from either (4) or (5). For example, if a(i)

is a continuous function for which there exists an everywhere dense set

of non-overlapping intervals each one of which is a line of invariability for

the function,! (6) defines a distinctly new type of function.

The integral (5) may in certain cases be transformed into a Riemann

integral by the familiar formula for integration by parts.X If R is any positive

number.

/» Il n R

J    e-"dait) = e-'RociR) - «(0) + 5 j    e-"ait)dt,
Jo Jo

and

j    e~"dait) = lim e~'RaiR) - a(0) + 5 f  e^'a^dt
Jo R=» J o

* M. Fréchet, Sur les fonctionnelles linéaires et l'intégrale de Stieltjes, Comptes Rendus du Congrès

des Sociétés Savantes en 1913, pp. 45-54.

t E. W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier's Series,

2d edition, 1921, vol. 1, p. 344.
X E. W. Hobson, loc. cit., vol. 1, p. 507.
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provided that the integral on the right hand side exists or that the

indicated limit exists. This equation shows that a study of the integral (5)

and that of

(7) 5  I    e-Hait)dt
Jo

are not equivalent.  Either integral may converge for a function ait) which

makes the other diverge, as the following examples show.

Define ait) by the equations

ait) =0, 0 = t<l,        pn<t <n+ 1,
(8) ,

ait) = e»\ » = t = ßn-

Here pn is defined by the relation

e"2[e-" - <r*»] = 1/2" Çn = 1,2,3, • • • ) •

Since
i _er»'+»2-»è 1/2 (»= 1,2,3, ••• ),

it is easily seen that

« < pn < n + 1,

so that equations (8) define a(f) without ambiguity. It is sufficient for our

present purposes to suppose s real.

With this determination of ait), (5) reduces to

00

E(- I)"-1«»,    «j—i = em'-m',    «2m = c2-*»»,

n=l

a series which clearly diverges for all 5, since its general term does not approach

zero.  On the other hand (7) becomes

Een2[e-"' — er*»«],
n—i

By the definition of pn this series is seen to reduce to the convergent series

00

El/2»
n—1

for 5 = 1.   It is not difficult to show that (7) also converges for all real s

greater than unity. Thus (7) may converge when (6) diverges.

The opposite situation is illustrated by taking

n

ait) =   Ee_2m,    n = l < n + 1»
m-l

ait) =0,    0 = t <n.
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For this determining function (6) becomes

00

yje-2ne~n',

n=l

a series which evidently converges for s> — 2. But (7) is divergent when s is

negative. For, since a(t) is a monotonie increasing function we have

a(t)er'i ^ a(l)e-" = e^V, (gl.

The right-hand side of this inequality becomes infinite as t becomes infinite if

s is negative, so that (7) can not converge. Thus (6) may converge when (7)

diverges. Consequently we shall generally treat the Stieltjes integral directly

without appeal to the corresponding Riemann integral. Moreover, the results

obtained in this way are more compact, better suited to the applications to

which they are put.

The chief purpose of the present paper is to discuss the effect of the deter-

mining function on the singularities of the generating function, and in

particular to obtain a result for the composition of singularities analogous to

the familiar theorem of Hadamard for Taylor's series. In order to obtain such

results it is found necessary to study the fundamental properties of the func-

tions (5). It is found that many of the familiar properties of Dirichlet's

series are common to these functions, as is to be expected. For example, the

region of convergence is a half plane or the whole plane; a half plane of ab-

solute convergence may or may not exist. A discussion of the rate of increase

or decrease of the generating function/(s) as 5 recedes to infinity along lines

parallel to the axis of imaginaries is necessary for subsequent developments.

It is seen that/(s) can not increase more rapidly than in the case of Dirichlet's

series. An expression for the determining function in terms of the generating

function is next obtained. Fractional derivatives and integrals of the deter-

mining function are also obtained by similar formulas. Part I closes with a

proof that the product of two generating functions is itself a generating func-

tion in certain cases.

Part II begins with a proof that if a(t) is monotonie, then/(s) has a singu-

larity at the real point of the axis of convergence. If the Stieltjes integral

reduces to a power series, this reduces to a familiar result concerning power

series with positive coefficients. In the next section the most important result

of the paper is obtained. In its simplest form it states that if the function

f(s) defined by (5) has singularities at the points a and if the function

<t>(s) =  (  e-"dß(t)
Jo
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has singularities at the points ß, then

F(s) =   f  e-"a(t)dß(t)
Jo

has singularities at most at the points a+ß and ß under certain conditions

imposed on the rate of increase of f(s) and <p(s) on vertical lines and upon

the distribution of the singularities a and ß.   The result reduces to Hada-

mard's if the functions a(t) and ß(i) are step functions with discontinuities at

the integral points and to a result of the author for Dirichlet's series if the

discontinuities are at a set of points (2).  After developing certain sufficient

conditions that a function/(s) can be expressed as a generating function it is

shown that Hurwitz's result regarding the addition of singularities of power

series is also included in the above result.    Generalizations of familiar

theorems of Faber and Leau are also obtained, and generating functions for

which the corresponding determining function has special form are treated.

For example, the case in which the determining function is itself a generating

function is of particular interest, since the function F(s) is of this nature.

An application of the result of the paper is made to functions defined by

factorial series. A necessary and sufficient condition that a function/(s) can

be developed into such a series is known.   The condition demands that the

function/(s) be a generating function of specified type.  Hence it is possible

to discuss the composition of singularities of such functions. It is found that if

/0) = Z
To s(s + 1) • ■ ■ (s + n)

has singularities at points a, and if

*0) =   £
„_o s(s + 1) • ■ • (s + n)

has singularities at points ß, then

"   (a0b„ + a.cVi + • • • + anbo)nl
Hs) =   £ -——-—¡—-

„_o s(s + 1) • • • (s + n)

has singularities at most at the points a+ß under suitable restrictions. The

similarity of this result with that of Hurwitz is apparent.

It is thus seen that the introduction of the Stieltjes integral does much

toward the unification of the theory of functions of a complex variable, since

by it power series, Dirichlet's series, factorial series, the generating functions

of Laplace, etc. may all be treated together. Functions defined as differently

as T(s) and f (s), for example, come to be special cases of a single theory.
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Part I.   The fundamental properties of the generating function

1. The region of convergence. Let ait) be a complex function of the real

variable t of bounded variation in every interval 0 = t = ti, h being arbitrarily

large. In order to simplify certain subsequent formulas we assume further

that a(0) = 0. If a(0) were not zero, a redefinition to make it so would amount

only to adding a constant to the function fis) defined by (5), so that no essen-

tial change in the properties oí fis) is effected. Under these conditions it is

a familiar fact that the Stieltjes integral

/Jo

Fit)dait)

exists for every continuous function F(i).*   Let í be a complex variable,

s = o+ít. Then the integral

f'1
i,s) =   I    e

Jo
(1.1) Sih,s) =        e-'dait)

Jo

exists for all values of 5 and for all values of h >0. S(0, 5) is defined to be zero.

We wish first to discuss the conditions of convergence of the corresponding

improper integral obtained by allowing tx to become infinite in (1.1),

(1.2) fis) =   f   e-'dait).
Jo

Following Laplace we shall designate the function defined by this integral

when it converges as the generating function and the function aÇt) as the

determining function.  We prove first

Theorem 1. If the integral (1.2) converges for a value So = aQ+ÍTo of s, then

it converges for all values of s for whicho>a0.

Since (1.2) converges for s = s0, the function S(<i, s0) defined by (1.1)

approaches a limit as h becomes infinite. Consequently there exists a con-

stant A independent of h in the interval 0 = h < 00 such that

|S(ii,5o)| <A, 0 = h < °o .

Let 5i = o-i+¿ti be an arbitrary complex number for which o-i>o-0, and set

h = Si — So- Then the real part of h, 01—<r0, is positive. We wish to show that

/• h

lim    I    e-<'.+*>'¿a(0
h = °o  Jo

* E. W. Hobson, loc. cit., vol. 1, p. 506 et seq.
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exists.  In order to prove this we note that*

i    e-*°'e-htdait) =    f V*'dS(<,j0),
J o J o

and apply the formula for integration by parts,

(1.3) (  'e-'>>e-h>dait) = Sih,s0)trkt + h f 5(/,s0)e-Ä<fl7.
Jo Jo

But i s        i
|5(/,s0)e-'"| < Ae-i'i-<¡»,

and the limit of the first term on the right-hand side of (1.3) is seen to be zero.

The second term also approaches a limit since

I   Sit,So)e-h'dt\  <   I    Ae-^-'^dt,
Jo I        J o

and since the integral

e-(<r,-ff0)(¿¿S.
converges. It follows that (1.2) converges for o><io- It is important to ob-

serve that the transformation (1.3) has enabled us to replace the integral

(1.2) which is not in general absolutely convergentf by an absolutely con-

vergent integral:

(1.31) f    e~"dait) = h f  Sit,So)e-»'dt.
J o Jo

The transformation (1.3) reduces to the transformation of Abel when the

Stieltjes integral becomes a series.

As an immediate consequence of Theorem 1 it follows that the divergence

of (1.2) for a point So = o-0+¿t0 implies its divergence at all points for which

cr<<To- Consequently the same possibilities arise here as in the case of Diri-

chlet's series: (a) the integral may converge for all values of s; (b) it may con-

verge for no value of s; (c) there may exist a constant ae such that the integral

converges for a>oc and diverges for o<oc. In case (c) the line o = o0 is called

the axis of convergence and the half plane a > oc the half plane of convergence.

* See, for example, T. Carleman, Sur les Équations Intégrales Singulières à Noyau Réel et

Symétrique, p. 11, Theorem III.

t The integral (1.2) is said to be absolutely convergent if fi? |e-'' \du{t) converges, where u{t) is

the total variation of a{t) from zero to /. The definition of the total variation of a complex function of

the real variable is exactly the same as that of a real function, no separation into real and imaginary

parts being necessary.
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In a similar way one defines the axis of absolute convergence and the region of

absolute convergence.

Theorem 1 enables us to discuss the region of convergence of an integral

of the form

(i.« r Hait)

where ait) is now considered to be of finite variation in every finite interval.

