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Introduction

The history of the subject of generalized differentiation can be traced

back to Leibnitz, f In the earlier literature the term fractional differentiation

is used as an alternative, and the aim was to generalize the concept of the

»th derivative of a function to non-integral values of ». Four different at-

tacks on this problem may be noted. The earliest was that of Liouville, who

expanded the functions operated upon in series of exponentials, and assumed,

as a basis, Dneax = aneaz, where D symbolizes differentiation. Riemann

considered power series with non-integral exponents as analogues of Taylor's

series, and through their coefficients was led to the expression of generalized

derivatives in terms of a definite integral plus an infinite series with arbitrary

constant coefficients. { Liouville's and Riemann's results proved to be in

disagreement. Prior to the publication of Riemann's work, Grünwald was

led by the restrictions of Liouville's method to generalize directly the defini-

tion of a derivative as the limit of a finite difference quotient, and, by rigorous

methods, also arrived at definite integral formulas. § Griinwald's definition

involved the idea of differentiation between limits which later resulted in

the coordination of Liouville's and Riemann's results. This, for example,

was effected by Krug,^f who introduced a new development, based on

Cauchy's contour integral for ordinary derivatives, which also involved

limits of differentiation, in terms of which he showed that Riemann's definite

integral corresponded to finite lower limit, Liouville's development to lower

limit — oo. The Riemann-Grünwald definite integral form has become stand-

ard in the literature, and has been intensively studied. ||

* Presented to the Society, October 27, 1923; received by the editors June 29, 1929.

f For references, see S. Pincherle, Equations et opérations fonctionnelles, Encyclopédie des

Sciences Mathématiques, Paris, 1912, tome 2, vol. 5, fase. 1, pp. 1-81; also Eugene Stephens, Sym-

bolic calculus. Bibliography on general {or fractional) differentiation, Washington University Studies,

vol. 12 (1925), No. 2, pp. 137-152.
t B. Riemann, Gesammelte Mathematische Werke, Leipzig, 1876, pp. 331-344.

§ K. A. Grünwald, Zeitschrift für Mathematik und Physik, vol. 12 (1867), pp. 441-180.
If A. Krug, d"f(x)/dxn regarded as a function of n, Akademie der Wissenschaften, Wien, Denk-

schriften, Mathematisch-Naturwissenschaftliche Klasse, vol. 57 (1890), pp. 151-228.

|| E.g. by A. Marchaud, Sur les dérivées et sur les différences des fonctions de variables réelles,

Journal de Mathématiques, (9), vol. 6 (1927), pp. 337-125.
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Another trend was introduced by the symbolic treatment of linear

differential equations with constant coefficients as exemplified by the work

of Boole. The polynomial operators thus occurring led naturally to the con-

cept of an arbitrary operator f(D), which was to be formally expanded in

powers of D, and thus applied to the operand. This treatment has since been

established on a rigorous basis for operators f(D) corresponding to entire

transcendental functions f(z) of genus zero, operating upon functions which

are analytic in a given legion.* Boole's methods for linear differential equa-

tions with variable coefficients were extended by other writers to yield

formal solutions in terms of operators algebraic in D; but in many cases no

further attempt was made to assign a meaning to such expressions.

We may think of the more recent work of Heaviside as the next step in

this development.f Of course Heaviside's contribution assumes an impor-

tance far beyond this formal juggling of symbols, through its application to

important physical problems, and its skillful methods for evaluating the

operations that are used. This "operational calculus," however, was de-

veloped with physical intuition, rather than mathematical rigor, as guide.

A more rigorous mathematical basis has since been supplied by Carson in

terms of solutions of Laplace integral equations, and their use in a definite

integral formula.Í Carson's formulas include the Riemann-Griinwald definite

integral for Dn as a special case when the real part of n is less than one ; but

his treatment is quite unrelated to the theory of entire operators of genus

zero.§

In the present paper Grünwald's method of arriving at a definition for

operators D" is carried forward by means of an artifice of Arbogast to yield

a definition of generalized differentiation for operators f(D).*H This definition

is shown to include Carson's operators, and entire operators of genus zero,

as special cases. ||   The major part of the paper is devoted to operators f(D),

* C. Bourlet, Sur les opérations en général et les équations linéaires différentielles d'ordre infini,

Annales de l'Ecole Normale, (3), vol. 33 (1897), pp. 133-190.
J. F. Ritt, On a general class of linear homogeneous differential equations of infinite order with

constant coefficients, these Transactions, vol. 18 (1917), pp. 27-49.

t Oliver Heaviside, Electromagnetic Theory, London, 1922, vol. 2, chapters 7, 8.

% J. R. Carson, The Heaviside operational calculus, Bulletin of the American Mathematical

Society, vol. 32 (1926), pp. 43-68; also numerous papers in the Bell System Technical Journal.

§ Another theory is developed by Norbert Wiener: The operational calculus, Mathematische An-

nalen, vol. 95 (1926), pp. 557-584.
H Our definition may therefore be called the extended Grünwald definition.

|| This is not strictly correct as far as Carson's development is concerned, since we derive his

formulas only under certain hypotheses on the functions involved. It should be noted, however, that

Carson does not explicitly state the domain of applicability of these formulas, and that the hypotheses

in question are of considerable generality.
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termed of type zero, which correspond to functions of a complex variable,

f(z), which are analytic in a certain sector of the z-plane of angle greater

than ir, and whose moduli satisfy within this sector the Poincaré inequality

for entire functions of genus zero.* Existence theorems are established for

such operators, and certain formal properties are investigated, such as the

law of successive operations, and the generalized Leibnitz theorem for

differentiation of a product, f The last three sections are chiefly devoted to

operators given by a Laplace integral. For these we have only established

the existence theorem, and investigated the application to Carson's develop-

ment where not/(z), but f(z)/z, is given by a Laplace integral.

Next to the definition of generalized differentiation itself, the writer

wishes to call attention to the associated operator A [f](t), defined by

(- l)r/<'>(l/Az)
A [f](t) =   lim-lJ ■

ai—i-o r¡Axr+1
rtue->t

The existence of this limit, for the cases considered, serves as the basis of our

theory. It possesses the notable property of inverting the Laplace trans-

formation, and enjoys numerous formal relations which flow directly from

its definition. For f(D) of type zero, it can be expressed by a contour integral,

which is the Fourier integral with the vertical line contour replaced by two

half-lines running into the negative half of the z-plane. The exponential

factor of the integrand thus acquires a potency for convergence which should

be of considerable use in most practical applications, where the loss of

generality incurred by requiring analyticity in a sector of angle greater than

ir, as opposed to analyticity in a half-plane, is irrelevant, due to the presence

of but a finite number of singularities.

In order to bring this paper to a conclusion, many topics have been

excluded either because they involve an extension of our definition, or be-

cause they depend on the formulas flowing from our definition, rather than

on the definition itself. Among these omitted topics are an extension of our

definition to complex limits of differentiation, the application to Volterra's

functions of composition of the closed cycle group, and the derivation of the

Heaviside expansions.

* By thus breaking away from the classic assumption of analyticity in a half-plane, the restric-

tion on the modulus of/(z) is so greatly lightened (see footnote following proof of Theorem I) that

we are able to include all operators f(D) for which/(z) is an entire function of genus zero, as well as

all operators for which /(z) is algebraic. The half-plane assumption would exclude these classes, as

such, and would also hinder the theory by not permitting indiscriminate differentiation with respect

to the upper limit.

f This treatment of the extended Grünwald definition follows very closely Grünwald's develop-

ment of the original definition.
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1. The definition. Our definition of generalized differentiation grows

out of the expression of the rcth derivative of a function as the limit of its

wth difference quotient. For our purpose, this expression is best written in

the form

Dn<t>(x) =   lim
A*-»0

<t>(x) - tup(x - Ax) + [n(n - l)/2l]tf>(x - 2Ax)-h (- l)B<*»(x - nAx)

Axn

where Ax is the negative of the increment of x as ordinarily defined.   Since

the right hand member of this equation continues to have meaning when n

is not a positive integer, it can be used to define D"<p(x) for arbitrary n.

When n— — 1, the suggested definition becomes

D~l<i>(x) =   lim    [<*>(x)Ax + <¡>(x - Ax)Ax + <p(x - 2Ax)Ax +■••],
Ax-»+0

i.e., the limit of an infinite series. If, however, we arbitrarily terminate the

series at the (^+l)st term, where x0<x—/>Ax^x0+Ax, the result, at least

for <f>(x) continuous, will be the definite integral of <p(x) with finite lower

limit x0. Replacing the upper limit by X, we shall use the notation

.{D_1}^0(*) for the limit of the finite sum, {D-l}[*K<p(x) for the limit of

the infinite series.  Similarly for Dn, n arbitrary.*

To extend this definition still further, let us momentarily introduce the

operator Em, defined by the relation Em<p(x) =<p(x+m). The reader will

have seen the analogy between the above expression for Dn<p(x) and the bi-

nomial series expansion. Through the operator Em, this analogy becomes

formal, and we can write, apart from refinements,

/l - £-Ax\ n / A \"
Dn<t>(x) =  lim (-)<¡>(x) =  lim (-) 4>(x).

ai-»o \     Ax     / a*-»o \Ax/

This immediately suggests the desired definition of f(D)<j>(x), i.e.,

f(D)4>(x) =   lim /(A^(x)=   lim ¿Ç—-'\t'x)t
Ax-»0      \Ax/ àx—O      \      Ax       /

where/(l/Ax — E~àx/Ax) is to be expanded by Taylor's series, and formally

applied to <p(x). As in the case of D~x the limit of the infinite series will be

written {/(Z>)}í«</>(x). In the case of finite lower limit x0, the choice of

p through the inequalities x0<X—pAx^x0+Ax allows Ax to approach zero

independently of X—x0, except for sign,   p is then the largest integer less

* Up to this point the writer essentially retraces Grünwald's argument.
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than (X—x0)/Ax. We shall use the notation p= {(X—Xo)/àx). Though

otherwise arbitrary, A* must have the same sign as X—xo. In this paper

A* will approach zero positively, that is, X will be greater than x0. Our

completed definitions thus become

(1)     {/(Z>) }**(*) =   lim   {f(~)\   4>(x)=   lim   ifO—--^)\  *(*)
ax-,+0  (   \Ax/) „ a*->+o {    \     Ax      }) xo

.Km.     |/( —)çS(A0-—-4>(X - Ax)

(- l)»/«"

>  ,^+0w* .L   XA*/ 1!A*

+ ... +

(2)   {/(/?)}'   0(.t) = lim
-00 A*-»+0

^!A*

(¿) , 1
-</.(X - pAx)    ,
p _l

/(¿)*w- —■-*(*-**)+•••   .
1 Ax -I

The existence of the limits involved in these definitions is proved for

various classes of operators in subsequent sections of the paper. In certain

simple cases they can be evaluated directly. For example, consider f(D)

= log D, <p(x) = 1, and x0 finite.   Then by (1)

1"7

= - Tl + — +-logp] - log (pAx).

As A*^+0, p increases indefinitely, while pAx—*X—x0.    Furthermore, as

p—*<», the bracket has for limit y, the Eulerian constant.  We thus find

(3) {log(D)}fl= -7-logtY-*o).

