Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Contents of Volume 31, Number 4
HTML articles powered by AMS MathViewer
View front and back matter from the print issue

On Fermat’s last theorem
H. S. Vandiver
Trans. Amer. Math. Soc. 31 (1929), 613-642
DOI: https://doi.org/10.1090/S0002-9947-1929-1501503-0
The degree and class of multiply transitive groups. II
W. A. Manning
Trans. Amer. Math. Soc. 31 (1929), 643-653
DOI: https://doi.org/10.1090/S0002-9947-1929-1501504-2
Algebraic combinations of exponentials
J. F. Ritt
Trans. Amer. Math. Soc. 31 (1929), 654-679
DOI: https://doi.org/10.1090/S0002-9947-1929-1501505-4
On the zeros of exponential polynomials
J. F. Ritt
Trans. Amer. Math. Soc. 31 (1929), 680-686
DOI: https://doi.org/10.1090/S0002-9947-1929-1501506-6
On the singularities of linear partial differential equations
Bernard Osgood Koopman
Trans. Amer. Math. Soc. 31 (1929), 687-693
DOI: https://doi.org/10.1090/S0002-9947-1929-1501507-8
A generalization of Dirichlet’s series and of Laplace’s integrals by means of a Stieltjes integral
D. V. Widder
Trans. Amer. Math. Soc. 31 (1929), 694-743
DOI: https://doi.org/10.1090/S0002-9947-1929-1501508-X
A study of continuous curves and their relation to the Janiszewski-Mullikin theorem
Leo Zippin
Trans. Amer. Math. Soc. 31 (1929), 744-770
DOI: https://doi.org/10.1090/S0002-9947-1929-1501509-1
On extended Stieltjes series
Hubert Stanley Wall
Trans. Amer. Math. Soc. 31 (1929), 771-781
DOI: https://doi.org/10.1090/S0002-9947-1929-1501510-8
The asymptotic solution of an operational equation
John R. Carson
Trans. Amer. Math. Soc. 31 (1929), 782-792
DOI: https://doi.org/10.1090/S0002-9947-1929-1501511-X
On commutation formulas in the algebra of quantum mechanics
Neal H. McCoy
Trans. Amer. Math. Soc. 31 (1929), 793-806
DOI: https://doi.org/10.1090/S0002-9947-1929-1501512-1
The basic power series of interpolation
George Rutledge
Trans. Amer. Math. Soc. 31 (1929), 807-820
DOI: https://doi.org/10.1090/S0002-9947-1929-1501513-3
The limit points of a group
Lester R. Ford
Trans. Amer. Math. Soc. 31 (1929), 821-828
DOI: https://doi.org/10.1090/S0002-9947-1929-1501514-5
On linear upper semi-continuous collections of bounded continua
Wallace Alvin Wilson
Trans. Amer. Math. Soc. 31 (1929), 829-836
DOI: https://doi.org/10.1090/S0002-9947-1929-1501515-7
The asymptotic location of the roots of a certain transcendental equation
Rudolph E. Langer
Trans. Amer. Math. Soc. 31 (1929), 837-844
DOI: https://doi.org/10.1090/S0002-9947-1929-1501516-9
Nets with equal $W$ invariants
V. G. Grove
Trans. Amer. Math. Soc. 31 (1929), 845-852
DOI: https://doi.org/10.1090/S0002-9947-1929-1501517-0
Contributions to the general theory of transformations of nets
V. G. Grove
Trans. Amer. Math. Soc. 31 (1929), 853-860
DOI: https://doi.org/10.1090/S0002-9947-1929-1501518-2
Note on integro-$q$-difference equations
C. Raymond Adams
Trans. Amer. Math. Soc. 31 (1929), 861-867
DOI: https://doi.org/10.1090/S0002-9947-1929-1501519-4
The expansion problem in the theory of ordinary linear differential systems of the second order
Rudolph E. Langer
Trans. Amer. Math. Soc. 31 (1929), 868-906
DOI: https://doi.org/10.1090/S0002-9947-1929-1501520-0
On the degree of convergence of expansions in an infinite interval
W. E. Milne
Trans. Amer. Math. Soc. 31 (1929), 907-918
DOI: https://doi.org/10.1090/S0002-9947-1929-1501521-2
A kinematical treatment of some theorems on normal rectilinear congruences
Charles H. Rowe
Trans. Amer. Math. Soc. 31 (1929), 919-930
DOI: https://doi.org/10.1090/S0002-9947-1929-1501522-4
Errata: “The singular points of analytic space-curves” [Trans. Amer. Math. Soc. 31 (1929), no. 1, 145–163; 1501473]
Arthur Ranum
Trans. Amer. Math. Soc. 31 (1929), 931
DOI: https://doi.org/10.1090/S0002-9947-1929-1500506-X