By the transformation s= —s', the integral

(1.5) f   e-'dait) -   f  e"dai-t)
J -x> Jo

becomes one of type (1.2). Consequently the region of convergence of (1.5) is

a half plane lying to the left of a line a = const. Hence the region of conver-

gence of (1.4), which is the analogue of Laurent's series, is a strip of the plane

or obvious modifications of such a strip. For example, in the case of the func-

tion

T(5) =   I    f-le-'dt =    \    e—'e-~'dt

the strip of convergence becomes the half plane cr >0. On the other hand the

region of convergence may reduce to a straight line or a set of points on a line,

or it may disappear completely. That these cases may actually occur is

evident in view of the fact that power series form special cases of the integral

(1.2).
2. Uniform convergence.   We prove the following theorem:

Theorem 2.   // the integral (1.2) converges for s = So, and if H is any

positive number, then it converges uniformly in the region

| s - î0| = i<r - ao)HeB^-"\    a = a0.

Let € be an arbitrarily small positive number.   Then it is possible to

determine a number T greater than H and so large that

I r' l
I Shit,So) |=l    e->'dait)    < e,    t = h>T.

1    ■/<! I

f e-'(°»+h>dait) = Shit2,So)e-h'>+ k f Stlit,S*)erktdt.
Jt, Jt,

But

Hence

r '
e-"-''+hUait)

'" Is — So I
< ee~("~(,°"î -\--t\ «-(»-»»Xi — £-(»-»»>'«}

a — <ro
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If 5 is in the region defined in the theorem, this becomes

I r'1
I    e-'(>°+h)da(t)    < t + Hte"<»-'o>e-i'-'^u

I Jt,
< t + Hte-<"-'•)«■-*> < (77 + l)e,    t2 > h > T.

The theorem is thus established.

Corollary 1.  The integral converges uniformly in the angle

| s — So | á H (o- — ffo),    ff è ff o ■

Corollary 2.   The integral represents a holomorphic function f(s) in its

region of convergence, and in this region

dkf(s)        r"
-f^= e-><(-t)kda(t) (¿ = 0,1,2, ••■).

dsk Jo

For it is a familiar fact that for any positive numbers a and b the integral

/» b p b

e~"da(t) = e-,ba(b) — e-'aa(a) + s  I    e~sta(t)dt

represents an entire function.* Hence to establish the corollary one has only

to apply a classical theorem of Weierstrassf regarding uniformly convergent

series of analytic functions to the series

00 /.n+l

£     I       e-"da(t).
n=0     J n

Theorem 3.   // the integral (1.2) converges absolutely for í0 = co+ít0, í/

converges uniformly for o^oo-

The hypothesis implies that for an arbitrary positive e there exists a num-

ber T such that

I    e~ff°'û'¿m(/) < e,   t2 > ti > T,

where u(t) is the total variation of a(t) from zero to ¿. Butt

I  e~"da(t)\  g    I   e-"ldu(t) g e-°°'du(t) < e,     a ^ <r0,     ¿2 > ¿i > T.
Jt, Jt, Ji,

This proves the theorem.

* Apply, for example, the theorems on p. 282, vol. I of W. F. Osgood, Funktionentheorie, 1923,

4th edition.

t W. F. Osgood, loc. cit., p. 303.

Î For the properties of the Stieltjes integral here employed see, for example, T. H. Hildebrandt,

On integrals 1 elated to and extensions of the Lebesgue integrals, Bulletin of the American Mathematical

Society, vol. 24 (1918), p. 180.
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We may apply the result of Theorem 2 to the integral (1.4) to establish

that it also represents an analytic function within its region of convergence

provided that region does not reduce to a linear region.

3. Abscissa of convergence. To establish a formula for the abscissa of

convergence we shall need two lemmas.

Lemma 1. 7/ a real number y exists for which

| a(t) | < e1",     0 ^ t < oo   ,

then (1.2) converges for a>y.

By an integration by parts we have

I   e--'da(t)   = e~"'a(t2) - e~"'a(ti) + s  I    e-"a(t)dt,
Jt, Jt,

I    e~etda(t)   ^ e-"i+7<. + e-*«.+T.. +  | 5 |   I    e-"-i-"dt
I Ji, Ji,

1*1    r
^ e-(o—7)ij -f- c-(ff—r)«, -|-1-!_ig-(<r—r)i, _ e-(o—y)(,l t

cr — 7

If ct>7 the right-hand side of this inequality may clearly be made as small

as desired by taking h and t2 sufficiently large, so that the lemma is proved.

Lemma 2. 7/(1.2) converges for s = «r0 > 0, then a constant K exists such that

| a(t)\ < Ke°°',    0 á t < oo  .

Set

U(t) =   T e-'»'da(0.
•'o

Then we may write*

a(/) =   I  da(/) =   J     eI«'e-'»'da(0 =   I   e"»'d(7(/).
•/0 •'0 •'0

Integrating by parts we have

«(0 = J7(0e"' - cr»  f U(t)e°>'dt.
Jo

Since (1.2) converges for s = tr0, a constant 7C exists such that \U(t) \ <K/2,

0^t<co.   Hence

K K
| a(t) | ^ — e°>' -|-(e'»' - 1) < Ke*»'.

* See T. Carleman, loc. cit., p. 11, Theorem III.
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This proves Lemma 2. As an additional result the above method would show

that, if (1.2) converges for a negative value of a, then aÇt) would be bounded

in the interval 0 :£ / < «>.

Theorem 4. The abscissa of convergence of (1.2), if it is positive, is given by

,- n ,. log I "(01
(3.1) lim sup - = ac.

/=» t

We prove first that (1.2) converges for a>ac. Let 50 = o-0+¿t0 be an arbi-

trary point for which oo><rc- Let e be chosen so that

cr0 > crc(l + t),     e > 0.

Then
log I ait) I
-5-1--<acil + e),    t>to,

t

or
| ait) | < C«(1+i)<.

By Lemma 1, (1.2) converges for a > (1 + e)oc, and hence at s = So-

We now prove that if (1.2) converges for a value So = c0+¿t0, with er0>0,

then aQ^oc. For, suppose that tr0<<Tc Choose e so that

Co < fo + « < Co + 2e < ac.

Since (1.2) converges for 5=o-0 it also converges for 5 = o-0 + e, and by Lemma

2,
| «(f) | < Ke <"»+«"

provided tr0+ € >0. But by definition of ac we have

log | ait) | > tiao + 2e)

or
| ait) | > e«".+2«>

for certain values of t as large as desired. Since it is impossible to have

for large values of t our assumption that cr0 <<rc must have been false. Hence

(1.2) converges for o->crc and diverges for o-<o-c. The theorem is thus es-

tablished.

Since in Lemma 1 it was unnecessary to have y positive, we may be

assured that even if ac as computed by (3.1) is a negative quantity then (1.2)

converges for a>ac. In this case it will not be known, however, that (1.2)

does not also converge for a <ac, so that ac will not necessarily be the abscissa

of convergence.
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Finally we note that if lim sup (log |a(f) \)/t = oo, (1.2) diverges over the

entire plane. The proof may easily be supplied.

Corollary.   The abscissa of absolute convergence of (1.2), if it is positive,

is given by
log uit)

a a = Inn sup -,
t= 00 t

where uit) is the total variation of ait) in the interval from zero to t.

It should be pointed out that although formula (3.1) applies only when ac

is positive, it may always be used indirectly to determine the axis of con-

vergence. For, one has only to displace the origin by a translation to make the

formula applicable. It may also be used to determine the region of conver-

gence of an integral (1.4).  As an example consider the function

(3.2) r(s) =   J    e-'e-'-'dt =   f   e-'e-~*dt +   f
J—». Jo Jo

^stp—e

o -Jo

In the first integral of this sum set 5'= 5 + 1.  Then the function a(<) of for-

mula   (3.1)  becomes

ait) =   f  e—~t+'dt
J n

and
log ait)

lim-= 1 = a'c   = crc + 1.
/=»       /

Hence the abscissa of convergence of the first integral is ac = 0. In the second

integral of (3.2) set s'=—s+k, where k is positive but arbitrarily large.

Then

Í3.3) ait) =   f e-lekdt.
•• 0

Since the integral (3.3) is less than e~' for / sufficiently large, it follows that

loga«)
lim- = 0
/=«      t

for all k. That is, the second integral in (3.2) converges for all values of s.

Consequently the integral defining r(s) converges for o->0 and diverges for

o-<0.

4. The uniqueness of the determining function.   We shall show in this

section that a given generating function fis) can not give rise to two deter-
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mining functions that have different values at a set of points of positive

measure. For, suppose there were two such functions «i(/) and «2(0, both

vanishing according to our agreement at / = 0. Then we should have

0=|    e-'ldfat),    fat) = aiit) - a2it).
J o

This integral must converge for some value s = s0, and hence, by Lemma 2 of

§3,
| <p(/)| < Kef'1.

Therefore

lim e-'*fat) =0,    c> <ro,

so that

e-"dfat) = s J    e-"fat)dt = 0,    a > cr0.
o Jo

It is now only necessary to apply a result of M. Lerch* to see that fat) is

zero except at a set of points of measure zero. Hence ai(/) and a2(/) differ at

most at a set of points of measure zero, contradicting the assumption. The

result is thus established.

5. Order of/(s) on vertical lines. As in the case of Dirichlet's series the

study of the behavior of ficr+ir) as r becomes infinite (with o fixed) is of

considerable importance. From equation (1.31) we see at once that

fio-i+ ir) =Oir),     o-i > o-c

For, if oo lies in the interval <rc<cr <oi, then

|/(ffl+ tV)| (((71 -  o-o)2+ T2)1'2    ,
—-— = ——-— Sit,a0)   e-i'i-J'dt = M,   t   è ro.f   \Sit,t

Jo

Here M is some constant independent of t, and t0 is any positive constant.

A more general result than this may be obtained, as in the case of

Dirichlet's series. We state it in

Theorem 5. If the integral (1.2) converges for s = s0, then

fio- + ir) = o( | t | )

uniformly for o^oo+c, c>0.

Let e be an arbitrarily small positive quantity.   We wish to show that

* M. Lerch, Sur un point de la théorie des fonctions génératrices d' Abel, Acta Mathematica, vol. 27

(1903), p. 339.



1929] A GENERALIZATION OF DIRICHLET'S SERIES 707

there exists a number t0 independent of h in the interval c S h < <» such that

l/(co+A+*r)|
(5.1) -¡—j-^ t,     |t|^t0.