Besides proving existence theorems, with their associated formulas, we

shall be concerned with the verification of the formal laws of generalized

differentiation for our definitions. Of these the most important is the law

of successive operations. This can be immediately verified for the finite

difference operators on which our generalized derivatives are based. As-

suming the necessary number of derivatives of /i and f2, we have
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{''(£)}>(£)}> - *(¿)[*(¿)*«

2 \Ax/
(-   DP/2(P)

l!Ax
<K* - ax) + • • • +

\Ax/

1 Va*/

l!Ax

+     •

k¿)4>(X - Ax)

+

p\Axp

(-,),-/,„-, (JL)

(/> - l^Ax""1

(#>(Z - />Ax)

0(X - />Ax)

p\Axp Hi)<j>(X - pAx)

-['0'(¿)>(x)

[>'(¿>'(¿)+4¿M¿)]
l!Ax

«(X - Ax)

+

+ (-D
[/l(¿)/2<?)(¿)+ÍT/l'(¿)/2<P"1)(¿)+ ' • +/l<P,(¿)/2(¿)]

J>!Ax*
• 0(X - pAx),

so that, by Leibnitz's theorem and our definition, we obtain

(4) {>•(£)}!.{'■(£)}> - H-hH-BY,^-
The character of definition (1) is more apparent in the following form:

(5)

{f(D)\x6(x) =       lim 2> [/](r, Ax)^(Z - rAx)Ax;
» Ax-»+U .

i=((*-*.)/A*)     r-°

(_„.;«„ (J.)
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(5) would lead directly to a definite integral if in place of A \f](r, Ax) we had

a function of rAx. The way in which this difficulty can be partly overcome

may be indicated by means of the operator Dn, » arbitrary. Using the no-

tation A \f(u) ] (r, Ax) when the form of / is specified, we have, in this case,

„r    ,/    ,  x      (-l)r«(«-l) ■■■(n-r+ 1)
A [un](r, Ax) =-

r\Axn+1

(-»)(-» + !) ■■■(-n + r-l)
(rAx)-"'1.

r\r—n—l

The Gaussian form of the gamma function gives

(-»)(- «+1) ■••(-» + *•-1)        i
hm-=-•
r-.» rlr-"-1 r(— »)

If at the same time Ax—>+0 in such a way that rAx—>t, t>0, it will follow

that A [«"] (r, Ax) will approach a function of t as limit. Symbolizing this

function by A [u"](t), we thus find

t-n-l

(6) A[u"](t) =   lim   A[un](r,Ax) =
*£i° r(- n)
rAx-*t

More generally we shall look for the existence of a limit function A [f](t)

corresponding to ^4 [/](»", Ax). When such a limit exists, then for Ax suffi-

ciently small, and rAx greater than some positive e, A [f](r, Ax) will be ap-

proximated by A \f](rAx); and so, (5) will lead in part to a definite integral.

Nevertheless, the restriction rAx>e leaves terms of (5) with small r un-

accounted for. These will usually require separate treatment, where, how-

ever, the A \f](t)'s of operators connected with f(D) will be used. The first

step in our theory is therefore the establishing of the existence of A \f](t)

for a sufficiently wide class of operators f(D). We pause a moment to con-

sider a certain limit criterion which will unify the last stages of many of our

proofs.

2. Limit criterion. If F(Ax) can be expressed as a sum G(Ax,v)+H(Ax,v),

v independent of Ax, such that

lim   G(Ax, v) = g(v), lim sup | H(Ax, v) | = h(v),   lim h(v) = 0,

then \im.Ax~+oF(Ax) exists, and is given by

(7) lim   F(Ax) =   lim g(v).

In fact the stated conditions show that
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limsupF(Ax) g g(v) + h(v),      lim inf F(Ax) = g(v) - h(v).
Aat-»+0 Ax->+0

As these upper and lower limits are independent of v, we find, by letting

v—>v0, and observing that h(v)—*0,

limsup.F(Ax)   = lim inf ,F(Ax)   =   lim g(v).
A*->+0 Az-»+0 +***

Since for any one v the values of g(v)-\-h(v) and g(v) — h(v) are finite, the

above inequalities yield the

Corollary. Under the given hypothesis limAI_+0F(Ax), and hence also

lim„„,0g(i'), is finite*

3. Existence of A [f](t) for f(D) of type zero. An operator f(D), corre-

sponding to a function of a complex variable/(z), will be said to be of type

zero when/(z) satisfies the following two conditions:

(a) f(z) is analytic in a sector of the z-plane of angle greater than ir bisected

by the positive direction of the axis of reals,

(b) for each real and positive k, however small, there corresponds a real and

positive K, such that

1/(2)1 èKe'M,

for every z in the analytic sector.

We shall designate the positive acute angle made by the sides of the

sector with the negative direction of the axis of reals by a.

Operators of finite order, defined later, which include all operators whose

f(z) is algebraic, are also of type zero. Other examples are eaDm, m<\, and

operators for which f(z) is an entire function of genus zero.

We shall now prove the fundamental

Theorem I. If f(D) is of type zero, A \f](r, Ax) approaches a finite limit

as Ax—»+0, rAx^>t, for every real and positive t. The resulting function of t,

A [/KO. is given by the formula

(8) ^l/J(0 =—- f  e*'f(z)dz,
¿Kl J C

where C is formed by two rays within the analytic sector and parallel to its edges,

with common end point on the axis of reals, and traversed so that, along it, the

imaginary part of z increases.

The proof is based on Cauchy's second integral formula. For Ax suffi-

ciently small, 1/Ax will be in the analytic sector posited by condition (a).

* Henceforth, existence will include finiteness.
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If C" is a simple contour about 1/Ax, traversed counterclockwise, and also

contained in this sector, then, by the formula in question, we shall have

\Ax/       liriJc"

f(z)dz

V       Ax)

and so, by the definition of A \f](r, Ax) given in (5),

f(z)dz
A [f](r, Ax)

27TÎ JC" (1 zAx) r+l

Assuming Ax sufficiently small, we can choose for C" the contour formed

by C", an arc of a circle, center the origin, radius k/Ax, k>\, joined toC,

the finite portion of C cut off by this circle. If C" is traversed in the same

direction as C", but C in the opposite direction, i.e., in the same direction

as C, we can write schematically

A[f](r,Ax) = -~f    +-^f.

Along C" we have |z|=¿/Ax.   Hence |l— zAx|=ß — 1, so that, by in-

equality (b), we find

Ç f(z)dz K-2irk    rei"Hr*x)-ir

I Je (1 - zAx)'+1        Ax(k - 1) L k - 1 J '

Choose k > 2, and then k so that eh'"/(k — 1) < 1. The right hand member of

the inequality will then approach zero as limit as Ax—*+0, rAx—H. TheC"

contribution can therefore be neglected.

Now break up C into Ci,m and C¡¡m, where Ci,m extends distances I and

m respectively along the two segments of C from their meeting point, while

Ci¡m consists of the rest of C. For I and m sufficiently large, R(z), the real

part of z, will be negative along Clitn, and we shall have

f       W      <k(
Jc>    (1 - zAx)r+I Jc

e"ui | dz

[1 - R(z)Ax]r+1

If we set
1 - R(z)Ax = e-w*x,

we observe that X stays positive and decreases monotonically as — R(z)Ax

increases. Now the largest value of — R(z)Ax along any one Ci¡m corresponds

to |z|=£/Ax. As Ax—>+0 this largest value approaches k cos a as limit.

Hence for all Ax's sufficiently small, and all corresponding Qm's, — R(z)Ax
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remains less than some fixed positive quantity.     The corresponding X's

therefore have a positive lower bound \0.   Since X^X0>0, we shall thereby

have
1 - R(z)Ax > e-*o»<*)A*}

and so

f(z)dz

U      (1-zAx)'Jc      (l-zAx)r+1 JC'

e«|z|+X0(r+l)Ax. fi(z)  I ¿g I .

Since R(z)/ \z |—> — cos a, as \z |—><» , if we choose «less than X0< cos a the last

integral will be less than

l,m

e~M | dz | ,

with fixed positive p., for / and m sufficiently large, and (r+l)Ax sufficiently

near /. The contour C;>m depends on Ax. If we replace it by C¡m, which con-

sists of C with Ci,m removed, and of which C»iW is a part, we observe that the

resulting integral converges, and so approaches zero as limit as I and m

increase indefinitely.  We therefore have

Jf(z)dz C C
—-     < K        e""1*1 | dz | ,   lim      I     e~»M I dz I =0.

v    (1 - zAx)r+1 h- l^"    Jc-
tn—»» i,m

Finally /(z)/(l —zAx)r+1 uniformly approaches euf(z) along C¡,m.    Hence

r        f(z)dz r
lim     I-= etzf(z)dz.

We can therefore apply our limit criterion,* and obtain

r      f(z)dz r C
lim-=   lim e"f(z)dz =        el'f(z)dz.

Ar+o   Jc, (\ - zAx)'+l      '—  Jclm Jc
rAx—»( v ' m—»oo

Since we saw that the integral along C" could be neglected, this establishes

both the existence of A \f](t), and the formula given for it.f

* This was stated for one independent variable A*. It can obviously be extended to any number

of independent variables, in this case two.

f If the analyticity condition imposed on /(z) be weakened to analyticity in the half-plane to

the right of some line R(z)=a, while within that half-plane the modulus of/(z) satisfies the far

stronger inequality ,  .

|/(*)|a^/|a|1+',*>0,

then essentially the same proof will yield the existence of 4[/](i), and its expression by means of a

Fourier integral. Furthermore, to anticipate the later developments, the argument leading to (48)

in §11 can be duplicated in this case, so that our methods would yield the classic solution of the

Laplace integral equation.
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By real-variable methods, it can be proved that if A [f] (t) exists for each

/ in a closed interval (tx, t2), then, without any further hypothesis on the

function /, or even on the form of A [f](r, Ax), the following consequences

hold:

(a) A [f] (t) is continuous in the closed interval (tx, k) ;

(b) for each positive e however small, there corresponds a positive r¡,

such that, for Ax<r¡,

| A [f](r, Ax) - A [f](rAx) | < e

for all r's for which rAx is in the interval (tx, k)*

From our definition we have, for x0<Xi<X,

{•Kir)} *(x) = {f{~xù} *{x) + ^A lf]{r'Ax)<t>(x ~rAx)Ax'

where p= {(X—x0)/Ax}, q= {(X—Xi)/Ax}. If we set X—rAx = x, then, as

r varies from q+i to p, x stays in the closed interval (x0, Xi), while rAx

stays in the interval (X—Xi, X—x0). Suppose then that <p(x) is continuous

in (x0, Xi), while A [f](t) exists in (X—Xi, X—x0). Then by (b), A [f](r, Ax)

can be replaced by A \J](rAx), i.e., by A [f](X—x), in the above sum. But

by (a), A [f](X — x) will be continuous in x in the interval (x0, Xi). The new

sum will therefore lead to a definite integral as Ax—>+0.  Hence

Theorem II. If A[f](t) exists in the interval (X—Xx, X—x0), where

Xo<Xx<X and if <p(x) is continuous in the interval (x0, Xi), then

(9) \f(D)] **(*) = {f(D)}U(x) +  fXlA[f](X- x)<p(x)dx,
J *,

provided either of the indicated operations exist.

When/(7>) is of type zero A [f](t) exists for all positive t's. If then <p(x)

is continuous in (x0, X), (9) will be valid with xt anywhere in this interval.

* The proof runs as follows: Choose any positive e. For each point t' of the interval (h, ti),

A [/](<') exists, and is defined as lim A [f](r, Ax) as As—>+0, rAx—>t'. Hence for each t' of 0i, ti) there

is a positive 7)'such that |.4[/](f,Ax) — 4[/](í') |< e/2 provided A* <V and rAx— t' \<v'- By letting

Az->-|-0 and rAx-*t we obtain \A[f](t)-A[/](/') |¿e/2 provided \t-t' <ij' and t is in (tu ti).

Hence A [/](/) is continuous at every point t' of (h, ti).

Consider now the open intervals {t'—r¡', t'+n') thus associated with the above pairs (í', r¡').

Every point of {h, ti) is in fact the midpoint of such an interval. Hence by the Heine-Borel theorem a

finite number of these intervals suffice to cover {h, ti). Each interval uniquely determines the corre-

sponding /' and ij'. Let r¡ be the smallest of the r¡"s of this finite set of intervals, and let Ax<-q. Any

rAx in (tlt ti) will be in one of these intervals. Since, for the (t', ij') of this interval, Ax < ijá'í' and

rA*-i'|<V, we will have \A[f]{r, Ax)- A ¡f](t') \< e/2 and | A (f](rAx) -A [/]«') |< e/2. Hence
A [f] (r, Ax) — A [f] (rAx) \ < e. That is, this inequality holds for every r and Ax for which Ax < ij and

rAx is in (/,, ti).
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The suggestion made at the end of §1 is thus verified. Before we see how to

deal with {f(D)}x<p(x), we shall consider (p(x) a polynomial.   In this case,

{f(D) }fo0(x) can be immediately evaluated.

4. Finite difference reduction formula; cp(x) a polynomial, unity. For

the formula about to be derived it is essential to distinguish between

A<p(x)/Ax,   which   in   this   paper   is   written   [cf>(x)— <p(x—Ax)]/Ax,   and

|A/Ax}*0(£). which, while the same as A<p(x)/Ax for x —x0>Ax, is but

<j>(x)/Ax for x-Xo^Ax.     While  (4)  would hold with   {A/Ax }x,<p(£)   for

|/2(A/Ax) }*<£(£), it does not hold with A<p(x)/Ax in place of {A/Ax }*</>(£).