M
As before we have

j    e-(n+A+")'áa(/) = {h + ít)  f 5(/,c0)e-('i+<')'¿í.
•'O Jo

We show first that

11   r00
(5.2) —     I  e-<«.+*+*)<¿a(í)     < e/2

for a sufficiently large. We have

f   *-<»«+*+<"«da(0 = - Sía.ffoíí-^"'* + (A + tr)  f Sfor^*-»*««,
•/o wo

T   Ja

e-("'+h+iT)'dait)

Ae—a

Ti

Z1     W2        i   i

Since the right-hand member of this inequality is independent of t and of h

for tjSti, Àèc, and since it approaches zero as a becomes infinite, we see that

(5.2) is established. Likewise we have

1   ra

T    Jo
e-(><&V'da(t)

l    ra

-ttJT       J 0

e-t°*+»>du(t),

where u(t) is the total variation of a(l) from zero to t.   Since h ~c we have a

fortiori

I 1  ra
\—  I    e~c

T    Jo

,+A+irX, ¿a(0
=   lr    Jo

e-<'*+e>'du(t).

The right-hand side may clearly be made less than e/2 by taking |t |

sufficiently large, say greater that t2. Take t0 greater than ti and t2. Then

(5.1) is established by combining the two inequalities just obtained.

Since this result reduces to a familiar one in the theory of Dirichlet's

series when the function aÇt) is replaced by a step function, one might be

tempted to suppose that all the facts about the order of Dirichlet's series on

vertical lines would carry over to the more general generating functions here

treated. This is by no means the case. One of the most fundamental results

in the theory of Dirichlet's series is that the order of a convergent series is
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always positive or zero.   That this is no longer necessarily the case for the

Stieltjes integral is seen by the example

1-fs Jo

Here the order is clearly negative. Moreover, it is known that for a Dirich-

let's series/(s) the limit as r becomes infinite oif(a+ir) can not exist.* This

is no longer the case for the functions (1.2) as the above example shows. We

shall investigate later the relation between the order of f(s) on vertical lines

and the continuity properties of the determining function.

6. The determination of a(t). In the theory of Dirichlet's series the

formula for the determination of the sum of the first n coefficients is of the

utmost importance. In this section we obtain an analogous formula for the

Stieltjes integral. The problem here amounts to the solution of the integral

equation (1.2) under the assumption that a solution a(t) of bounded variation

exists. For the case in which the Stieltjes integral reduces to a Riemann

integral this equation is known as Laplace's integral equation. The result

to be proved is stated in

Theorem 6. If (1.2) converges for <r>ac, and if c is a positive constant

greater than ac, then

a(co + 0) + a(co - 0) 1      /•«+*»   f(s)J»e-t-
c—i

-e"'ds,    co > 0.
2iri i

(6.1)

Let R be an arbitrary positive constant greater than a. Then

f(s) =    f e~"da(t) +    f   e-"da(t),
Jo J R

J.C+Í»    ea»f(s)                   /.c+too   eu,¿s    pR
—-ds =   1-I   e~"da(t)

c-ix                S                      J c-ioa          S        J¡¡

/.c+ioo   eu,¿s   p*>

+   I - I    e-'lda(t).
J c-ioo S      J R

It will first be shown that the second term on the right-hand side of (6.1) is

zero. Set u = t — R. Then

Je~"da(t) = e-,R j    e->vdâ(u),    ä(u) = a(u + R).
R Jo

Set

* K. Ananda-Rau, Note on a property of Dirichlet's series, Proceedings of the London Mathe-

matical Society, (2), vol. 19 (1920-21), p. 114.
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(6.2) 4>(s) =    f   e-'"dä(u)
Jo

and consider the integral

-(¡)(s)ds

extended over the rectangle whose vertices are c — ir, d—ir, d+ir, c+if (d>c).

This integral is zero by Cauchy's theorem. The integral

» d+tr    £*(«— r)

J d-ir

-<)>(s)ds

clearly approaches zero as d becomes infinite, since (6.2) is uniformly con-

vergent in the infinite region cr^c, -r^r^r (Theorem 2).   Hence

pc+ir    gs(u~R) pa>—ir   g«(«—R) /»°°+ir   g»(u—R)

(6.3)    I -<b(s)ds =   I -<b(s)ds -  J —<t>(s)ds
Jc—ir S J c—ir S J c+c+ir S

provided that these two infinite integrals exist. But by virtue of Theorem 5

we know that to an arbitrary positive e there corresponds a number r0 such

that
| 0(cr + ir) |   < « | T |

for cr^c and r^r0.  Hence

• «>—t'r   g(u—B)» | px   g(u—R)'

(6.4)

-<t>(s)ds\ g    j      -er¿<r < -
c-ir s Je r R — CO

J»oo+ir   g(w—Ä)*                  j                   €

-<b(s)ds\ <--
c+ir              S                       |          7t — CO

Consequently both of the infinite integrals in (6.3) converge. Moreover, the

inequalities (6.4) show that each of these integrals approaches zero as r

becomes infinite.   The result stated is thus established.

We turn now to the first integral on the right-hand side of (6.1).   It is

evidently equal to

n c+ir   g(ii$ pR pc+ir   gu» l~ /%R "I

lim    I — ds I   e-"da(t) =   lim   I — \ e~,Ra(R) +s  I  e-"a(t)dt Ids.
r=»   Jc_ir J J0 '="   Jc-ir S   \_ Jo

But
• c+ioo    gs(oi—R)

-ds = 0
' c—ioo S

since* co — 7?<0, and

* See G. H. Hardy and M. Riesz, The General Theory of Dirichlet's Series, p. 13.
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J*c+ir p R /* R pc+ir
eu'ds I   e—'ait)dt = lim ait)dt I        e'^-'Us

c-ir Jo '="   Jo J c-ir

CR   «(0
= lim 2¿ I-ec("-" sin r Çu-t)dt.

r-oo Jo       03 — t

This integral is a Fourier integral,* and the limit is known to be ¿ir[a(co+0)

+a(co —0) ].  The proof of Theorem 6 is thus complete.

7. Fractional derivatives of the determining function. If in the integral

of Theorem 6 the denominator of the integrand is replaced by s"+1 where

p is any "real positive number, a new formula of importance may be obtained

involving the fractional derivative of order — p of the determining function

ait).

Theorem 7. // the integral (1.2) converges for o->ac and if c is a positive

constant greater than ac, then

1    r°+ix fis)e"'1    rc+'

2ici Jc—i*
■ds = Du-"aio}),    co > 0,    p > 0,

sp+i

where Dp'aioi) is the fractional derivative of Riemann:

i    ra

Du'aia) = -   I    a(0(w - t)^\dt,     p > 0,     co > 0.
Tip) Jo

Let R be any real positive number greater than co. Then

fis) =   f   e-'dait) +   f  e-'dait)
Jo J R

TCI Jc-

and

.c+ioo f(s)eu'

Jc-i*. 5p+1
iC+100

*(*).

J       /»e+ioo    gui« /» R 1        /»e+i»    gw* /• °°

=-  I -ds  I   e-"dait) + — j -¿5 I    e~"dai
2ttíJc-ík   s"+1     Jo 2-iriJc-i«,   s"+1     JR

We prove first that the second integral on the right-hand side of this equation

is zero. The proof follows closely the lines of that given in §6 for the case in

which p is zero, so that it will be unnecessary to give the details. One extends

the integral

0(5)-—- ds,Í 5,+i

where 0(5) has the same significance as before, over the rectangle defined in

§6. By Cauchy's theorem the result is zero. As first d and then r becomes in-

* See, for example, C. Jordan, Cours d'Analyse, 1913, 3d edition, vol. 2, p. 277.
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finite, the integral extended over three sides of the rectangle approaches zero.

The integral over the fourth side approaches

I -ds  |    e-"dait)
Jc-i„     S'+l       Jr

and must be zero.   The inequalities of §6 hold a fortiori when s is replaced

by \s\"+1,since l/\s\"+l<l/ \s\ when |s|>l.

We turn now to the integral

1 (* C+,00    „US pR

I =- I -  I e~"dait).
2iriJc-iK   s'+1J0

If it were permissible to interchange the order of integration we should have

/* R 1        /» c+ix>    g»

Mt)—\
0 ¿irUc-i,

But it is known that

1     /.*+<«>  e«. ju'/rip+ 1),     M è 0,

2tíJc-íx,   s"+l S " \0 m g 0,

if p > 0.*  Hence it would follow that

► c+ioo     ¿>»(u— t)

-ds.

———  f Oo - /)'da(/)
' + 1) Jor(P+ l) Jo

= ——  f   «(0(a) - t)"-ldt,
T(p) J0

and the theorem would be established. It remains then only to justify the

interchange in the order of integration. This may be done by showing that

the integral

-dsf jp+l

converges uniformly in the interval 0g/_ic.t This follows since

* See G. H. Hardy and M. Riesz, loc. cit., p. 50.

f That this is sufficient may be seen by writing

*f c-ln        Sr

and applying Property (7) of Stieltjes integrals as given in the article of T. H. Hildebrandt, loc. cit.,

p. 181. The admissibility of the change of the order of integration in

I   da{t) I ... ds

can not be held in question.
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»c+ioo    g«(a)—í) /» °° gc(w—i)/»C+l°0     gS(ti)— t) /» w gc(w—tj /» '

-ds    =    I      -¡-¡-dr =    I dr;
c + ¿t | "+1        "   J_M   | C + ¿r I "+1

the last of these integrals is independent of t and converges.

8. The order of fis) on vertical lines as affected by a(t). In §5 we pointed

out that fic+ir) may approach zero as |t | becomes infinite. In this section

we shall develop certain sufficient conditions imposed on «(/) so that this

should be the case. We shall show that fic+ir) may be made to approach

zero at least as rapidly as 1/ |t |* (p being any positive number) by a suitable

choice of ait).

Theorem 8. If ait) has continuous derivatives of orders 1, 2, ■ • • , n which

satisfy the conditions

(8.1) a<»(0) = 0 (k = 0,1, •••,»- 2),

(8.2) \a^it)\ < Mey' (0 = << oo ; k = 0,1,2, •••, «)

/or certain constants M and y independent of k, then

/(ffo+ ¿t) =0(| t|V-»),     o-0>7-

Since a'it) is continuous, the Stielt jes integral (1.2) reduces to the Rie-

mann integral

=    f   e-'a'
Jo

fis) = e-"a'(t)dt,

which converges absolutely for a>y by virtue of (8.2). Integrating by parts

we have

e-'a'it)
fis) =

1   r
H-I    e-'a"(t)dt.

0 s   Jo

By conditions (8.1) and (8.2) the first term of this sum is seen to be zero if

cr>y. Proceeding in this way by successive integration by parts we finally

obtain

f(s)
a(n-l)(0) 1        /.»

) =-Y-        e-'a^(t)dt.
5"-1 SK-1J0

This integral is absolutely convergent by (8.2), so that

f(a0+ ¿r) =0(| tI1-"),     c0>7.

As examples consider the integrals
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f(s) =   f  e-»d(ty-1 = (n - 1)!/S—' = 0( | xj1-"),
Jo

f(s) =  f  e-"d sin / = s/(s2 + 1) = 0( \ t I"1),
•I o

f(s) =   f  e-"d(l - cost) = + l/(s2 + 1) = 0( | t |"2).
Jo

This result shows that the order of f(s) is dependent to some extent on the

continuity properties of a(t). Conversely, the order of f(s) affects the con-

tinuity properties of a(t). In this connection we prove

Theorem 9. If (1.2) converges for a>oc, and if f(c+ir) =0( \t \?) for a

positive 0<rc and p<—n (n a positive integer), then the function

a(co + 0) + a(o, - 0)
<b(o}) =-

2

is continuous with its first n derivatives and satisfies the conditions

U<4)(«)| < Ke" (k = 0,1,2, ■•.,«).

By Theorem 6 we have

1    rc+i°° f(s)e"s
<b(o>) =-;  I -ds.

2iri J c-ia s

Then
J        pc+ix>

^(^(c) = -.  I        j*-i/(s)e»'¿í       (k = 0,1, • • • , «)
27TÎ J c-i«,

provided that these integrals are all uniformly convergent in the arbitrary

interval 0 ^ co ̂  co0. But this fact follows from the inequality

Ip c+ioo p °°
(c + ÍT)k-1f(s)e"'ds   <    I     | c + iT\k-1MT<'e'"«':dT,     g>0.

Jc+ig J o

The dominant integral is independent of u in the given interval and converges

since p<—n. Since <bl-k'>(o}) is expressed as a uniformly convergent integral,

it is continuous.  Moreover,

1 pc-riœ

| <6w(<a) | ¿ —e"c I \s | *-! | f(s) | | ds | = Keae,
2ir     J c-i»

so that the theorem is proved. The continuity of c>(w) does not of course

imply the continuity of a(a>).   But we should not expect the continuity of
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a(t) to be completely determined by any property oif(s), since the value of

a(t) may be changed at an infinite set of points without altering/(s).

9. The multiplication of generating functions. In this section we shall

show that the product of two generating functions is itself a generating func-

tion. Let

f(s) =   f   e—da(t),    fas) =   f  e-'dß(t)
Jo Jo

have abscissas of convergence cr,, and a'e respectively. Let s — a+ir be a

fixed point for which o->o-c,0>o-i, cr>0.  We have seen that

(9.1) f(s) = s f  e-"a(t)dt,    fas) = s i  er"ß(t)dt
Jo Jo

when these two integrals are absolutely convergent (§3, Lemma 2). Then

f(s)fas) = s2  I    e-"a(t)dt J    e-'xß(x)dx
Jo Jo

= s2 f   dt \  e-'(t+l)a(t)ß(x)dx.
Jo        Jo

Set t+x=y and eliminate x:

(9.2) f(s)fas) = s2 \    dt  \    e~">a(t)ß(y - t)dy.
Jo        J t

If it is permissible to interchange the order of integration, we have

f(s)fas) = s2  I     e-'«dy  f  a(t)ß(y - t)dt.
Jo Jo

To establish the validity of this interchange we employ a familiar theorem

of analysis.* To apply the theorem we introduce a function K(t, y) by the

definition

K(y,t) = \,     y>t,     K(y,t)=0,       y^t.

By use of this function, (9.2) may be written

.00 *oo

f(s)fas) =s2 f   dt f  s-'"a(t)ß(y-t)K(y,t)dy.
Jo        Jo

* E. W. Hobson, loc. cit., vol. II, p. 347.
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Hence we have only to show that

f   dt f  e-°y\ait)\\ßiy-t)\Kiy,t)dy
Jo       Jo

converges. This is clearly equal to

I     | a(t) | e—'dt I    e~" | ß(x) | dx
Jo Jo

which converges by virtue of the fact that the integrals (9.1) converge ab-

solutely. We have thus established

Theorem 10. If the integrals

fis) =    f    e-'dait),   0(5) =    f  e-'dßit)
Jo Jo

converge at a point s = a+irfor which a > 0, then at that point

(9.3) /(5)0(5) = 5 f  e-'dyit)
Jo

where

(9.4) 7(0 =    I   a(x)ßit - x)dx =    f ßix)ait - x)dx.
Jo Jo

It is interesting to see how Cauchy's rule for the multiplication of power

series is included in formula (9.3). Let aÇt) and ßit) be defined as follows:

«(0) = 0, ait) = ao + ai + ■ ■ ■ + an-i,  n - 1 < t ■= n     (» = 1,2,3, • • • ),

0(0) = 0, ßit) =bo + h+ ■ ■■+ bn-i, n - 1 < t = n    (« = 1,2,3, • • • ).

Then
oo 00

/(*)= E ane-"',      0(5) = E a»«-"' •
n—0 n=0

To evaluate y it) suppose that «— 1 <t<n.  Then the integral (9.4) may,be

broken up as follows:

n-l       nt-n+k+1 n-l       n *

7(0 =   E I «i*)ßi* - x)dx +   E    I        aix)ßit - x)d
*=0 •'* k-l    J t-n+k

n— 1       /• t—n+k+l n—1       /»A   .

=   E skan-i-kdx +  E Sk-ian-i-kdx,
k-0 Jk k-l    J t-n+kn+k

where
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s* = flo + öl +  •  • • + A*, <Tk = 00 + Ol +  • •  • + bk-

Hence
n-l n-1

yit)   =(/—»+   1)  ^SkO-n-l-k +(» — /)  ^Sk-lCn-1-k.

k=0 k—1

To evaluate the integral (9.4) we have

e~"dyit) = s I   e-"un-idt = [«-•<»-» - e-,n]M»-i>
n-l J n-l

where
n—1 n—1 n—1

«n-l =   ¿^ StCn-l-t —    ¿_,Sk-lCn-1-k   =     Z^flfcCn-fc-l-

*=0 k=l k=0

We thus obtain for the product fis) fas) the series
CO

(9.5) Sfe-'t"-1' - e—«]un-i.
n=l

If this series is subjected to Abel's transformation, it becomes

00 00

fis)fas) = «p +  X)(«n - Un-i)e-"n =^c„e-*n,
n=l n—0

where
C„  =   fln&O + fln-lÔl +   ■   •  •  + floÔn.

This is the classical Cauchy method of multiplication of power series. The

rearrangement of terms of the series (9.5) effected above may be justified by

use of Lemma 2, §3.

We turn now to the proof of

Theorem 11.* If the integrals

fis) =    |    e-'ait)dt,      fas) =   f  e->*ßit)dt

converge absolutely at a common point s = o+ir, then

(9.6) fis)fas) =    f   e-»yit)dt
J — 00

where

yit) =    Í   «(*)/?(/ -x) dx =    j    0(x)a(/ - x)dx.

* A similar theorem was given by T. Kameda, Theorie der erzeugenden Funktionen und ihre

A nviendung auf die Wahrscheinlichkeitsrechnung, Proceedings of the Tokyo Mathematical and Physi-

cal Society, (2), vol. 8 (1915), pp. 262-295 and 336-360. The conditions imposed, however, are not

sufficiently general for our purposes.
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The proof of this theorem follows the lines of that of the preceding

theorem. We have

/(5)0(5) = e-"ait)dt  |    e—xßix)dx =    I     dt  I    e—*ait)ßiy - t)dy,
J— oo •'— 00 "^—00 •'— 00

where t+x=y. If now it is permissible to interchange the order of integra-

tion, equation (9.6) results. To justify this interchange we employ the same

theorem as before and show that

f dt  f   |e-'»||«(fl||l8(y-fl|<*3'

converges.  By setting y — t = x this becomes

I    | ait) | e—'dt  I     | ß(x) | e—xdx.
J— 00 «/—oo

This clearly converges since the given integrals converge absolutely.

We show that the familiar formula of Riemann

1     C"    Xs-1 1     r™     er"
Us) =- I-dx =- ■—¡-dt

Tis)J0    e*- 1 r(i) J-x e'-1 - 1

is only a special case of this theorem. Take the functions fis) and (pis) of

Theorem 11 as Çis)/s and Tis), respectively. Since

f(s) -    f  e-'dait)
J -m

with
ait) =0,  ¡¿0,

a(0 = n, log « < / = log (« + 1),
then

f(*)A =    f   e-'ait)dt,     a> 1,

by Lemma 2, §3. The function ß(2) of the theorem will be

ßit) = e—~',   - oo < ¿ < oo .

Both Çis)/s and Tis) are represented by absolutely convergent integrals in

the half plane cr > 1, so that the theorem is applicable there. Hence

(9.7) f(*)r(i) = s f   e-
«/_00

yit)dt,
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where J, oo
a(x)e-»~'+Zdx.

o

Integrating (9.7) by parts we obtain

t(s)T(s) =    f  e-"y'(t)dt,
•'-oo

since
lim e~"y(t) = 0,    lim e-'*y(t) =0    (a > 1).*
/= 00

But

/■<»
a(x)e-<~*Xe-'+*dx.

o

The differentiation under the integral sign is justified since the integral (9.9)

is uniformly convergent in any finite interval a<t^b. For

a(x)e-r>+*e-'+z < exe-*~t+ze-a+x,    a £ t £ b,

and

/;
e-a+2xe-'~h+z dx

converges.  The integral (9.9) may be transformed to a Stieltjes integral, so

that

(9.10) y'(t) =    I    e-'^'d^x).
Jo

In this transformation we have used the fact that

lim a(x)e~e      = 0.
Z=oo

Since a(x) is a step function, the Stieltjes integral (9.10) reduces to an

infinite series, and

V(fl =   I>ne"' = l/(e«"'- 1).
n-l

It follows that

r(i)r(s) =    J    e-"/[e«-t - l]á/.
_ «^-00

* It is easily seen from formula (9.8) that

»(<) <  f  e'e-'~'+*dx = e?f~ '
Jo

whence the result stated.
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It is interesting to note that the functional equation of the T-function

also results immediately by an application of Theorem 11. For, take

1,    t>0,_ (I,   t>o,

lo,   tú 0.
a(t) = e->-'e->,       ß(t)

Then

T(s + 1) =    f  e-"a(t)dt,     l/s =    f  e~"ß(t)dt.
J-«¡ J-x

By Theorem 11

where

Hence

r(i+l)A=    f   e-»y(t)dt,
J -K

y(t) =        a(x)ß(t — x)dx =    J    e-e~Xe~xdx = <r'~'.