Instead, we obtain by the same method

if (~)Y ^ = \^f(^r)Y 4>(x) - A [f(u) ](p, Ax)<¡>(x¿);
(.    \Ax/) x„   Ax lAx    \Ax/;i0

IX - x0)
P = {-\, x¿ = X - (p+l)Ax.*

V     Ax     J

It will be noticed that x0' does not vary with X as long as X changes by

multiples of Ax. Also x0—Ax<x0' áx0. If we replace/(m) by u~lf(u) and

rearrange its terms, this formula becomes

By induction, we are thus led to the fundamental formula

x Am4>(x)

m     «£)}„*w - {(£>~X£)},.:
Axm

A>(x0')
+   Y,A[u-^f(u)](p,Ax)

«-o Ax"

It will be referred to as the finite difference reduction formula.

If P(x) is a polynomial of degree n, we have

A"+lP(x)
--= 0.

Axn+1

Let then <f>(x) =P(x), w = «+l, in (10).  It becomes

A"P(x0')

{    \Ax/) x„ „_o

* The definition of {/(A/A*)} Xt<t>{x) only requires $(x) to be defined in the interval (xo, X),

whereas both members of this formula use values of x less than xa, when (X—x0)/Ax is not an integer.

We must therefore arbitrarily define <j>(x) for a suitable interval beyond *0 to render the formula

applicable. The validity of the formula, however, does not depend on the particular way in which

this prolongation is effected.



1930] GENERALIZED DIFFERENTIATION 735

If we now let Ax—>+0, it will follow that pAx—>X—x0, and x0'—>Xo. Hence

if 4[«-"-1/(»)](X-Xo) exists for p = 0, \, ■ ■ • , n, |/(7))}*P(x) will also

exist, and will be given by

(11) {f(D)\lP(x) =   J2A [m-"-Y(m)](X - xo)P^(xo).

For P(x) as 1, we can use « = 0, and so obtain

f(~)}   1-Ji[«-»/(«)](#, A*).

Hence, */^4 [m_1/(w)](X—x0) exw/s,  {/(T))}*,! exwis, and is given by

(12) {/(£)} *1 = ¿ [«-»/(«) ](X - xo).

It is easily verified that if f(D) is of type zero then D~"~1f(D) also is of

type zero. Hence the existence theorem for <j>(x) a polynomial is com-

pletely established for operators of type zero.

The relation (12) is of special interest and importance. Note that in

spite of the finite difference relation preceding it, we cannot conclude that

if {f(D)}*A exists, A [m_1/(m)](X—x0) also will exist; for in the former p

depends on Ax, while for the latter ^>Ax should vary independently of Ax.

5. Operators of finite order; existence theorems. In establishing exist-

ence theorems for {f(D)}x<(p(x), we shall find that the wider the class of

operators f(D) we consider, the greater the restrictions we have to impose

on <p(x).  Hence the following specialization of operators of type zero.

An operator f(D) will be said to be of finite order p, p zero or a positive

integer, when

(a) f(z) satisfies the analyticity condition for operators of type zero,

(b) there exists a positive e, and corresponding K, such that

| f(z) | g K | z | *-

for every z in the analytic sector for which \z \ >8, 8>0.

According to this definition, if an operator is of order p, it is also of any

order greater than p.

Dn, n arbitrary, is a typical example. All algebraic operators are of finite

order. It is evident that operators of finite order are also of type zero.

Hence §3 is immediately applicable.

We shall first derive an inequality for A \f](r, Ax) which is essential for

our existence proofs. With the notation of §3 we obtain by the new condi-

tion (b)

{
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C        f(z)dz ( k Y+1~' ,
-    < 2irK[-)        /(k - IY+1, k/Ax> S.

J e-(1 - zAxY+t \AxJ(l-zAx)r+l

For fixed Ax, and r ï;p, this expression approaches zero as limit as k increases

indefinitely, i.e., as the radius of C" is made to increase indefinitely. We can

therefore replace C" by C, the infinite contour of §3, and write, for r^p,

f(z)dz1    C     f(
A[f](r,Ax)=~ \—±

>c(l- zAx)r+l

Choose C so that its vertex is at z = l/[2(r+l)Ax], and use condition (b)

along it. This will be possible for (r+l)Ax not too large. Through the change

of variable f = z(r+l)Ax, we then obtain

K C       I T I '- I df
A[f](r,Ax)\ ú-[(r + 1)A*]-'-«-

2ir vC¡/2
1 -

r+1

H-l

where Ci/2 has its vertex at f = 1/2.  Since R(Ç) g 1/2 along Ci/2, we have

1 1

1
r+ 1 o-^r

Now we know that [l+x/(r + l)]r+1 is an increasing function of r, r^O,

both for positive x, and for negative x with |x | < 1. We therefore have along

Ci/2
1 1

*(f) Y+1

r+ 1/ ('-m
The integral along Ci/2, which depends only on r, is thus seen to be bounded

for r^p, so that we obtain

| A [f](r, Ax) | < L'[(r + l)Ax]->-1+i.

A like inequality is obtained for r<p by using for C" a circle center

1/Ax, radius 9/Ax, O<0<1. We thus arrive at the following result:

For all Ax's and r's with (r+l)Ax < a, where a is some fixed positive quantity,

we have the inequality

(13) | A [f](r, Ax) | < L[(r + ^A*]-'"^«.

Hence also, for t < a, we have

(14) | A [f](t) | g Lt-"-l+í.
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The simplest formula for  {f(D)\*,<p(x) results when f(D) is of   order

zero.  As at the end of §3, we shall write

\f(-T-)\  *(*) - \f(-~)\       *(*) +   ÍA[f](r,Ax)<j>(X - rAx)Ax;
{    \Ax/)Xa (    \Ax/)x-h r=g+l

q =  } h/Ax] .

In the same manner also, we find for fixed positive h,

P r*X—h

lim     J2   A [f](r, Ax)<p(X - rAx)Ax =   I       A [f](X - x)<j>(x)dx.
Ax-,+0  r=8+i J Xt

Now <p(x) is to be assumed continuous in (x0, X). Let M be the upper bound

of \<p(x) | in this interval. For h <a we can apply (13), with p = 0, and obtain

K£)L*<*
(A/Ax)

< LMJ2  [(r + ^AxJ-h-Ax.
r=0

By comparing the indicated sum with the integral of £~1+'d% between limits

0 and h+Ax or Ax and h+2Ax, according as 0<e<l, or cfel, we see that

h'
lim sup
Al->+0

= LM-
e

K£>L*w
Since Ae/e—>0, as h^>+0, we can apply the limit criterion, and obtain

Theorem III.  If f(D) is of order zero, and <f>(x) is continuous in (x0, X)»

then {f(D)}*t<p(x) exists, and is given by

{/(D)}f,*(*)   =   Km     I    • A [f](X - x)é(x)dx =    I     A [f](X - x)<t>(x)dx.*
*-+0    J x, J x,

* If (8) is introduced in (15), we obtain

It may interest the reader to note that this formula might have suggested itself in the following

formal manner.  Symbolic use of Cauchy's second integral formula gives

2irí J K z — D

;ial equation would sugf

{1(D) }f^(«) » - ¿Jjc[X e^-^^W^J/W^-
Reversing the sense in which "contour" K is traversed, and changing the order of integration leads

to the actual formula.

On the other hand, the linear differential equation would suggest

so that we would be led to
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It will be noticed that the last integral may be improper for x = X; but

of its convergence we are assured both by the limit criterion, and by the

direct application of (14). To illustrate (15), we may take/(Z>) =Dn, R(n) <0.

The operator is then of order zero. By (6) and (15), we thus get the standard

Riemann-Grünwald form

(16) {D»}l<t>(x) = —- f  (X- x)-»-H(x)dx, R(n) < 0.
r(-«) J x0

We shall give two existence proofs for operators of arbitrary finite order.

The first proof depends on the observation that if f(D) is of order p, then

D-rftD) is of order zero, and so comes under Theorem III. Inasmuch as

additional assumptions on <p(x) in a left neighborhood of x = X will be

required, we shall use Theorem II with Xi in this neighborhood.

Formula (10), with Xi in place of x0, and m=p, becomes

{>(£)}>> ■ {(-B'K-BY,
A'4>(x)

Ax"

ti A"<Kxi')
+   ZA[u-^f(u)](q,Ax)—--, q= {(X- Xi)/Ax   .

*=o Ax"

Let <p(x) possess a continuous pth derivative in an interval (k, X), X>k*

and assign to Xi a value within this interval. By the law of the mean, and

the continuity of 4>(,>>(x) in (k, X), it follows that, for sufficiently small Ax,

A'(b(x)
0W(x)

Ax"
< 5a x,     lim   5ax = 0,

Ax-»+0

for all x's in (xi, X).\ Hence if 0(p)(x) be substituted for Ap0(x)/Ax'' in the

above equation, the result will be changed in absolute value by no more than

8ÁXÍ\A[u-'f(u)](r,Ax)\Ax.

Since D-ff(D) is of order zero, the proof of Theorem III shows this sum to be

bounded, and hence the change in question to approach zero as limit as

Ax—>+0.   We then easily derive

* Here, as later, when a derivative is assumed to exist in a left neighborhood of X, the derivative

at X is to be but a left derivative.

t See de la Vallée Poussin, Cours d'Analyse, vol. 1, 1914, §109, for the case P= 1. By (1), §118,

this is directly extended to arbitrary p.
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Theorem IV. If f(D) is of order p, and if <f>(x) is continuous in (x0, X),

and possesses a continuous pth derivative in a left neighborhood of x = X, then

\f(D)} x,<p(x) exists; and, if Xi is within this neighborhood, is given by

{f(D))l4>(x) =  f A[u-"f(u)](X - xW*(x)dx

+  YA [«-"->/(«) ](X - xi)<t>^(xi) +   j   A [f](X - x)*(x)dx.

For illustration, again take Dn, with p — 1 á R(n) <p.  We obtain

{D«}?ê(x) =- f   (X - x)>-»-W>\x)dx
(18) nP~n)Jxl

fzX    (X - xi)"-" 1        p
+ £ =:-—T*w(xù +-r       (X - x)-»-i<t,(x)dx.*

^_o T(p - n+ 1) T(-n) J x„

For the second proof note that, except for successive operations, the upper

limit X plays the part of a constant. It can therefore appear as such in the

operand (p(x).   Now suppose that a continuous <p(x) satisfies the inequality

| <f>(x) | g N(X - x)'

in a left neighborhood of x = X. This, with (13), leads to the identical

inequalities that gave us Theorem III.  Hence (15) holds for such a <p(x).

Let then a continuous <p(x) possess a finite pth left derivative at x = X,

and hence also left derivatives of all lower orders. Then, as a result of a

first theorem in Taylor's expansion, we have with finite TV, in a left neighbor-

hood of x = X,
£} <bM(X)

| <b(x) - P(x) | < N(X - x)>,   P(x) = £ -^-(x - X)".
«-o       pi

If <p(x) is continuous in (x0, X), {f(D)}Xl[(p(x)—P(x)] will exist, as seen

above, and be given by (15). On the other hand, P(x) is but a polynomial in

x, so that \f(D))xP(x) exists, and could be evaluated by (11).   Hence

Theorem V. If f(D) is of order p, and if <p(x) is continuous in (x0, X),

and possesses a finite pth left derivative at x = X, then {f(D) }x,<p(x) exists, and

is given by

/'x r p_1 él")(x) n
A [f](X - x)   4>(x) -  D -!—~(x - Xy  dx

x0 !_ „-0 Pi J

p-1   (kWÍY)

+ {/(£) }f£^-f^ (*-*)*-
* This reduces to Grünwald's result if Xi = xt¡.
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Though this theorem requires less of <p(x) than Theorem IV, we shall

nevertheless find Theorem IV more useful in our development. To illustrate

(19), we shall fake the operator log D, whose order is one. By direct calcu-

lation we have. A [log u](l) = —i/t.  Hence, by (19) and (3), we get

, ,x Cx <t>(x) - <t>(x)
(20) {log D ] „*(*) = —-dx - [y + log (X - *„) ]<t>(X).