J-x J-X,

e-^'e-odt = T(s).
-oo

This the classical functional equation referred to above.

Part II.  The singularities of the generating function

AS AFFECTED BY THE DETERMINING FUNCTION

10. Monotonie determining function. We propose to study in Part II

the analogue of the problem set by Hadamard for power series, to determine

the effect of the determining function on the singularities of the generating

function. The problem seems scarcely to have been touched for the case of

Stieltjes integrals of the form (1.2). The following theorem stated by H.

Hamburger* is the only result in this direction that the author has been able

to find in the literature:

Theorem 12. If a(t) is real and monotonie, then the real point of the axis of

convergence of

f(s)=    f
Jo

(10.1) f(s) = e~"da(t)

is a singular point off(s).

* Hamburger, Bemerkungen zu einer Fragestellung des Herrn Pólya, Mathematische Zeitschrift,

vol. 7 (1920), p. 306. A similar theorem was first proved by E. Landau for the corresponding Rie-

mann integral. For the reference see Hamburger's article, footnote 7.

Pincherle has treated the problem for the related integrals fl<t>{t)t?~1dt but has obtained no

result regarding the addition of singularities. See his memoir Sur les fonctions déterminantes, Annales

Scientifiques de l'École Normale Supérieure, (3), vol. 22 (1905), p. 9.
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First make the change of variable s' = s—o-c, oc being the abscissa of

convergence of (10.1).  We have then to consider the integral

(10.2) I    exp(- s't)expi-tac)dait) =   I    exp (- s't)dßit)
Jo Jo

where

18(0 =   f
Jo

exp (— tardait),

where, for the moment, we write exp k for e* because of the complicated ex-

ponents. The axis of convergence of (10.2) is the axis of imaginaries, and ßit)

is clearly a monotonie function. Consequently there is no loss of generality

in assuming that o-c = 0. We may assume further that a(i) is an increasing

function. For, if it were decreasing we could replace a it) by—ait) and/(s)

by —fis). Suppose that 5 = 0 were a regular point oí fis). Then /(5) is analytic

in some neighborhood of 5 = 0, and the series

A i* - l)n
/(«o = E -—^-/(n)d)

„_o        n\

must converge for some value of o-<0.  But

/(»)(!) = (- 1)" f  tne~'dait),
Jo

-   (c-1)*1   rK
fi") =  E-^~        (- t)"e-'dait)

n_0 »! Jo

so that

r00     - (c-l)»
e-'E  -7-i-tYdait)

Jo

re—'daÇt),

provided that the integration term by term is permissible.   To justify this

we note first that the series

e-'E -r— (-0"
n=0 «'•

is uniformly convergent in any finite interval 0 = t = T, and that the series

f (e-i)- r
n-o       n\      Jo

(- t)ne-'dait)
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is uniformly convergent in the interval 0^F<<» since it is dominated*

by the series, independent of T,

22 - I    tne-'dait).
n-o       »!      Jo

Hence it follows that (10.1) is convergent for a value of o-<0 contrary to the

hypothesis that oc = 0. The contradiction shows that s = 0 must be a singular

point oí fis).

As illustrations of this theorem we recall that the function T(s) has a

singularity at the point s = 0, f (s) one at the point s = 1.

11. The addition of singularities. In this section we seek to generalize

a theorem of J. Hadamard concerning the multiplication of the singularities

of functions defined by power series. Since a power series in z becomes a

Dirichlet series, or an integral of type (1.2), by the transformation z = e~',

we ought clearly to be concerned here with the addition of singularities.

Let the integrals

(11.1) fis) =   [  e—da®,    fas) =   f  e~"dßit)
Jo J o

converge, the first for o >oi, and the second absolutely for a >o2. We suppose

that the singularities a,=a¡ +a"i oí fis), the singularities ßk=ßi +ß"i of

fas) and the points y obtained by adding points a, to points ßk are all isolated,

and that further there exists a number r such that the following conditions

hold:
Condition A:

| ai   — al I > r,    ai ^ a{ ,

| «„"-a," | >r,    ai' * a{' ,

\ßk   -   ßi\> r,

I Tit   —   7i | > r.

This means that between any two projections of points a on the axes there

is a distance greater than r, that the distance between any two points ß or

between any two points y is greater than r. Regarding the order of /(s) and

fas) we assume further that for an arbitrarily small number ij there is a

number p such that

/(s) =0(|r|"),    s = a+ii,

* The fact that a(f) is monotonie enters the proof at this stage.
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uniformly for \s —a¡ \ = v, and a number v such that

0W =0(|r|')

uniformly for \s— j8,|jäij. Here the numbers p and v may be positive,

negative, or zero. As examples take/(5) = I/5, in which case/(5) =0( [r |_1)

uniformly for ¡5 ¡ = r¡; or fis) = 1/(1 —e~'), in which case fÇs) =0(1) uniformly

for |5-2¿tt¿|^»j, k = 0, ±1, ±2, • • • .

Now let z = x+iy be a point in the common region of convergence of the

integrals (11.1) such that a;><ri+cr2 and a;><r2. Then it is possible to find a

positive number c such that x—c >tr2 and c >&i. Form the integral

1   rc+ix fis)<biz-s)
FÇz) =- I -¿5,

2ttíJc-ík s^

where p is any number greater than p+v and greater than p. We have shown

elsewhere* that the integral represents a holomorphic function in the half

plane in which the inequalities x>cri+ai, x>a2 are both satisfied, and that

the analytic continuation of this function into the other half plane along

lines parallel to the axis of reals is analytic except perhaps at points a+ß

and/3.

On the other hand the function Fiz) can be expressed as a generating

function.  To establish this point we make use of a

Lemma. Let ßit) be a function of bounded variation in any finite interval

O^t^R, and denote its total variation in this interval by «(F); let fix, t) be

continuous in the region 0 = x<<x>, 0^/< 00 and suck that the integrals

f   \fix,t)\duit), f   \fix,t)\dx,
J 0 ''o

f  duii)  f   \fix,t)\dx
Jo Jo

converge. Let the integral f"fix, t) dx be continuous for 0 = t < 00.  Then

/»• /»OO —00 — CO

dait)   I   fix,t)dx=    I    dx  I    fix,t)dait).
Jo Jo Jo       Jo

The proof follows the lines of that of a corresponding theorem for

*.D. V. Widder, The singularities of a function defined by a Dirichlet series, American Journal of

Mathematics, vol. 49, p. 321. The particular method of representation of the functions/(i) and o>(s)

has no effect on the proof.
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Riemann integrals,* and is omitted. We apply the lemma to the inter-

change of the order of integration in the iterated integral

l   rc+iM f(s)     r°°
(11.2) F(z)=— I ~rd* i    e~z'e"dß(t).

2TnJc-iK    s"+l     Jo

Since this integral is improper due to its upper and also to its lower limits of

integration, we must apply the lemma twice. We give the details of the appli-

cation in one case only.   The integral

f  «-«(-«) | dß(t) |
Jo

converges since the integral representing fas) is assumed to converge ab-

solutely for «t>«t2 and here x—c>cr2.  Moreover the integral

/:
-ectdr

'o   \s\"+1

converges since p>u.   Finally, the iterated integral

1/0)1r r    \ fis)
| dß(t) | e-*'        TTT^

Jo Jo       |i|p+1

converges since it may be written as the product of the two foregoing con-

vergent integrals. The change in the order of integration in (11.2) is thus

justified, so that we have

1    /•" /•«+•« f(s)e"t
F(z)=— e~z'dß(t) -—rds.

2m Jo Jc-i«,     s'+1

But by Theorem 7 it follows that

l   rc

Irri J c-
(11.3) J-^—ds = Dr"a(t)

2rri Je-i*      S'+1

provided that p > 0. We may also show that this formula holds if p is negative

but not an integer. For, in this case the integral

00 j(s)eH1    ri
(11.4) — I -ds

2iriJc-ix   s'+*+1

converges uniformly in any finite interval 0 ^ / ̂  R for any positive integer k.

Chose k so that p+k>0 but p+k — 1 <0.  Then by Theorem 7 the integral

* E. W. Hobson, loc. cit., vol. II, p. 347.
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is equal to Dcf~ka(t). Morever the integral (11.4) may be differentiated k

times under the integral sign since p>p, and the result will be a continuous

function.  Hence

1    /•«+*« f(s)e" dk
--ds =-Dr"-ka(t).
2TTÍJc-ix      5>+1 dt"

But by the definition of fractional derivatives of positive order this isDrpa(t),

so that (11.3) holds for all non-integral values of p >p. We have already seen

that if p is a negative integer or zero,

1    Çc+ix f(s)elt

sp+i

where
a(t +0) + a(t - 0)

1    f '
— I       —rds = Dr>p(t),
2tTl J c-

P(t)   ='

Consequently

(11.5) F(z) =    f   e-"Dr'a(t)dß(t) (p 5* 0, - 1, - 2, • • • ),
J o

F(z) =    f  e-'tDr^md) (p = 0, - 1, - 2, • • • ).

We sum up the results in

Theorem 13. Let

f(s) =    f  e-"da(t)
J o

converge for a>oi, and let

4>(s) =    f   e-'dß(t)
Jo

converge absolutely for o >oc. Let the singularities ak off(s) and the singularities

ßk of <b(s) satisfy Conditions A. Furthermore, let

f(s)=0(\r\")

uniformly for \ s—ak \ ̂  r; and

<t>(s)=0(\r\>)

uniformly for \s—ßk \ ̂ n (r¡ being arbitrarily small).

Then the function F(z) defined by
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e-'Dr»ait)dßit) (p^O, - 1, •••),
J 0

C ait + 0) + ait - 0)
e-'Df--'-—- dßit) (p = 0, - 1, • ■ • )

•/ o 2.

has singularities at most at the points ß and a+ß, where p>p+v and p>p.

Corollary 1.  If p = 0 and ¿//(0) =0, then the function defined by

r»       ait + 0) + «« - 0)
I e-*<-dj8(/)

•f o 2

has singularities at most at the points a+ß.

To establish this fact we need to modify only slightly the discussion of

the singularities of

W-Lf **«—>.
2-kíJ 5

in the paper already cited. In that paper the origin was excluded from the

region under discussion by a loop. In the present case this is no longer neces-

sary since the integrand of the above integral has a removable singularity

at the origin. This modification shows that only the points a+ß (and not

the points ß) are possible singularities of F(z).

Corollary 2.   If p is any negative integer, then the function defined by

("° ait + 0) + a{t - 0)
e-*Dr>--dßit)

Jo 2

has singularities at most at the points a+ß.

In this case the integrand of the integral denning Fiz) is analytic at

5 = 0 unless a point a lies there. In the first case it is unnecessary to exclude

the origin from the region in question, and in the second case the points ß

are included in the set a+ß. The result is consequently as stated in the

corollary in either case.

The theorem takes on its simplest form when p and p+v are negative

and a(/) is continuous, so that p may have the value zero. In this case the

integral (11.5) takes the simple form

I    e-'ait)dßit).
Jo
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As an example take «(/)=/, ßit)=t.   Then fis) = fas) = 1/s.   The theorem

states that the function defined by

f  te~"dt = 1/z2
J n

has no singularities which are not at z = 0.

As another example take a(i)=sin/. Then /(s) =s/(s2 + l), <p(s) = l/s.

Both functions satisfy the order requirements of the theorem. Consequently

the function

I e~" sin tdt = l/(z2+ 1)
o

can have singularities at most at the points i, —i, 0. This example shows

that the points a+ß and ß need not be effective singularities. In this case

the vanishing of /(s) at the origin explains the disappearance of the points

ß as singularities. If we interchange the rôles oí fis) and fas) we obtain the

result that

I e~ztt cos tdt = (z2 - l)/(z2 + l)2

has singularities at most at the points i and — i.

12. A sufficient condition that a function /(s) should be a generating

function. In the applications which we shall make of Theorem 13 the

following result will be useful:

Theorem 14.* A sufficient condition that fis) should be a generating

function is that it be analytic at infinity and vanish there.

Since fis) is analytic at infinity and vanishes there we can expand it in

a power series of the form
00 I

m - s '
Here the constants o„ must satisfy the condition

(12.1) limsupd flnl«!)1'" = *,

where k is a positive number or zero (but is not infinite). Now form the func-

tion
00

(12.2) zZanr.

* This theorem was first established by Cauchy. See Encyklopädie der Mathematischen Wissen-

schaften, II, 2, p. 26. The proof there given involves contour integration and is less convenient for

our purposes than the proof given here.
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On account of equation (12.1) it follows that

lim(|a„|)l'" = 0
»=O0

and the function (12.2) is seen to be an entire function. Now multiply the

series (12.2) through by e—' and integrate term by term from zero to in-

finity. This is permissible provided that

fln I   tne—'i
Jo

'dt

converges (as it clearly does for a > 0) and provided that the series

00 /» R

E<*n I    e—HHt
n-0        •'0

converges uniformly for R = Ra* To establish this result we have

E    I    a„e—'tndt « E I an \    I    e—'tHt
n=0    •'0 n-0 Jo

00 -00

« E I an |    I   e—'tndt
n—0 «^0

oo

= E

n=0

1 a-1 »!

The dominant series is independent of R, and if a>k it converges by (12.2).

Integration term by term is permissible, and we have

/•• r" A «(»+1'(0)
e-'a'(^= e-'áa(í)=    E -IT1"/«-

>/0 ^0 n=0 5"+1

The theorem is thus established.

It is not true, conversely, that every generating function is analytic at

infinity, as the simplest examples show. The foregoing proof showed that for

this to be the case it was necessary that the determining function be entire.

But the addition of this condition on the determining function does not make

the corresponding generating function analytic at infinity, as the example

of the function Tis) shows. By consideration of the order of the entire

function ait) one does arrive at a necessary and sufficient condition.

* We are applying a familiar criterion of Dini. See, for example, T. J. Bromwich, An Introduction

to the Theory of Infinite Series, 2d edition, 1926, p. 502. The criterion requires further that (12.2)

should converge uniformly in an arbitrary interval 0 á / â R. This is obvious since the series is entire.
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Theorem 15. A necessary and sufficient condition that the function de-

fined by

f(s) =   f  e-"da(t)
Jo

be analytic outside the circle \s\=k, have a singularity on the circumference

of the circle, and vanish at infinity is that a(t) be an entire function of order*

unity and of type* k greater than or equal to zero (but not infinite).

To establish this result we make use of a theorem from the theory of

entire functionsf which states that a necessary and sufficient condition that

a(t) be of order unity and of type k is that

(12.3) limsupw(| a<n)(0)|/«!)1/n = ke,    k^ 0.

Suppose first that the expansion of f(s) in power series about the point

at infinity has radius of convergence k.  That is, if

00

a'(t) =   ]>>„<",
n=0

then

_.   ann\

(12.4) f(s) =   D —-

has radius of convergence k and

(12.5) lim sup (| an\ «!)1/n = k,

whence
lim sup n( | a„ | )1/n = ke,

since lim n/(nï)l,n = e. But a„ =a(B+1,(0)/»! so that one easily obtains (12.3).

Conversely (12.3) implies (12.5), so that an entire function of the kind

specified in the theorem leads to a series (12.4) whose radius of convergence

is k. The theorem is thus completely established.

As a result of this theorem we see that if

/(*)=    f
^o

e-"da(t)

is analytic outside the circle |s | = k>0, thenj

* For definitions of order and types of an entire function see L. Bieberbach, Lehrbuch der

Funklionentheorie, vol. II, p. 228. We are demanding that a(t) be of normal type but not of maximal

type.

t L. Bieberbach, loc. cit., p. 231.

X L. Bieberbach, loc. cit., p. 228.
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| a(t) I < e«M-«>l«l

for sufficiently large values of \t\ and for all positive numbers e.

13. Hurwitz's theorem regarding the addition of singularities as a special

case of Theorem 13. It is scarcely necessary to point out that if a(t)

and ß(t) are step functions with points of discontinuity at t = 0, 1, 2, • • • ,

Theorem 13 reduces, by the transformation z = e~", to the familiar theorem

of Hadamard regarding the multiplication of singularities of power series.

It is, however, more surprising that the classical theorem of Hurwitz on

the addition of singularities should also be included as a special case.

Let

/«= ¿-^    *W-¿-^T'
r.    çn+1 n    çn+1

n=0   -J n*=0    ^

both series being convergent in some neighborhood of the point at infinity.

Then, by Theorem 14,

f(s) =    f   e-"da(t),

<t>(s) =    f   e-'dß(t)
Jo

for a sufficiently large, where

«'« =   Z —-■
n-0      »!

A    bntn
ß'(t) = £

n-0      »!

Let the singularities a of f(s) and those ß of <t>(s) satisfy Conditions A.

Since f(s) and <p(s) vanish at infinity we have

j(s) =O(|r|-0,     <pW =0(|t|-i).

Let us first suppose that a0 = 0. Then

ao       If"
/(*) =—+ —       e-"a"(t)dt,

s       s J0

sf(s) =    f   e-"da'(t),
Jo

Sj(s) =O(|r|-0.

Apply Theorem 13 to the functions sf(s) and <p(s).   Clearly we may take

p = 0, since p+v = — 2 and p= — I.   It follows that
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/.'
e-'a'it)ß'it)dt

defines a function with singularities at most at the points a+ß and ß. In

the present case we may also be sure that the function has singularities at

most at the points a+ß. For, if 5 = 0 is not a point a, then 5/(5) has a zero

at the origin, and we may apply Corollary 1 of Theorem 13. But this integral

can be expanded in a power series

a'it)ß'it) =   E   '

where
n-0      »!

Cn = 23 -,-i^nr,akbn
k-o in — *)!«!

Hence

(13.1) f  a'it)ß'it)e-
J n

dt
n— 0    2

This is the result of Hurwitz.*

In the case in which ao^O, we proceed differently, taking p= — 1. The

condition p>p+v of Theorem 13 is still satisfied, but the condition p>p

is now violated, so that special considerations are necessary. For the special

case in which ait) and ßit) are entire functions of order unity and of finite

type, less stringent conditions on p are necessary. The condition p>p was

needed only to show the permissibility of the interchange in the order of

integration in
» C+tOO/» c+too n «0

=   I       fis)ds I    e"e-'dßit),
Jc-ix, Jo

We can verify this directly in the present case. Write

do

where

Then

fis) = tis) H

00

*(*) = E

5

an

(13.2)      7= 4>is)ds I     e»e-'dßit) + a0 I —  I    e-'e-'dßil).
J c-ix Jo J c-ixi        S   Jo

* For a reference see J. Hadamard, La Série de Taylor et son Prolongement Analytique, Scientia,

1901, p. 73.
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Here ^(s)=0(|t|-2). Since p>—2 we may apply the result obtained in

the proof of Theorem 13 (see equation (11.2) ) to show that the order of

integration may be interchanged in the first of the integrals (13.2). To treat

the second of these integrals note that

-¿+Í/s       s Jo
0(5) = — + — j    e-'ß"it)dt,

so that the second integral of (13.2) becomes

J,c+iK    bods              rc+i°°     ds      r"
- + do-       e"e-"ß"it)dt.

t-ioo     SÍZ — S)               J e-i«     5(2 — 5) J 0

The first of these integrals is clearly zero, and the order of integration

of the second may be interchanged, as we see by again referring to equation

(11.2). If in that equation we replace fis) by the function 1/(2—5), for

which p= — 1, and take p = 0, then p>p and the result holds.  Hence

I =   I    e-'dßit) j        e"Hs)ds + a0 I     e-'dß'it)  I -ds
Jo J c-i» Jo J c-ix      5(2  —  5)

=   f e-'[a'it) - ao]dßit) + a0 f   [e-'ß"it)il - e'z)/z]dt.
Jo Jo

By integration by parts we have

I =   i    e-'[a'it) - a0]dßit) + a0 f e-'ß'it)dt =    (  e-'a'it)dßit).
Jo Jo Jo

This is the integral (13.1) so that the result is the same as before.    By

Corollary 2.of Theorem 13 we see that the singularities of the function must

again be at most at the points a+ß.

14. Wigert's theorem as a special case of Theorem 15.   As an immediate

consequence of Theorem 15 we have the following result, which may be

regarded as a generalization of a theorem of Wigert :*

Theorem 16.   A necessary and sufficient condition that the function de-

fined by

fis) =    f   e-'dait)
Jo

should be analytic in the extended plane except at the origin is that ait) be entire

and satisfy the inequality

(14.1) | ait)\ < ee|'l

for an arbitrarily small positive number e.

* Georg Faber, Über die Fortselzbarkeil gewisser Taylorscher Reihen, Mathematische Annalen,

vol. 57 (1903), p. 369.
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The inequality of the theorem is equivalent to the statement that a(/)

is an entire function of order unity and of minimal type. By Theorem 15

the series

fis) =   ¿^
»  S-+1 '

where
oo

a'it) = I>„r,
n=0

is convergent for \s | >0 if and only if the inequality (14.1) is satisfied. The

theorem is thus established.