Jx„        X - x

It will be seen that this second proof uses the hypothesis that f(D) is of

finite order p only to enable us to assume the existence of A [m_,i/(m)](í),

for />0, p = 0, 1, • • • , p, and the validity of inequality (13). This suggests

that we define f(D) to be of extended order p if A [u~»f(u) ] (t) exists for / > 0,

p = 0, 1, • • • , p, and (13) is satisfied. The first proof also uses the fact that

D~"f(D) is of order zero. But it can be proved that if f(D) is of extended

order p, D-"f(D) is of extended order zero. Hence all of our existence the-

orems are valid for operators of extended finite order.

6. Existence theorems for operators of type zero. The crucial theorem

for operators of type zero is the following:

Theorem VI. If f(D) is of type zero, while <p(x) is analytic for Xi = x = X,

with the radius of convergence at xt greater than X—Xx, then {f(D)]Xi<p(x)

exists, and is given by the convergent series

(21) {f(D)fXl<t>(x)=A[u-1f(u)](X-Xi)<t>(xi)+Alu-if(u)](X-x1)<l>'(xi)+ ■ ■ ■.

As a consequence of this theorem, if <p(x) is continuous in (x0, X), but

analytic in some left neighborhood of X, then by choosing Xi in this neighbor-

hood, with X—Xi less than half of the radius of convergence of <p(x) at X,

both (9) and (21) become applicable, and so give

Theorem VII. If f(D) is of type zero, while <p(x) is continuous in (x0, X),

and analytic in a left neighborhood of x = X, then \f(D) }Xo<p(x) exists, and, if

%x is chosen as indicated above, is given by

(22) {f(D)]XXc<t>(x)= T,A[u->-1f(u)](X-xx)4>^(xx)+  f A [f](X -x)<t>(x)dx.
M-0 J x„

It may be noted that with 1 for/(Z>), formula (21) reduces to the Taylor

expansion of <j>(x) for x = xi. More generally, (21) is the result of operating

on this Taylor expansion with {f(D)]Xi, term by term.

Our proof of Theorem VI is an extension of the first existence proof for

operators of finite order. As in that proof, we use the finite difference re-

duction formula, with limits Xi, X, viz.
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Am<t>(x)

{'(£)}>"{(£)"<£)} X!    Ax'

tv1 A"<j>(xi)
+   I> [M-"-y(«) ](?, A*)-

M-0 Ax"

On the other hand, we shall let m vary with Ax, in fact equal {e/Ax}, with

fixed and positive e.   Our proof will require the following condition on e:

I —(X - xi)
0   <  €   < -,

2

where / is between X—Xi and the radius of convergence of <p(x) at Xi. Note

that the left hand member of the reduction formula uses values of x only in

the interval (xi, X), whereas in the right hand member the values spread

over the interval (xi — mAx, X). Since mAx<e<l, all of these x's fall in the

interval of convergence of the Taylor expansion of <j>(x) at %i\ and so this

Taylor expansion may be used to define <p(x) for x<Xi for the purpose of

our proof.

This proof consists essentially in establishing the following :

*K A"<p(xi')
(a) For fixed N,    lim      22A[u-"-1f(u)](q,Ax)-

Ax-»+0      ,,„0 Ax"

=    f^A [u->-lf(u) ](X -  Xi)4>M(xi) .

. {( A \— / A \) * Am4>(x)
(b) With«=    e/A*  ,    lim   U~)    f( — )\    —^- = 0.

AX-+0  \\Ax/       XAx/Jx,     Axm

,      , t;1 A"<>(xi')
(c) With m = {«/Ax}, lim sup ^[«*"'_1/(«)](?,A*)-

Ax->+0    p^tf Ax"

g h(N);    lim h(N) = 0.
if-. 00

Since (b) allows us to neglect its term of the reduction formula, (a) and (c)

together give us Theorem VI by means of the limit criterion.

(a) This is immediate.

(b) Formula (4) allows us to write

U A \~m   /A \\x Am<¡>(x)       j   / A \) x   U A \-»Y »

\\Ax)       \Ax)fXi    Axm      ~\   VAx/Jx, l\A£/    J*,    A|«

By the law of the mean we have

A'"<M£)   _
A£ = Ax.
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A"0(£)

A£m
= <¿(m>(¿ - BmAx); 0 < 6 < 1.

The Taylor expansion of 4>(x) at Xi enables us to define the function of a

complex variable <p(z). Let M be the upper bound of the modulus of <j>(z)

on, and hence also within, the circle center Xi, radius I. The smallest distance

from % — dmAx to this circle is I— |£ —0mAx—Xi|, which certainly exceeds

I — e — (£—Xi) for all £'s in (xi, X). By applying the standard inequality of

complex variable theory to |0(m)(£ —0mAx) |, we thus obtain

|A»*(£)

A£"
<

Mm\

ll-e-(t-xx)]'

so that we can write

{(*" n:Am<K£)

Ap

r(*-«,)/Ax)

<       £   ^[M-m](í,Ax)—

•-0 [í

Mm I

m(m + 1) • • • (m + s — 1)

e — (x — sAx — xi)]'

(e + iAx)m_1

-Ax.

Ax"1-1 <

It is easily seen that

A \u~m](s, Ax) =
s\ (m-l)l

Now the inequalities imposed on e make (e+sAx)/[l — e — (x — sAx — Xi)]

an increasing function of sAx. Since sAx<x — xi, we thereby obtain, on re-

placing iAx by x—xx, the inequality

e + sAx

I — e — (x — sAx — Xx)

and so find in succession

e + (x — xi)
<-)

/- «

mi:Am4>(0
<

M(x — Xx)       \"e + (x— Xx)

{'(=ren
Ap

x Am(/»(¿)

xi    A£"   ]

p + (x- xi)~\m

L       l-e       J  '

<
jf (jf - xi)     re + (x - xx)re + (X - Xx)lm  «

H1,- T:u[/](r,Ax)iAx.
L Í — € J     r-0

* This, as also the use of the law of the mean in §5, requires <j>(x) to be a real function of the real

variable x. If <t>(x) is a complex function of a real variable, its real and imaginary parts separately

will satisfy the assumption of existence and continuity of derivatives or of analyticity stated for

<t>(x) so that the demonstrations given are valid for these parts. Combining the two results thus

obtained therefore yields the same result for the complex <t>{x).
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If 8 is a real fixed quantity in the analytic sector of f(z), we can choose for

the C" of §3 a circle, center 1/Ax, radius 1/Ax —5, and so, through the

corresponding contour integral and condition (b) of §3, obtain

KgtWIAx-S)

\A[f](r,Ax)\< •
(1 — óAx)r

]C=o |^4 [f](r, Ax) |Ax is then less than e2*1** times the sum of a geometric

progression which is easily seen to have a finite Kmit as Ax—>+0. The

essential factor is thus e2'IAx. Now the inequalities imposed on e can be re-

written
n      e + (X - xx)
0 <- < 1.

/- e

Hence, by choosing k sufficiently small, we obtain

-e + (X - XxY
lim   m

A*-»+0 L^^T— {h}-
thereby establishing (b).

(c) As in part (b), we obtain

\A»<b(x{)

Ax"

On the other hand

A[u-"-y(u)](q,Ax) =

Mp\

(I - e)"

i   r     z-'-yw
— I    -dz
iriJw (1  — zAx)5+1

where W encloses 1/Ax, but excludes the origin. The contour W will consist

of Wx, that part of the C" of §3 for which \z \ >R, R < 1/Ax, joined to W2, the

arc of the circle center the origin, radius R, cut off by C", and excluding,

with Wx, the origin. Such a contour will be valid when R exceeds the distance

of the vertex of C from the origin.  We have

I1!"-| 2ir J w, (

-„-l f(z)
-dz < K-

R-"e'R

(1 - RAx)"+1,(l - zAx)"+1

Now R~"/(\ — RAx)'l+1 has a minimum with respect to R for

R =-5-
(q + l)Ax + pAx

This value of R is less than 1/Ax, and exceeds p/[(X—*i) + e], so that, for

sufficiently large p, it will give a valid contour.  With it we have
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R-Ke*R l(q+ l)Ax + MAx]"

(1 - i?Ax)'+1

and, as p<m, we obtain

z-^f(z)

0«e/[(«+l)Ax-hiA ■i^TT-r

I 2tt •/ w2
-dz < K[(X - xi) + tYe^^-^p-^e".

,(1 - zAx)«+1

For Wi we have \z \ >R. Since Wi is part of C", we easily find that

1   r     z-"-y(2

[2x^^,(1 — zAx05+1
-dz <

[(X - xi) + e]"+!   1

,,K+1 2tt Jc<»     1 -

/o)
zAx I *+1

dz\

Now our discussion of A [f](r, Ax) in §3 proves that this integral has a finite

limit as Ax—>+0.   Symbolizing the product of 1/(2tt) and this limit by

I \A \f](X—Xi) | |, we are thus led to the following form for the h(N) of the

statement of this part of the proof, viz.,

h(N)
„-at   IL       / - a       J p"e-")

-     {|-(X - Xi) + e-|"+i   M! 1
+ Jf(/-e)|M[/](X-Xi)

Recalling that we have 0< [(X—Xi) + e]/(¿ —e)<l, we see that the second

series converges. By choosing k sufficiently small to have

(X - Xi) + e
-í

I- e

¡HX-xO < i

the convergence of the first series is assured. As a consequence of their

convergence, these series approach zero as limit as N increases indefinitely.

The same is therefore true of h(N). (c) has thus been proved, and with it

Theorem VI.

We turn now to the formal properties mentioned in the introduction.

7. Differentiation with respect to the upper limit. We can obtain the

derivative of A [f] (l) under a general hypothesis. If A [f(u) ] (t) and A [uf(u) ] (t)

exist for 0</i^i</2,*then the terms of the relation

{Df(D)Ùl = {Df(D)}°_tl + J  hA[uf(u)](-m

* The relation given below shows that if A[uf(u)](t) exists in a neighborhood, and A\f(u)](f)

exists for one I in that neighborhood, it exists for every t therein.
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obtained from Theorem II, exist, since by (12) this relation becomes

A [f(u) ](t)=A [f(u) ](ti) +   f A [«/(«) ](„)d,.

By keeping h constant, and differentiating with respect to t, we get

Theorem VIII. 7/^4 \f(u)](t) and A [m/(m)](¿) exist in a certain neighbor-

hood of t, then (d/dt) A [/(«)] (t) exists, and is given by

(23) -A[f(u)](t)=A[uf(u)](t).
at

By the use of (9), we immediately obtain the

Corollary. If A [m_1/(m) ](X—x0) and A [f(u)](X — x0) exist in a certain

neighborhood of X, then (d/dX) {f(D)} Xll exists, and is given by

(24) -^~{f(D)}ll= {Df(D)\'.l.
aX

In extending this corollary to <p(x) as operand, it is desirable to replace

the X left neighborhood of our existence theorems by a complete neighbor-

hood, so that d/dX can stand for the derivative as ordinarily used. If, how-

ever, we retain the left neighborhood, then the following still remains valid,

provided d/dX is understood to mean left derivative, an observation that

is essential to most of our applications of these formulas.

For f(D) either of finite order, or of type zero, we have, as a result of (23),

d

dX
f  A[f(u)](X - x)<t>(x)dx =   f ',4[m/(w)](X - x)4>(x)dx,

since the continuity of A [uf(u)](X—x), for x0 = x^Xi, and a neighborhood

of X, permits differentiation under the integral sign. Hence, by (9), we shall

have (d/dX) {f(D)}*<t>(x) = {Df(D) ]xXt<p(x), provided we first prove this re-

lation for lower limit Xi. We shall choose Xi, so that the special expansions

hold.

First let Df(D) be of order zero. f(D) is then also of order zero, so that

we can use (15), and write

x CIh
{f(D)} Xi<t>(x) =   lim A [/(m) ](X - x)çb(x)dc

A-,+0  J ,.

• X-h

-»+0

By Leibnitz's rule we have
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d   rx~h
- I       A [/(«) ](X - x)<p(x)dx = A [f(u) ](h)<t>(X - h)
dXJx> CX-H

+   I       .4 [«/(«) ](X - x)4>(x)dx.

Furthermore, by (14), we have

| A [uf(u) ](X - x) | g ¿(X - x)-1+«,    | A [/(«) ](A) | ^ L'h'*.