Wigert's theorem appears as a simple corollary to this theorem.  For

let ßQ) be defined as follows:

0(0) = 0, ßit) = n, n- 1 <tgn.

Then
-00 OO

fas) =    I   e~"dßit) =   X«-»' = 1/(1 - e->).
Jo n-0

Let fis) be defined as in Theorem 16, and apply Theorem 13 to the functions

fis) and fas). Clearly p= — 1 and v = 0, so that we may take p = 0. Then

« = 0 and 0 = 0, ±2iri, ±iiri, ■ ■ ■ .   Consequently the function defined by

/.OO 00

I   e-"ait)dßit) = X«(w)e_B'
Jo n=0

has singularities at most at the points a +ß = 0, ± 2wi, ± iiri,   ■ ■ ■ .  That

is, the function defined by the power series

OO

y]ajn)zn
n=)

has no singularities in the extended plane except at the point z = l.  This is

Wigert's theorem.

15. A generalization of a theorem of Leau. The following theorem is a

generalization of a familiar theorem of Leau regarding power series :*

Theorem 17. Let a(Z) be a function of bounded variation in every finite

interval 0 = t^t0, and let ait) coincide with the function fait) for t^k, where

fa{t) is analytic in the region \t\—k.   Then the function defined by

(15.1) fis) =    f   e-'dait)
_ Jo

* See, for example, G. Faber, loc. cit., p. 371.
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is analytic in the entire plane cut along the negative real axis from 0 to «3.

Moreover the points 0 and 00 are the only singular points on the cut.

We first note that the integral (15.1) converges absolutely for o->0.

For, since yp(t) is analytic at infinity, there exists a constant M such that

I a'(t) I < M,    t è   k.

We break the integral (15.1) into two parts

f(s) =    f e~"da(t) +   f  e-»dp(t).
Jo J*

Since the function \j/(t) is analytic at infinity, its derivative yp'(t) is also

analytic at infinity and vanishes there, ^'(t) is therefore a generating func-

tion,

*'(t) =   f   e-y'dß(y) =    f  e-<"ß'(y)dy.
Jo Jo

Here ß'(y) is an entire function of order 1 and of type less than k, since

\p(t) is analytic exterior to and on the boundary of the circle \t\=k (Theorem

15). That is, there exists a constant e so small that

(15.2) \ß'(y)\< e(*-"l»l

for \y I sufficiently large. Then

(15.3) f(s) =    f   e-"da(t) +   f   e~"dt \    e-y'ß'(y)dy.
Jo Jk Jo

The integral

Je~"dt I    e-i' I ß'(y) \ dy
k Jo

converges by virtue of (15.2). Here it is permissible to interchange the order

of integration in the integral in (15.3).*  Hence

r* ß'(y)e~<-'+y^k

(15.4) f(s) =   f e-"da(t) +    f
Jo Jo s + y

dy.

The first of these integrals is analytic over the entire plane, while the second

is analytic in the plane cut along the negative real axis from zero to infinity.!

* E. W. Hobson, loc. cit., vol. II, p. 347.

t This may be seen by changing sto—s and applying a familiar theorem of the theory of func-

tions. See, for example, W. F. Osgood, loc. cit., Hauptsatz, p. 282. The path of integration is. there

considered to be finite, but only slight modifications are necessary in order to treat the present case.

Compare also E. Picard, Leçons sur quelques Types Simples d'Equations aux Dérivées Partielles, 1927,

p. 65.
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It remains only to show that the cut may be altered except at its end

points without altering the truth of the above statements. This may be done

by showing that the integral

ß'iy)e~ <«+»>*
-dyX s + y

has the same value as the second integral in (15.4), where C is a continuous

curve (regular) obtained by slightly displacing any finite set of points on

the positive real axis, and where s is any point not between the axis and C.

An obvious use of contour integration establishes this point.

To obtain the theorem of Leau as a special case of this theorem we de-

fine the function <pÇs) as in the preceding section and apply Theorem 13 to

the functions fÇs) and <t>is).

16. Periodic determining function. We   return   now   to   the   proof  of

Theorem 18. If ait) is a function of bounded variation of period 2-k,

then the function defined by

fis) =    f
•'o

(1.2) fis) = e-'dait)
Jo

has no singularities in the entire plane except perhaps poles of the first order

at the points ni, n= +1, ±2,   ■ ■ ■ .

We note first that the integral (1.2) is convergent for <r>0 since a con-

stant M must exist for which \ait) | ^ M for all t (Lemma 1, §3). A change in

the value of the function a(/) at a set of points forming a denumerable set

causes no change in the function/(5). Hence we may suppose, without loss

of generality, that at a point of discontinuity £ of ait) we have

a(£ + 0) + a(£ - 0)
a(£)   =-

2

Since ait) is a function of bounded variation it may be expanded in a con-

vergent Fourier's series,

°°
do „

(16.1) ait) =-Y  Z^an cos nt + bn sin nt,
2 n-l

1   f2' 1    f2T
(16.2) a» = —  I      ait) cosntdt, ¿>„ = —  I    ait) sinntdt.

T   J 0 IT   J o

We now make use of a theorem from the theory of Fourier's series* regarding

* E. W. Hobson, loc. cit., vol. II, p. 583.
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integration term by term.   To apply the theorem we need to know that

(a) e~" is of bounded variation over the interval (0, oo), and

(b) /" \e~" \dt converges.

Both of these facts are evident if <r>0.   Consequently it is permissible to

integrate term by term from 0 to oo.  We thus obtain the result

/.'

«o       A  ans + bnn
e~"a(t)dt =-h  X)

But

if<r>0, so that

o 2s      B_i    i2 + n2

f(s) = - a(0) + s  I    e-'a(t)dt
Jo

a0       JL  ans2 + bnns

(16.3) /(,) = - «(0) + - + Z       ,T   ,    •
2       n-i     s2 + n2

But we can show that this series defines a function analytic in the entire

plane except perhaps at the points ni, n= ±1, +2, +3, • - ■ . For, let m

be a positive integer arbitrarily large. The series

(16.4) £    ^ + KnS

n=m+l        S2 + n2

is uniformly convergent in the circle \s | ^ím+1/2, and consequently repre-

sents an analytic function there. The uniform convergence of the series

may be established as follows. The coefficients a„ and bn satisfy the in-

equalities

| an\ < K/n,   \bn\< K/n

where K is some constant, since a(t) is a function of bounded variation.*

Hence

™     ans2 + bnns      r , JL        1 .    .

£ —r-:—^ «[*(» + *>' + *(« + *) JEttt-t'     '=» + *•
n-m+l        S2 + n2 n=0   (§ + »)"

The dominant series is independent of 5 and converges, so that the desired

result is obtained. But/(s) is the sum of the analytic function (16.4) and the

rational function

a0        "   ans2 + bnns

* E. W. Hobson, loc. cit., vol. II, p. 516.
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which has poles of the first order at most at the points ±¿, +2¿, • • • ,

± mi inside the circle 15 | = m+1 /2. Since m was arbitrarily large the theorem

is completely established.

As an example let us define ait) as follows:

ait) =0,    2»ir < / < (2» + l)ir,    t = 0,

ait) = 1,    (2» + 1)tt < t < (2« + 2)ir,

airnr) = §,    n = 1,2,3, • • • .

Then
_ 00 OO

/(5) =    j   e-'dait) =   E(- l)n+1e-"" = 1/(1 + e").
J 0 n=l

By (16.3) we have
a0        "   ans2 + bnns

l   r2"
ao = —  I    ait)dt = 1,

l   r2T
= —  I     a

IT   J 0

l   r2*
a„ = —   I     a

t J o

ÍU, M (
— 2
-,    »
n-K

it) cos ntdt = 0,    » > 1,

0,      » even,

odd.

Hence

25 t      '
1 + e"      2        t    »,,s!+ (2» + l)2

We have thus obtained the Mittag-Leffler expansion of the function

(l+e«)-i.

17. The determining function a generating function.  We have seen that

the function Tis) is the sum of two functions

Tis) =    I     e—'e—'Ut +   I    e—'e—~'dt,
Jo J-«,

the second of which is analytic over the entire plane. Consequently, the

first function must have singularities at the points 0, — 1, — 2, • • • . The

determining function in this case is

00   (- l)»e-»«
e

■'- E
n_o n\



1929] A GENERALIZATION OF DIRICHLET'S SERIES 737

a Dirichlet's series. One is thus led to consider the case in which the determin-

ing function ait) is defined by a general Dirichlet's series

oo

(17.1)   «(/) =   2>„e-x"<,   0 ^ Xo < Xi < X2 < • • • ,     lim X» = oo .
n-l »-•»

Since the derivative of a Dirichlet's series is itself a Dirichlet's series, no

loss of generality is caused by taking the generating function/(s) in the form

fis) =    f   e-"ait)dt.
Jo

We shall suppose the series (17.1) absolutely convergent for i^O. It will

be shown that the series (17.1) may be multiplied by e~" and integrated

term by term from 0 to oo if a > 0, so that

=o        .«,                         °°       a

(17.2) fis) =   5>n I     e-o+^'dt =   2Z -—, o > 0.
n=0       J 0 n=0   S  +  X„

To justify this step we again apply Dini's criterion, and note first that

Jo B « pR
e~"ait)dt =   £a„       «-<-»«><<&,    R > 0

0 n-0        J0

for every finite R. This follows since a Dirichlet's series converges uni-

formly in any finite region of the half plane of convergence. It remains only

to show that (17.3) converges uniformly in the interval R = R0. But

» pj 00 _00 °" I    fl       I
X>„  I     e-<'+x»>'d/«  2Z\ ö„ |    I     ¿-<*+*-> «¿< =   2Z ■
n=0        •'0 n-0 Jo n-0   <f  +  X„

The dominant series is independent of R and converges for / = 0, since (17.1)

converges absolutely, so that (17.2) is established.

The representation (17.2) oí fis) was established foro->0, but by analytic

continuation it holds throughout the region in which the series converges.

By virtue of the absolute convergence of the series of coefficients this series

converges uniformly and represents an analytic function in any region not

including a point —X„. In a neighborhood of a point —Xn,/(s) clearly has

the form

Sis) =-^- + Ais),
S + Xn

where ^l(s) is analytic in the neighborhood of —Xn. We have thus proved

that Sis) is meromorphic with poles of the first order at most at the points
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—Xo, —Xi, —X2, • • • .  The position and character of the singularities of the

function Vis) are thus explained by this result.