These inequalities show that the result of the last differentiation uniformly

approaches fXtA[uf(u)](X—x)<j>(x)dx as limit in a neighborhood of X, as

h—>+0. Hence by a well known criterion of differentiation,! we have, as

desired,

—-if(D)}XXi<t>(x) =   f A[uf(u)](X- x)<p(x)dx.
dX J x,

If now Df(D) is of order p, we can use the first existence theorem for operators

of finite order with f(D) as of order p, and write

{f(D)}Xx¡<b(x) = {D-'f(D))Xx^(x) +  I> [«"'-'/(«O](X - xi)^(xi).
,1-0

Since D-D~"f(D) is of order zero, we can use the special case just proved,

along with (23), in differentiating both members of this equation, thereby

obtaining on the right the expansion of \Df(D) }Xl4>(x).  Hence

Theorem IX. If Df(D) is of order p, and if <f>(x) is continuous in (x0, X),

and has a continuous pth derivative in a neighborhood of X, then

(25) 4-{f(D)}XMx) = {Df(D) )XxMx).
dX

Corollary. // Dnf(D) is of order p, and if <p(x) is continuous in (x0, X),

and has a continuous pth derivative in a neighborhood of X, then

(26) -£- {/CD)} ' *(*) = {D»f(D) }* 0(x).
dX"

Ilf(D) is replaced by D-"f(D), and n by p, the hypothesis of this corollary,

restricted to a left neighborhood of X, reduces to the hypothesis of Theorem

IV.   Under this hypothesis, (26) therefore reduces to

* The first because p=0 for «/(«); the second because the /> of /(«) may be taken to be — 1.

Though p, as defined in §5, is either zero or a positive integer, it Can be assigned a negative value,

as is convenient here, with (14) remaining valid, provided a positive e can still be chosen.

t Goursat, Cours d'Analyse, vol. 1, 1910, p. 74.
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(27) {/(/?)} **(*) = ■— |   A [«-'/(«) ](X - x)0(x)ax.

Formula (27) is a direct extension of Riemann's form for Dn for R(n) >0.

The extension of Theorem IX to operators of type zero offers no difficulty.

We first observe that the result of differentiating series (21) term by term

is the expansion of {Df(D)]Xl<p(x). Hence it is only necessary to prove the

resulting series uniformly convergent in a neighborhood of X to obtain the

desired result. Since Df(D) is also of type zero, no loss of generality ensues

if we prove the series for {f(D)]x¡<p(x) uniformly convergent. Turning to the

discussion of (c) §6, we observe that the single series in which h(N) can be

written is a majorant for the corresponding part of the series for {f(D) }x,<p(x).

Now the discussion of §3 shows that we can write

I I A [f](X - xx) | | = ^ /Vw<*-«> | f(z) \\dz\.

This integral is continuous in X, and hence bounded for the neighborhood of

X in question. On the other hand" through the choice of k made in (c) §6,

we shall have, for a sufficiently small neighborhood of X,

(X - xi) + e     „
0 <-*■/<*-*> < X < 1.

I - e

As a result, the terms of {f(D)}x¡<p(x) will be less in absolute value than

those of a convergent series of positive constants, and so the series is uni-

formly convergent.   We thus have

Theorem X. Iff(D) is of type zero, and <p(x) satisfies the hypothesis of The-

orem VII, extended to a complete neighborhood of X, then (d/dX) {f(D) }x,<j>(x)

exists, and is given by (25).

8. The law of successive operations. In the present section we shall

consider certain conditions under which the relation

(28) {fi(D) ]l{f2(D)} :.0({) = {fi(D)f.(D) }**(*)

is valid. Inasmuch as {f2(D) }*„</>(£), which serves as operand ioxfx(D), may

be discontinuous at x = x0, we shall introduce the following extension of

our fundamental definition. If <p(x) is discontinuous for x = x0, while

\f(D) }Xt+h<p(x) exists for sufficiently small h, then {f(D) }x,<f>(x) is to be de-

fined by

(29) {f(D)}XMx)=  lim   {/(£)}*+A<Kx)
A->+ 0
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provided the limit in question exists. Under the hypothesis of Theorem II,

changed to allow for a discontinuity of <p(x) for x = x0, the existence of this

limit is equivalent to the convergence of the improper integral thus occurring

in formula (9). This convergence is amply assured if (p(x) satisfies in a right

neighborhood of x0 the inequality

(30) | <b(x) | g M(x - Xo)-1+", v > 0.

It will be convenient to say that <p(x) then has M(x—Xo)-1"1"' as majorant in

the neighborhood. With (30) to replace continuity of <p(x) at x=x0, Theorem

II, with formula (9), continues to hold. Our existence theorems therefore go

over, as do also the results of the preceding section.*

Consider, however, the special case f2(D) =Dn, n other than zerb, or a

positive integer.   We have, by (12) and (6),

{Dn}XxA = A[un-l](x - xo) = (x - x0)-"/r(- n + 1).

This is discontinuous for x = x0 when R(n)>0, so that, without the above

extension of our definition, (28) could only hold for R(n) <0. With this ex-

tension, we can have R(n) < 1, since {L>}£,1 then satisfies (30). On the other

hand, for R(n) >1, letfi(D) =D~K  We have

,        a     ,      ,. Cx      (x — Xo)~n

J x„+h r(- n + 1)

which diverges as A—>+0. The left hand member of (28) therefore fails to

exist in this case.

Volterra has encountered the same difficulty in the related theory of

functions of composition; but his solution appears to the writer to be but

a verbal evasion, f Among other possibilities, the difficulty might be removed

by a study of the commonly neglected arbitrary series that Riemann adds

to the definite integral in his formula for Dn. In the absence of a definitive

solution, the writer leaves the breach open to view.J   This possible failure

* The differentiation of an improper integral under the integral sign that is required here is

easily justified by the criterion of differentiation referred to in §7.

t V. Volterra, Functions of composition, The Rice Institute Pamphlet, vol. 7 (1920), p. 202.

% This difficulty does not appear in the theory for infinite lower limit; but the validity of our

definition for finite lower limit is thereby rendered questionable. It is to be noted, however, that

this failure occurs in the first place for the commonly accepted Riemann-Grimwald form for .D".

Furthermore, in all other respects the theory for finite lower limit is satisfactory; and if not for its

own value, it would still be required as a foundation for the theory for infinite lower limit. Finally,

in the various tentative modifications of the definition considered by the writer, the present theory

remains the indispensable basis for the extension.
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of (28), because of the non-existence of the second of the two successive

operations, forces us to restrict f2 (D) to finite orders zero or one, the latter

only made possible by the extension of definition just given. Because of this

restriction of f2(D), we shall only consider fx(D)'s of finite order.

Our first consideration is to find conditions on (p(x) which will insure the

existence of the left hand member of (28). For this purpose /i(7>) may be

taken of order zero, the extension to arbitrary finite order being easily

made. We shall then want \f2(D)} «„<£(£) to exist and be continuous for

x0<x^X, and to satisfy in a right neighborhood of x0 an inequality of

type (30).
First let f2(D) be of order zero. Then, to insure the existence of

\f2(D)}Z„4>(£), we shall want #(£) to be continuous for x0<£^X, and to

have M(i-—x0)~1+v, v>0, as majorant in a right neighborhood of x0. The

same conditions turn out to be sufficient to yield the remaining require-

ments for {f2(D)]X0<j>(£). In fact, note that, due to its continuity, </>(£) will

have M'(£—x0)-1+' as majorant over the whole interval (x0, X). By applying

(15), and using Lt~1+t as majorant for ^4[/2](/), in accordance with (14),

we easily establish the continuity of {f2(D)]xX(¡<p(C). Furthermore, by the

substitution of majorants, and reduction to the first Eulerian integral, (15)

yields

I {/t(ö)}*.«(Ö I = LM'B(e, V)(x - *o)-1+«+',

which is of type (30).
When f2(D) is of order one, the use of the first existence theorem for

operators of finite order requires <p(£) to possess a continuous first derivative

for x0<£i£X, since x must vary from x0 to X. This time, #'(£) is assumed to

have M(£—Xo)~2+v, v>0, as majorant. Since no loss of generality ensues

if 77 is assumed less than one, </>(£) will then have M'(£—x0)_1+' as majorant.

By applying (17) with x—Xi = (x—x0)/2, i.e. by writing

{MD)} *.*(*) =   (  A [«-V(«) K* - Ö*'(Ö# + A [M-y2(«) ](x - xx)<p(xx)
J XI

+ f ^[/,(«)](*-Ö*(Öd£,

and using the majorants Lt~2+l and L't~1+t for A [f2](t) and 4 [u~lfi(u)\(t)

respectively, as given by (14), in conjunction with the above majorants

for 4>'(Ç) and #(£), we establish the stated requirements for {f2(D)}x <p(£),

under the added condition e + rj >1.

The desired conditions are therefore the following:
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(a) for f2(D)   of order  zero:   <p(x) is continuous for x0<x^X, with

M(x—x0)~1+',.i?>0, as majorant;

(b) ioxf2(D) of order one : <p'(x) exists and is continuous for x0 <x ^ X, with

M(x—Xo)-2"1"' as majorant, where r;>0, and €+7j>l.

We proceed now to establish (28) for/i(Z>) of order zero under the above

conditions on <p(x).   The following preliminary result is fundamental.

As in the derivation of (4) §1, we find

(31) A lfi(u)f2(u) ](p, Ax) =   Y,A [fi(u) ](r, Ax)A [f2(u) }(p - r, Ax)Ax.
r=0

If we let p = {(X—x0)/Ax}, and have Ax—>+0, then, by a slight modification

of the method used in establishing (15), we obtain

(32) A [fi(u)f2(u) ](X -xo)=   f A [fi(u) ](X - x)A [/,(«) ](x - xo)dx*
J X,

provided fi(D) and f2(D) are both of order zero.  By (15) this becomes

(33) \fi(D)}XXtA [f2(u) ](x -Xo)=A [fi(u)f2(u) ](X - x0).

Let then/i(D) and/2(Z>) first both be of order zero, with <p(x) satisfying

condition (a) given above.  We can in this case apply (15), and write

{fi(D)}Xx,{f2(D)}l<t>(8 =   f   A[fi(u)](X - x)   rXA[f2(u)](x-t)<t>(S;)dZdx.
J x„ J x0

The improper double integral corresponding to this iterated integral exists,

since the latter, and hence the former, is absolutely convergent.f Con-

sequently the order of integration can be changed to give

{MD)}* \h(D) } :„</>(£) = j      J  A [fi(u) ](X - x)A \f2(u) ](x - &dx\(&dí.

By (32) and (15) this reduces to the desired relation (28).

Now \etfi(D) be of order zero, f2(D) of order one, with <f>(x) satisfying

condition (b). Let Xi be chosen between x0 and X. We have, by Theorem IV,

ifi(D)}l{MD)}".M& - {MD)}Xai{D-xMD)}U'(i)
+ <Kxi) {MD)}XxA [u~xM«) }(x - xi).

* This formula is of special interest in connection with Volterra's functions of composition of

the closed cycle group. (See V. Volterra, loc. cit., pp. 181-251.) If A [fi(u) ](X— x) is written gi(JC— *),

and A{ji{u)\{x—x0), gi(x—xt>), then (32) shows A [fi(u)fi(u)](X—x0) to be Volterra's |i|2, so that

this symbolic product of the j's corresponds to the actual product of the related/'s.

t See de la Vallée Poussin, Cours d'Analyse, vol. 2, 1925, pp. 19-22.
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Since D~if2(D) is of order zero, (28) can be applied to the first term, and (33)

to the second term, of the right hand member to give

\h(D)]XxAh(D)} :,*({) = [D-iMD)ft(D)} XXl4>'(x)+A [ur^(u)fM](X-x^{*x)

= \fx(D)f2(D)}XXi4>(x).

(29) then shows that to demonstrate (28) in this case, we need but establish

the relation

lim  {/,(!>)} 1 {/,(D)}:,«({)= {MD)}X,{MD)}lM).
*i->*0

Now we have directly

{/itf»}* {/.(£)}"¿(Ö - [MD))Xmi{MD)}U(&

=  f XA \fx(u)](X-x)[{f2(D)} ;¿({)]dx

+ {HD)} x, [ / 'a [/•,(«) ](* - Ö0(Ödf].