Let us consider now the more general case in which «(/) has the form

ait) =    f   e-<"dßiy),
Jo

the integral being assumed absolutely convergent forcr^O. Then

fis) =    f   e-'dt f  e-'odßiy).
Jo Jo

Appealing once more to the lemma of §11, we see that the order of integration

may be interchanged since the integral

f , i   C C   \aI   I dßiy) |    I    e-'t'+^dt =    I    —
Jo Jo J o     c

dßiy)

+ y

converges for a > 0.  Consequently,

C°° dßiy)
fis) = J^¿> a>0.

Jo    s + y

Although this relation has been established for <r>0, we see by analytic

continuation that it is valid except on the negative real axis. The function

fis) is thus seen to be analytic* in the entire plane cut from 0 to <x> along

the negative real axis. This cut may be artificial or a genuine boundary of

the region of analyticity according to the nature of the function ßiy). For

example, fis) may reduce to the series

(17.4) fis) =   ¿ -,
n-o s — an

where the points a„ are dense on the negative real axis, and the series

¿Ifcl
n-0

converges absolutely.f In this case Goursat has shown that the line on which

the an are distributed is a cut for the function fis). We sum up the results in

* T. J. Stieltjes, Recherches sur les fractions continues, Annales de la Faculté des Sciences de

Toulouse, vol. 8 (1894), p. J 72. Compare also O. Perron, Die Lehre von den Kettenbrüchen, 1913, p.

369.

t For a description of the functions of this type see E. Borel, Leçons sur les Fonctions Monogènes

Uniformes d'une Variable Complexe, 1917, p. 37.
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Theorem 19. Let the function f(s) be defined by

f(s) =    f  e-'da(t),
Jo

where a(t) is a generating function

a(t) =    f  e-'*dß(y),
Jo

absolutely convergent in the interval 0^t<<x>. Thenf(s) is analytic in the whole

plane with the negative real axis removed. This line may or may not be a cut

for the function f(s).

18. The addition of singularities of functions defined by factorial series.

In order to discuss the singularities of functions defined by factorial series

we first show the relation of these series to the generating function under

discussion. We begin by the proof of

Theorem 20. A necessary and sufficient condition that a function f(s)

can be developed in a convergent factorial series

00 I

„_o s(s + 1) • • • (s + n)

is that it be a generating function

f(s) =    f  e-"a(t)dt
Jo

for which a(t) can be represented by a series of the form

CO

(18.1) a(t)   =    I>n(e-' _   l)n
n-0

with

(18.2) |a„|<«*

for some value of k and for n sufficiently large.

We prove first the sufficiency of the condition.   By (18.2) we see that

(18.3) limsupdanl)1'" ^ 1.

Hence the radius of convergence of the power series

oo

n-0

is at least unity, and (18.1) converges for all real non negative values of /.

Let us prove that it is permissible to multiply (18.1) by e~" and integrate
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term by term from 0 to oo . We again employ Dini's criterion. It is clear that

/« R   °° °° /• R£ e-"an(e-' - \)Ht = £ a„   I    «""(«-'-1) "A,
0      n-0 n-0 J 0

for the series (18.1) is uniformly convergent in the arbitrary interval 0 i£ t g R.

Again

(18.4) ][>„ I     e-"(e-' - l)»di« £    I    «""(1 - e~')nd<
n»0        •* 0 n=0     ^ 0

oo i
= y,_|(Zn|_*

„_o o-(o- + 1) • • • (cr + n)

The dominant series has the same region of convergence as the series

*       Uni
(18.5) :

_i     n°

and the latter is certainly convergent by virtue of (18.2) for«r>& + l. Series

(18.4) is therefore uniformly convergent for R^R0, and term by term integ-

ration is justified. Hence

A On«!
•a(t)dt =   2_) -'     <r > k+ I.

n_o s(s + 1) • • • (s + n)
e~,lc

Jo

The sufficiency of the condition is thus established.

For the necessity of the condition, assume that the series

(18.6) £-
„_o s(s + 1) • • • (s + n)

converges for cr sufficiently large. Then the series (18.5) converges for some

positive value of <r, as a = k. Hence its general term approaches zero, and for

n sufficiently large,

\a„\/nk < 1.

Define a(t) by the series (18.1). The foregoing proof shows that the corre-

sponding generating function is equal to the series (18.6) for cr sufficiently

large and the proof is complete. Other forms of this necessary and sufficient

condition have been given by Pincherlef and Nielsen.{

* For the properties of factorial series here employed, see E. Landau, Über die Grundlagen der

Theorie der Fakultätenreihen, Sitzungsberichte der mathematisch-physikalischen Klasse der Kgl.

Bayerischen Akademie der Wissenschaften zu München, vol. 36, pp. 151-218.

t S. Pincherle, loc. cit., p. 52.

X N. Nielsen, Handbuch der Theorie der Gammafunklion, 1906, p. 239.
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We may now establish a result concerning the addition of singularities

of functions defined by factorial series. Let/(5) and 0(5) be defined by the

series
on ■

a-«!
fis) = E

„=o 5(5 + 1) • • ■ (5 + n)

" in»!

(18.7) 0(5) =   E ——--—— >
„=o 5(5 + 1) • • • (5 + n)

both convergent for a sufficiently large. It is known that the series will have

a half plane of absolute convergence.   By Theorem 20,

fis) =    f   e-'dait),
J n

(18.8) 0(5) =    f  e-'dßit),
Jo

where
00 00

a'it) = E"-(l - O", ß'U) = 5X(1 - e-'Y.
n=0 n—0

Let the singularities a of fis) and those ß of 0(5) satisfy Conditions A,

and let these functions satisfy the order conditions of Theorem 13. We are

thus in a position to apply that theorem provided that (18.8) converges

absolutely. This follows by use of the inequality

r" r°°      °° °° I b I »'
I e-'ß'it) \dt=        er" E I K | (1 - «-)"* =  E    v    , ' ',    ,    , ■

«'O Jo n-0 n=0   c(<7 +  1)   •   ■   • (<7 + »)

This series converges by reason of the absolute convergence of (18.7). We

conclude that if p>p+v and p>p, the function

(18.9) F(«) =    f   tr"Dr'ait)dßit)
Jo

has singularities at most at the points a+ß and ß.

There is one case when this result is of particular interest, namely that

in which p = — 1. For then (18.9) can be very simply expanded in a factorial

series. We have

F(z) =    f  e-z'a'it)ß'it)dt.
Jo

But
00

a'iDß'it) =   Ec-(1 - e-'Y,
n-0

where
c„ = a0bn + aibn-i + • • • + a„b0.
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Then " Cn«!
Fiz) =   E-

n=o zÇz + 1) ■ ■ • (2 + »)

For a direct application of Theorem 13 with p = — 1 we must have p < — 1.

As in the case of Hurwitz's theorem we may take p = — 1 in certain cases.

Let us suppose in order to have a situation analogous to that assumed for

Hurwitz's theorem, that fis) and 0(5) are analytic at infinity, vanishing

there. Then p and v are at most equal to — 1, and if p = — 1, then p >p+v.

The discussion of the singularities of F(2) given in §11 is consequently valid,

and it is only when it comes to expressing F(2) as a generating function that

a special discussion is necessary (due to the violation of the condition p>p).

For p = — 1
J        /• c+ioo /• »

Fiz) = —; I       fis)ds 1    e'<-'>ß'it)dt.
2iriJc-ix, Jo

Set

Then

fis) = - + *(*),
5

ax <z22!
Hs) =-Y ■-h

5(5 + 1)     5(5 + Dis + 2)

a /.c+too   ¿s     /.»

(18.1(1) Fiz) =—; —        e'(—>ß'(t)dt
2iriJc-i*>     s Jo

+

1 /»c+ioo /» °°

—-  I       tis)ds J    e'C-iß'iOdt.
2wl J c—i<x Jo

Since ^(5) =0( |t I-2) the order of integration in the second integral

may be interchanged, as was shown in §11. To discuss the first integral

integrate (18.8) by parts and obtain

ß'il)e-'x      1   rœ
+ —       e-'ß"it)dt.

s  Jo
0(5) =

5

Since \bn \ <nk for some value of k, we have

eo 00

I ß'it) I <   2>*(1 - e-'Y « E(« + *)(» + * - 1) • • ■ (» + 1)(1 - e-')n,
n—0 n-0

I j8'(0| <e,<4+1>.

Hence lim ß'it)e~" = 0,

and bo -I
s J 0

0(5) = — + _ I    e«-'-iß"it)dt.
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Hence the first integral of (18.10) becomes

1        rc+ixi       bo a0   C°+i<°       ds       r"
-a0 --ds-\- -       e'C-2>/3"(/)d/.
2irt     Jc-ix     s(z—s) 2ttíJc-íx    s(z — s) J o

The first of these integrals is zero, and the order of integration of the second

may be interchanged, as we see by again referring to equation (11.2). In

that equation replace f(s) by l/(z^-s) (for which p= — 1) and take p = 0.

Then p >p, and the result holds. Hence

l    r"                /*c+i0°                  a0   r"                 rc+i'°    e"
F(z) =—       e-ß'(t)dt e"yp(s)ds + —       e-"ß"(t)dt--ds,

2lTlJo Je-ix 2TlJo J c-ix  s(z — s)

(18.11)     F(z) = f   e-'fß'(t)[a'(t) - a0]dt + a0 f e~'^"(t)(   ~C \dt.

We have here employed Theorem 6. If we integrate by parts the second in-

tegral of (18.11) we have

J,X _0O -0O
er"[a'(t) - a0]ß'(t)dt+ a0 I     e-"ß'(t)dt =  1    e-"a'(t)ß'(t)dt.

o Jo J o

But we have already seen that this is a factorial series,

F(z) = £
cnn\

„_o z(z + I) ■ ■ ■ (z + n)

By Corollary 2 of Theorem 13 we see that the function has singularities at

most at the points a+ß.

As an example take

f(s) = <b(s) = -±- =   ¿
s — I       n=o s(s + 1) • • • (s + n)

All conditions assumed above are satisfied, and since cn = n+l we conclude

that the function defined by the series

" (n+l)\

„_o s(s + 1) • • • (s + n)

has singularities at most at the point a+ß = 2. But it is seen by direct com-

putation that the function is l/(s — 2), so that the predicted result is verified.

Bryn Mawr College,

Bryn Mawr, Pa.