The first term of the second member of this equation is immediately seen

to approach zero as limit as Xi—>x0. As for the second term, return to the

discussion of the conditions imposed on <j>(x). We can assume without loss

of generality the inequalities 0<é<1,0<t;<1. Since e+r¡> 1 we can choose

a positive X such that \<e+í¡ — 1. We therefore also have X<€. Then in

connection with the integral appearing in the second term, we have for the

corresponding majorants

f   (x - f)-2+<(£ - Xo)-1+'¿£ < (x - xi)-!+x f \xx - f)-l+'-x(£ - xo)-1+'d{
J x„ J X,

= (x - Xi^+Xxi - «o)*-*-1-*^« - X, i|).

This second term will therefore be less in absolute value than

M"(X - XxY(xx - Xo)«+»-1-x.

Since e+7? —1—X>0, this term also approaches zero as limit as Xi—»x0. The

desired relation is thus established, and with it, (28).

The extension to /i(7>) of arbitrary finite order pi, with f2(D) of order

zero or one, is now easily made. D~'ifx(D) will be of order zero, so that,

under the above conditions on <p(x),

\D->ii(D)\Xa{h(D)\xm = {D-"HD)HD)]*¿(x).
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We have observed that the results of §7 remain valid under (29) and (30).

Note also that the derivative appearing in Theorem IX and Corollary I

is continuous in a left neighborhood of x = X. Suppose then that Dpif2(D)

is of order p, and that <p(x) possesses a continuous pth derivative in a left

neighborhood of x = X. Then {f2(D) }*„#(£) will possess a continuous pith

derivative in a left neighborhood of x = X. Now Z>i • D~"ifi(D) is of order

pi; Z>i• D~"ifi(D)MD) is of order not greater than p. Hence we can operate

on both sides of the above equation by d^/dX^ in accordance with thé

corollary of Theorem IX, and by (26) obtain (28).

These results can be stated as

Theorem XI. If fi(D) and f2(D) are of orders pi and p2 respectively, with

p2 equal to zero or one, while D"if2(D) is of order p; and if <¡>(x) has a continuous

pth derivative in a left neighborhood of x = X, a continuous p2th derivative for

x0<x^X, while for this interval \<p(■''^)(x)\^M(x—Xo)~l'^~l+,|, where r¡ is

positive and such that D_rif2(D) is of order zero* then (28) is valid.

The restriction of f2(D) to order zero or one was necessary in order that

the result should apply to <p(x) = 1, the simplest case. However, by requiring

<p(x) and a sufficient number of its derivatives to vanish for x = x0, the order

oif2(D) can be arbitrarily large. In fact under the specific conditions stated

below, formula (17) gives

{/«(£) K.*(Ö = {D-»+1MD)\:,4><*-»(l;).

As D~',2+1f2(D) will then be of order one, the theorem applies.   Hence the

Corollary. The relation (28) holds for p2>l, provided the corresponding

conditions of the theorem are replaced by the following : </>('2~2) (x) exists, and

is continuous, for x0^x^X, with $(">(x0) =0,for p = 0, 1, ■ • ■ , p2 —2; 0(p2)(x)

exists, and is continuous, for x0<x^X, with |0(P2)(x) | ̂ M(x—Xo)~2+'1, where

r¡ is positive, and such that D~if2(D) is of order p2 — 1.

The reader can apply these results to more than two successive operations,

and to the commutativity of the operators.

When either of the/'s is a polynomial, no restriction of the order oif2(D)

is needed.  In fact, if P(d/dx) is a polynomial in d/dx we obtain, by (26),

(34) P (—\{f(D)}Xx,<b(x) = {P(D)f(D)}XXo<b(x),

under the condition that, iiP(D)f(D) is of order p, <p(x) satisfies the hypoth-

esis of Theorem IX.  On the other hand, through (17), we get

* This is another way of stating the condition e+r¡>í used in the proof.
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(35) {f(D)} * P (£\ <t>(x) = {P(D)f(D) ] X,<t>(x)

-  ¿4 [m"-"-1/(«)](X - xo)P^(xo),
0-0

where

P(D) =   ¿a,D»-',  P,(xo) =  Y.a^-'Kxo).
p-0 r—0

For (35), 0(x) is to possess a continuous »th derivative in (x0, X), and a

continuous pth derivative in a left neighborhood of X, where p is the order

of P(D)f(D). Formulas (34) and (35) can easily be extended to the case

where f(D) is of type zero. They probably also admit of extension to the

case where P(D) is not a polynomial, but of type zero over the plane. (See

§14.) Though the disagreement between (35) and (28) was to be expected

as a result of the finite difference reduction formula, it may suggest a solution

of the difficulty discussed above.

9. Leibnitz's theorem generalized. The operatorsfn(D),n = l, 2, 3, • - • ,

are intimately associated with the generalization of Leibnitz's Theorem for

repeated differentiation of a product of two functions. A simple relation

between A [f(n) (u) ] (t) and A \f(u) ] (t) follows directly from our definition.

We have

(- l)'/0-+1>(l/Ax)
A [f'(u) ](r, Ax) =-   ,       " = - (r + l)AxA [/(m) ](r + 1, Ax).

r!Axr+1

Hence, for t>0, A[f'(u)](t) and A [f(u)](t) coexist, and satisfy the relation

(36) A[f'(u)](t) = -tA[f(u)\(t).*

By induction, we obtain

(37) A[f^(u)](t) = (-tYA[f(u)](t).

It is easily proved by the use of Cauchy's integral formula with circular

contour for/(n)(z), and the corresponding conditions on f(z), that, if f(z)

is of type zero over a certain sector, /(n) (z) is also of type zero over any sector

interior to the sector of f(z), and of the same angle. Likewise it can be

shown that if/(z) is of finite order p,/(n)(z) is of order p—», or zero (according

as p>», or ;£»), over any sector interior to that of f(z), and of angle less

than that of the sector of f(z). However, the finite difference relation given

above immediately shows that ii f(D) is of generalized order p,f'(D) is of

* Comparison of this formula with (23) suggests a duality which is strikingly borne out, under

special hypotheses, in a study of A [f](t) for complex t, coupled with the extension to type one sug-

gested in §17.
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generalized order p —1 (or zero if p = 0), with a corresponding extension to

fin)(D). A more complete statement is that Dnßn)(D) is of the same order or

generalized order as/(Z)).

Turning now to the theorem desired, we shall first prove the special case

(38) {/(£>)} *x<p(x) = X {f(D)} **(*) + {MD)} XMx),

where <p(x) satisfies the conditions associated in our theorems with the

existence of {f(D)} *0<£(x).   We have, by definition,

(    / A\)X l(X-xoWAx) (_   iWt»(i/Ax)
{/(-—H     x<¡>{x) =       £      i->]    w     '(X - rAx)4>(X - rAx)
K   \Ax/) x0 r_o r!Axr

-x{/(^)}>)+{/,(^)}r*(*>

-**{-?-f'(-z-)\ *(*)■
KAx    \Ax/) x0

Since Df'(D) is of the same type, or finite order, as f(D), {Df'(D)}Xo<p(x)

will exist, so that the last term vanishes with Ax. Hence (38).

We can rewrite (38) in the form

{/(£>)}'(* - x)<Kx) = {f'(D)}xMx),

and obtain, by induction,

(39) {f(D)}* (* - X)"<t>(x) m {/<»>(£)}xMx).

If then P(x) is a polynomial of degree m, we can expand it in powers of

(x—X), and obtain, by (39), the terminating Leibnitz expansion

X X    ' P'(X) X
{f(D) ) XtP(x)4>(x) = P(X) {/(£>)} x0<p(x) + -j^U'0) I ..*(*)

i>{m)(X) x
+ ••• + —^{/(m)(£>)U<K*).

ml

This method will now be extended to {f(D)}xJ'(x)<p(x).

We shall assume vZ'(x) to be analytic in the closed interval (x0, X) with

the radius of convergence of its Taylor expansion at x = X greater than

(X—x0). Then, for this interval, we have

f'(X) t"(X)
f(x) = ifr(X) + ^(x - X) +-~(* - X)2 + • • • .
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When/(7)) is of finite order p,f{i')(D) is of order zero. Writing the remainder

after p terms of the ^(x) expansion (x—X)'x(#) we have, by (39),

{/(£)}!.(* - X)>x(x)0(x) = {f"KD)]X,x(x)<p(x).

Since/(í0 (D) is of order zero, the integral formula (15) is applicable. Further-

more, as the series for x0*0 is uniformly convergent over (x0, X), while the

integral for {/^(T)) }x„<p(x) is absolutely convergent, we can integrate term

by term. This is the same as operating with f{p)(D) term by term, or with

f(D) in the original series. We thus obtain, by (39), the generalized Leibnitz

expansion

y °°    <f<<n)(X) x
(40) {/(!>)},.*(*)*(*)=   Z^-^—ifKD)}.^).

n=0 »!

For f(D) of type zero, we will designate the remainder after m terms of

the ^(x) series by Rm(x), and prove directly that

lim  lf(D)}XaRm(x)<t>(x) = 0.

Applying Theorem II to this expression, we observe that Rm(x) uniformly

approaches zero as limit along (x0, Xi) as m—»», so that the integral likewise

has zero for limit. On the other hand, for Xi sufficiently near X, the expansion

of Theorem VI is applicable to {f(D)}x¡Rm(x)<p(x). The first N terms can

be directly treated. On the other hand, the h(N) of part (c) of §6, with

Rm(x)<p(x) in place of 4>(x), is an upper bound for the absolute value of the

rest of this expansion.  We thus see that

\{f(D)}XXoRm(x)4,(x)\ ^ M„Lm,

where Mm is the upper bound of the function of the complex variable

Rm(z)(p(z) over the circle center Xi, radius /, while Lm depends only on f(u),

(X—xx), and the radius of convergence of the expansion of Rm(z)<p(z) about

z=Xi. Now the radius of convergence of Rm(z) is the same as that of ^(z),

so that Lm is independent of m. On the other hand, Rm(z) uniformly ap-

proaches zero over the circle of radius /, so that Mm—*0, as m—><». The limit

in question is thus proved to be zero, and we can state

Theorem XII. If {f(D)]Xocp(x) exists under the hypotheses of any of

our existence theorems, and if \p(x) is analytic along the closed interval (x0, X),

with the radius of convergence of its Taylor expansion at x = X greater than

(X—Xo), then {f(D)}x^(x)<j)(x) is given by the generalized Leibnitz ex-

pansion (40).
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As a corollary, we have, by letting <p(x) identically equal 1,

(41) {f(D) }*jKx) = i(X) {/(D)}* 1 + ~^{f'(D) )*, 1 + ■ ■ • ,

which is to be compared with series (21), which may be written

(42) {f(D)}X.jKx) = Hxo) {f(D) }* 1 + n**){D-y(D) }*,1 + • • • .

In each case \¡/(x) is analytic along the closed interval (x0, X) ; but in the

first the radius of convergence at x = X exceeds X—x0, in the second that

at x = x0 exceeds X—x0.

We reserve for §14 the application of (41) to entire operators.

10.  eax4>(x) as operand ;/(D+a).  From our definition we have

(_    1)r/(r)(J_+a>)
\Ax /

A [f(u + a) ](r, Ax) = -——-
r!Axr+1

For real a, and sufficiently small Ax, the equation

1 1

Ax AiX

results in a positive AiX. We can then write

A [f(u + a) ](r, Ax) - (1 - aAix)'+M [/(«) ](r, Axx).

As Ax—>+0, and rAx—»i, we have simultaneously AiX—>+0, rAiX—>¿. Hence

under the sole condition that a is real, we obtain

(43) A [f(u + a) KO = e-'A [/(«) ](t).

When f(z) is of type zero, and hence also when it is of finite order,

this result is obtained immediately, for a both real and complex, by the use

of the contour integral formula (8) of Theorem I.

The theorem of this section will be restricted to f(D) of finite order.

When/(D) is of order zero,/(D+a) also is.  By (15), we have

{f(D)} x0e°*<Kx) =        A [f(u) ](X - x)e°*<t>(x)dx
J x„

= e°x \   e-°<x-*M[/(«)](X - x)<b(x)dx,

and so, by (43), and (15) again, we obtain

(44) {/(D)}*e«**(x) - e'x{f(D + a)} !0<P(x).
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When/(Z?) is of order p, D-'ftD) is of order zero. We then have

\f(D)} '«"*(*) = d'/dX' {D-"j(D)} ',««*(*)

= e°*(d/dX + a)>{(D + a)->f(D + «)}**(*)

-e"{f(D + a) }*.*(*);

the first by (26), the second by (44) for operators of order zero and poly-

nomials in d/dX, the last by (34). We can therefore state

Theorem XIII. If f(D) is of finite order, and <p(x) satisfies the hypothesis

of the existence Theorem IV, then relation (44) is valid.

By letting <p(x) = i, (44) and (8) yield a contour integral for \f(D) ] *eax.

11. x0= — t» ; <j>(x)=eax.   Let f(z) be analytic to the right of the line

R(z)=c.  Then

/(¿)
i / ( - ) i eax   =    / ( -\ gaX-f_ ga(X-Ar)   +   .   .   .

r\Ax/j_„ \Ax/ l!Ax

= eaXf
/    1 e-oAï\

\Ax        Ax /'

provided /(1/Ax —e-oAl/Ax) can be expanded in powers of e_oAl/Ax.   Now

| e-°àx/Ax | = e-tWte/Ax = 1/Ax - R(a) + eA„     lim   «a* = 0.
A*-,+0

Hence if R(a)>c, this absolute value will be less than 1/Ax—c, for Ax

sufficiently small. As the radius of convergence of the Taylor expansion of

f(z) about 1/Ax is at least 1/Ax — c, the above is valid, so that

x /l — e~ aA*\
\f(D)} -ae°* =    lim   «•*/ (-) = e°xf(a).

A1-.+0 \     Ax      /

Conversely, if f(z) is an analytic function of z, and \f(D) }x.Keax exists

for some a, {/(A/Ax)} l„e°x must converge for all positive Ax's less than some

positive í. Then f(z) will be analytic within all circles center 1/Ax, radius

| e~aAx/Ax | where 0<Ax<e. As these circular regions cover the half-plane

R(z) >R(a),f(z) is analytic to the right of the line R(z)=R(a). Hence

Theorem XIV. The necessary and sufficient condition that [f(D)]x_meax

exist for some a, when f(z) is an analytic function of z, is that f(z) is analytic

to the right of some line R(z) = c. In that case \f(D)} 1 „c01 exists for R(a) >c,

and is given by

(45) {/(Z?)}f.e« = e«*/(a).
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If c <0, we can let a = 0, and so obtain

(46) {/(D)}!M1 =/(0).

The above results were obtained without assuming f(z) of type zero,

though the analyticity condition of Theorem XIV is a weaker form of the

analyticity condition for an operator of type zero. If f(z) is of type zero,

we can apply Theorem XV of the next section to obtain

(47) lim    {/(D)}!/" = {/(D) lie-.

This can also be obtained directly by expressing the remainder after p terms

of the Taylor expansion {/(A/Ax) }l„eai as a contour integral, finding for its

limit as Ax-*+0, p= {(X—x0)/Ax}, an integral like that of formula (8),

and observing that this approaches zero as limit as x0—* — °o. If we further

restrict/(z) to order zero, we can use (15) in (47), and by the change of vari-

able X—x = t, obtain through (45)

(48) fXe-«'A[f](t)dt=f(a).*

That is, A [f](t) satisfies the Laplace integral equation when/(z) is of order

zero. The derivation of (48) suggests that we may consider relation (45) a

generalization of the Laplace integral equation.

12. Xo = — °o : general case.    Our definition, for x0 = — oo, is

{f(D)}l^(x)=   lim   \f(—)\    *(*).

Hence the relation

(49) {/(D)}fw<P(x) =   lim   {/(!»}'*(*)

is subject to proof. Since, in our definition, we consider the limit of an

infinite series, some restriction on the behavior of <p(x) as x—>— °o will

have to be introduced to insure the existence of the limits involved. The same

condition will turn out to be adequate for (49).

We assume/(D) to be of type zero.  Then/(z) will certainly be analytic

* When A [/](/) can be directly found from its definition, formula (48) leads to the evaluation

of a corresponding definite integral. Thus, (6), the formula for A [«"](<), yields the well known in-

finite integral for the gamma function for R(n)< 0, while (3), as transformed by (12), results in an

infinite integral for the Eulerian constant y. In a similar manner, formula (8) leads to the evaluation

of corresponding contour integrals.
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to the right of some line R(z)=c. Let d designate the lower limit of these c's.

Then, for Ax sufficiently small, and rAx greater than a positive h, there is a

positive L for each b greater than d such that

(50) \A[f](r,Ax)\ <Le»(*A*K

To prove this fundamental inequality, we reconsider the discussion of the

contour integral for A [/] (r, Ax) given in §3. For Ax sufficiently small, and

rAx>h, r will be sufficiently large to have, along C",

f(z)dz

Ic(l - zAx)r+1
< Li\r, 0 < X < 1.

Since, for Ax sufficiently small, we shall have X less than ebAx even with b

negative, a relation like (50) holds for this contribution to A\f](r, Ax).

Along C;>„, we can have, with I and m sufficiently large, R(z)<b', where

b'<b, and ¿>'<0.  We can then write

l r        \f(z)\\dz\i r       f(z)dz l r   _

\Jc>   (l-zAx)^1        (1 —¿>'Ax)'-+1-t''/Ax) Jc,    |i zAx|l*/A«l

The latter integral has a finite upper bound, for Ax sufficiently small, in

accordance with §3.   On the other hand, since b'<b, we have, again for

sufficiently small Ax,
1

- < e»A*.
1 - ¿'Ax

Hence an inequality (50) exists for the •C\,m contribution. Finally, we may

have to change C>,m so that it will consist of the segment of R(z) = b",

d<b"<b, cut off by the former Ct,m, joined to the part of the former Ci,m

to the left of R(z) = b". Since along this new C-,m we have

| 1 - zAx | ^ 1 - ¿"Ax,

we find that

X, f(z)dz IK'

(1 - ¿"Ax)r+1(1 - zAx)r+1|

where / is the length of d,m, and K' the upper bound of \f(z) | along it.

Hence, as in the case of C[,m, a relation (50) holds. By combining these

three results we get (50) itself.

If in (50) we let Ax—>+0, /Ax—>/, we obtain, for t>h,

(51) \A[f]®\£Le».

We can now prove
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Theorem XV. If f(D) is of type zero, with specified d, and if, for some

positive M, and real c greater than d, <j>(x) satisfies the inequality

| <t>(x) | = Mecx

for every x less than some real x1; relation (49) will be valid.

Choose b between c and d.  By (50), and the condition on <f>(x), we have

!{'(£)}>' - {'(£)}>

00

< LMe°x £<r(c-°)rAxAx,      p =

r=P+l

provided x0<Xi, and also x0<X — h. Since this geometric progression con-

verges, {/(A/Ax)}-x<f> (x) also converges. Furthermore, on summing this

progression, we find its limit, as Ax—>+0, to be [LM/(c — b)]ecXe~(-c~b)iX~xt).

This expression approaches zero as limit as x0—* — <». We can therefore

apply the limit criterion, with x0 in place of v, to the identity

+[{0>>-{'(£)}>>]•
and obtain the theorem.

The use of the limit criterion assumes the existence of {f(D)]x¡¡<p(x)

for all Xo's less than X. Granting this, its corollary gives the existence

of both members of (49). Hence

Corollary I. If <p(x) is continuous for x <X, and satisfies the X-neigkbor-

hood conditions of any of our existence theorems for finite x0, then, under the

above hypothesis, both members of (49) exist, and are finite.

It is also not difficult to establish

Corollary II. If the X-neighborhood condition of Corollary I is not

known to be fulfilled, but instead {f(D)}xxcp(x) is known to exist, then the

existence of \f(D)} x¡¡<p(x) for finite x0 follows.

The rest of this section will be devoted to the law of successive operations

for x0= — oo. For finite x0, the order oí f2(D) had to be zero or one, unless

<t>(x), and a sufficient number of its derivatives, vanished at x = x0. In the

present case this restriction on the order oif2(D) disappears. We shall, how-

ever, still restrict ourselves to operators of finite order.

iHñ
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First, in Theorem XV, let/(Z>) be of order zero.  Then, by (49) and (15),

we obtain

(52) {/(ß) £.*(*)=   f  A[f](X - x)<t>(x)dx.

Break up this integral over limits (— °o, X — a), and (X — a,X). By applying

to the resulting integrals inequality (51), with b between c and d, and the

hypothesis of Theorem XV, we obtain, for X<xi, and a>h,

/X /»a
A [f](X - x)oj(x)dx   < Me°x+M' I     | A [/](/)

-oo J 0

dt

+ [LM/(c - b)]^*-»-** « M'ecX.

That is, \{f(D)]x.K<p(x) | satisfies the same inequality that |#(x) | satisfies

except for the factor M. It is also easily seen that \f(D)}x.x,<p(x) is con-

tinuous in X.

Let then/i(7>) and/2(7>) both be of order zero, with ¿'s equal to ¿i and <h

respectively. If, in the hypothesis of Theorem XV, we have c>dx as well

as c>d2, our last result shows that the existent {f%(D) }x.x<p(x) can be used

as operand for {fx(D) }£*,, so that we can write

{/l(Z>)}f. {/,(£)} :«*({)   =    j   A[fi](X -  x)[fX A[f2](x - l;)<t>(i;)d^dx.

Since this iterated integral is absolutely convergent, the corresponding im-

proper double integral exists.*   It can therefore be rewritten

j      j   A[fi](X-0Aif2](^-x)d^\<t>(x)dx.

Now the d of fL(D)f2(D) does not exceed both dx and d2. We can therefore

use (52), with fx(D)f2(D) as operator, </>(x) as operand, and, by applying

(32), obtain

(53) \fx(D)} !M \f2(D)} :.*({) = {fi(D)f2(D) }i^(x).

Before (53) can be extended to operators of arbitrary finite order, several

preliminary results must be obtained. First, we have

(54) ~{f(D)\-x<t>(x) = \Df(D)]X^(x)
dX

under the same X-neighborhood conditions as for finite x0, along with the

The reasoning is the same as in §8 for which a reference has been given.
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usual inequality on \<t>(x) \* In fact, our inequalities easily show that the

integral resulting from differentiating J*\A [/](X—x)<p(x)dx under the

integral sign is uniformly convergent in X. Secondly, we have to discard

the reduction formula (17), since the d of D~'f(D) will be greater than that

of/(D) when the latter is negative and p ¡is not zero. By §10 and formula

(17) with Xi and x0 identical, we obtain in its place

{f(D)}U(x) - {CD - *)"V(D)}'(£ - *)'*(*)

z> [(« - o-'-vw ](x - x0) • IY-^ - /Y <p(x)l   ,
m-o L\ax       / _!*=*„

(55)

+

where, for validity, <p(x) and its first p derivatives are continuous in (x0, X).

To allow x0 to approach -« as limit in (55), we shall want <p(x), and

its first p derivatives, to be continuous for x^X.   Also, for some c greater

than d, and some positive M, we must have, for x <Xi,

| #W(«) | g Me";    p = 0, 1,2, •• -,p.t

As a result, we also have, for x <Xi,

l(- - ')"\\dx       )
4>(x) g M'e°*;    p = 0,l, 2,

Now choose / less than c. The d of (D—l)~»-lf(D) will then also be less than c.

Choose b between this d and c. Then, by (51),

\A[(u- l)-"~lf(u)](X - xo) | ^ V*<x-*»>,

As ô <c, these two inequalities give us

lim   A [(« - /)-"-!/(«) ](X - xo) 17-l)\(x)I        = 0.
x„^-» L\a"x       / Jx=x„

We thus obtain

(56) {/(D) }f>(x) = {(D - 0-'/(D)}!. (^ - ') *(*) •

Though (56) reduces all operators of finite order to operators of order

zero, for which we have already established the law of successive operations,

its conditions are stronger than those yielded by the following more extended

* See the first footnote of §8.

t If <i>(x) behaves "regularly" as x—>— °=, the inequalities for p>0 will follow from the one for

u-0.
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treatment. The operators f, (D) and/2(D) will now be of arbitrary finite

orders pi and p2 respectively with corresponding di and d2. We shall require

the inequalities

| <¿>(">(x) | g Mi^x,     p = 0, 1, 2, • • • , P2,     for     x < xi,     with       Ci> di.

When d2^ci, we shall also require, to insure the existence of {f2(D)}x_K(j>(Ç),

I <t>(x) | g i/üe"«1, for x < xi, with c2 > d2.

In the latter case c2>Ci, so that, for some x2, we shall have for x<x2,

M2eC2X <Mieclx. In either case, we can prove that, if I is less than d,

-^{(D-0-*/i(D)}t.*(£)
ax"

^ M3ec^x, for x < x3, p = 0, 1, 2, • • • , o2.

In fact, through (54) extended, we can write

-^{(D - /)-"/i(D)JXÖ = {D"(D - 0-"/,(D)}L*(0
ax?

+   I      A[vr(u - t)-»Mu)](x - l)tâ)dl-
•'-00

By reducing the first term of the right hand member of this equation by

formula (17) with p=p, X = x, Xi = x0=x — a, we can easily apply our in-

equalities, by methods already made familiar, to obtain the desired result.

We can therefore use (56), with p2 in place of p, (D—l)~pifi(D) in place of

/(D), and {(D-l)-'*f2(D) }x-x<t>(Ç) in place of <f>(x) to obtain

{(D - 0-*/i(D)}f. {(D - 0-»/2(D)} •„*(!)

= {(D - 0-<*+*>/i(D)}n«(-^ - /Y {(D - 0-"/»(D)}*«*(«).
Vax       /

Now reduce the first member of this equation by our proved result for opera-

tors of order zero, the second member by operating with (d/dx — l)"t formally,

as is justified by (54). We thus obtain

{(Z) _ /)-(^)/1(D)/2(D)}fK0(x) = {(D - /)-""+»>/i(D)}5. {/2(D)iM }<*>(£).

Operating on both sides of this equation by (d/dx—iy^* yields our law of

successive operations for operators of arbitrary finite orders.

In this discussion we have merely concerned ourselves with the con-

vergence difficulties introduced by letting x0 = — °o. When we also supply

the discussion of the existence of derivatives tacitly assumed above, a dis-

cussion that does not introduce anything essentially new, we obtain
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Theorem XVI. Letfx(D) andf2(D) be of finite orders px and p2 respectively,

with corresponding dx and d2, and let D^HD) be of order p. Let <p(x) and its

first p2 derivatives be continuous for x £j X, and also let the first p derivatives of

<p(x) be continuous in a left neighborhood of x = X. Finally, let us have the

inequalities

| g>("'(x) | = Mxe*z, for x < X, p = 0, 1, 2, • • • , p2, with Cx > dx,

and, if Cx does not exceed d2, let us also have

I <b(x) | = M2ec*x, for x < X, with c2 > d2.

Then formula (53) is valid, and both of its members exist.

13. x0=— oo : special case. When d = 0, the existence theorem of the

preceding section still requires an exponential inequality for \<p(x) \ as

x—-> — oo. This can be replaced by an algebraic inequality' if certain assump-

tions are made about the behavior of f(z) in the neighborhood of those singu-

larities that lie on the axis of imaginaries. The operator Dm is typical.

Let then f(z) be of type zero, and analytic to the right of the axis of

imaginaries. We shall first assume the origin to be the only singularity with

real part zero.  The assumptions required are the following:

(a) f(z) is analytic within a circular sector of radius X, and angle greater

than ir, which has its vertex at the origin, and is bisected by the positive half of

the real axis,

(b) in this sector, for some real m and positive K, \f(z) \ satisfies the inequality

\f(z)\ ¡SJT|s|-.

Let S designate the interior of the infinite analytic sector of the type

zero condition, S' the rest of the z-plane; s the interior of the circular sector

of radius X, s' the rest of the interior of the circle. It will be convenient to

have X small enough for this circle to lie wholly within S'. Since the origin

is the only singularity with real value zero, there will be a line R(z) = — k\,

kx>0, to the right of which/(z) is analytic, except for z's in s'. Now in the

argument leading to inequality (50) of the preceding section, replace d by

— «i, and choose the b" of that argument between 0 and — K\, and also suffi-

ciently near zero to have the line R(z)=b" cut the sides of s'. If then we

remove from C", as modified in that argument, the portion of this line that

is in s', we shall have along the resulting open contour Civ

r       f(z)dz

Civ   (1  _ zAx)r+1
< Z,le-«<r¿1>
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where — k is between 0 and b", and hence is negative.* For the purposes

of this section we further modify C" as follows. Let Csv consist of two seg-

ments in s, starting from a point z = 5 on the real axis, running parallel to

the sides of s, and terminated by R(z)=b". Such a contour is possible for 5

sufficiently small. Join this toCiv, where we remove from Civ the portions of

R(z) = b" that lie between the ends of dv. Then Cjv with the shortened Civ

forms an admissible C". Now if Civ is thus shortened in the above inequality,

the result is simply strengthened. As for C5V, replace 8 by l/[2(r+l)Ax],

and transform z by f = (r+l)Axz. Using condition (b), we obtain

Jcjn - zAxY+1     ' \(r + l)Ax]m+1Jc(1 - zAx)r+1

k r      iri"l#i
[(r + l)A*]-+iJcJ,   I r

r+ 1

If the sides of C J2 be extended to infinity, we obtain the same integral that

occurred in §11, except that m replaces p — e. This integral was there shown

to converge, and be bounded with respect to r for r èp. The same is thus true

of the C,/2 integral for r >m. Combining these results, we are enabled to state

that, for Ax sufficiently small, and rAx greater than a fixed positive h, we have

with a positive L,

(57) | A [f](r, Ax) \ < ■
(rAx)m+1

Hence, also, for t greater than h, we have

(58) \A[f](t)\è^--t
¡m+X

This result can be immediately extended to the case where there are a

finite number of singularities of the above type on the axis of imaginaries.

If these singularities are at points z = z,-, then on each we impose conditions

like (a) and (b), where in (a) the vertex of the sector is now at z<, while the

inequality in (b) is replaced by

l/WI ;g Z«|i-«,|-«.

The line R(z) = —kx can be chosen once for all, and C" modified near each

of the singularities.   As a result, (57) and (58) will follow, provided m is

* Inequality (b) of this section, in conjunction with the choice of b" made here, allows us to

conclude that |/(z) | has a finite upper bound along that part of R(z) = b" used in Civ, as is required in

this proof.

j This inequality can be used as the basis of a simple derivation of certain of the Heaviside

asymptotic expansions, and extensions thereof.
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the least of the m^s.   For ease of reference we shall speak of a function and

corresponding operator of this kind as being of degree m.  We can now state

Theorem XVII. // an operator f(D) of type zero, with d = 0, is of degree m,

and if for x<Xi, Xj <0, we have

\4>(x) \ è M(- x)m-v

with positive i] and M, the equivalence relation (49) will hold.

Corollary. With this hypothesis replacing that of Theorem XV, Corollary I

and Corollary II of the latter theorem continue to hold here.

In the proof of this theorem the geometric progression of the preceding

section is replaced by a series that can be written

LMY.   (1-)-Ax,
r_p+i \        rAxf      (rAx - X)l+'

provided x0<Xi, and, also, x0<X — h.   Since [1 — X/(rAx)]m+1 is bounded as

Ax—>+0, and x0—>— °o, while we have

^ 1 A    ^  f°°       ,       „,  ,    .       (-x0-Ax)-
Z,   -:—&x < (i

r=p+i (rAx - X)1+" Jx-x„-ax v

Ax < (t - X)-l-*dt =

recourse can again be had to the limit criterion to give the theorem.

The case <p(x) = 1 is of special interest. When d <0, the discussion of §11

applies, as well as the resulting formula (46). When d>0, the same dis-

cussion shows {/(D)}^„1 to be non-existent. When d = 0, (46) still holds,

provided/(z) is analytic at the origin; but the equivalence relation (49) seems

to require further assumptions. The following theorem, which we state

without proof, contains several simpler cases, and can be considered the

extension of (46) for d = 0.

Theorem XVIII. If f(z) is of type zero, with d = 0, and if, except for the

origin, it is of degree of greater than —1, while for the analytic sector vertexed

at the origin it approaches a finite limit K as z—*0 in the sector, then

(59) {f(D)}xJ=K=    lim    {/(D)}ï,l.
jy-»- «

We turn now to the law of successive operations. As before,/i(z) and/2(z)

will be of finite order. The case of most interest is the one in which both

¿i and d2 are zero, the treatment of the cases where but one d is zero then being

obvious. On the whole, the development of the preceding section can be

followed.
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First let/(7>) be of order zero, while otherwise it, and <p(x), satisfy the

hypothesis of Theorem XVII. We can again use (46), and break up the

infinite integral over limits (—°°, X — a), (X—a, X). Choose a greater

than h, and let X be less than X\. We then easily obtain

\f    A[f](X-x)<t>(x)dx   ^M(-X+6a)m-" f   \ A[f](t)\ dt<M"(-X)m'\
I J X-a J0' X-a

>X/»X—a fX—a        (_   x)m~**

A [f](X - x)<p(x)dx   < LM —-—-dx
(X- x)m+l

-Xla

(- x)-' I       (i + t^-n^-Ht,
J a

= LM .
v o

where, in the latter, we have set /=—X/(X—x). It is convenient to assume

X<—a, so that — X/a>l. We can then break up this integral over limits

(0,1), and (1,—X/a). The first part converges, and is independent of X.

For the second, we can write, with some fixed k,

/-Xla ¡»-Xla
(1 + t)m-iti-1dt < k I        tm-Ht.

The case m = 0 can be avoided.   For m^O we thus obtain the inequalities

(60) m > 0 :      | \f(D)]^(x) \ < M'(- X)m~\

(61) m < 0 :      | {f(D))*„<t>(x) \ < M'(- X)->.

Now let fx(D) and/2(T>) both be of order zero, with dx and d2 zero, and

associated mi and m2. No loss of generality ensues if we assume the d of

fi(D)HD) to be zero.* The corresponding m3 is evidently not less than m,

the least of the three quantities Wi, m2, mx+m2. We can then show that if

<p(x) satisfies the hypothesis of Theorem XVII for m so defined, the law of

successive operations will be satisfied. It will be sufficient to show that

{/i(fl)}U*(Ö, {/iCCO }-«{/*CD)I-»<*>(£) and {fx(D)f2(D)\l»cp(x) exist in
accordance with Theorem XVII, since the argument of the preceding section

will then be valid here. The inequality of Theorem XVII is the primary

consideration. Since the three operators involved, fi(D), fx(D), fx(D)f2(D),

are of degrees m2, mx, and m3 respectively, we have to show that the corre-

sponding operands </>(£), {f2(D) }i«o<K£) an<i 4>(x) satisfy inequalities with

exponents  m2 — 7]2, mi — r\x and m3 — r\3 respectively, where  the 7?'s are all

positive. Note that our hypothesis makes <j>(x) satisfy an inequality with
i-

* This d may be less than zero; but in that case the actual inequalities are even stronger than on

the assumption that it is zero.
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exponent m — rj where r¡ is positive. This suffices for the first and last cases;

for by identifying this inequality with the desired inequalities, we are setting

m2 — i]2 = m — t), m3 — 7¡3 = m—7). Since m does not exceed m2 or m3, we thus

have r]2^v, V3 = V, that is, r\2 and rj3 are positive, as was desired. For 771, we

must use the inequalities (60) and (61). The case m2 = 0 can be avoided since

m2 can always be decreased in the inequalities on |/2(z) |, at least for

\z—Zi I ̂  1, and by making this decrease less than t] there will at worst result

a corresponding decrease in m and 17 in the original inequality on <£(x),

with the new t] still positive. For «2>0, we see from (60) that {/2(D) }!«,#(£)

satisfies an inequality with exponent equal to that of the inequality for #(£)•

That is, we may set mi—r\i = m—-n, and as before, obtain tji^t;. For w2<0,

(61) shows that the exponent for {/2(D) }!.„</>(£) is but — -n2, iim2 — t]2 is the

exponent for 0(£). That is, we may set mi — r\i= —1\2, where we have iden-

tically m2 — r¡2 = m — r¡. By combining the two equations, we obtain t/i = jwi +

nh — m+v^V- A positive tji therefore results. The sufficiency of the m — -n

exponent for (¡>(x) has thus been demonstrated.

It is unnecessary to go into the details of the extension of these results

to operators of arbitrary finite orders, as the steps of the procedure of the

previous section are easily verified here. We can thus state

Theorem XIX. Letfi(D) andf2(D) be of finite orders pi and p2 respectively

with di and d2 zero, and associated mi and m2, and let Dplf2(D) be of order p.

Let <p(x) and its first p2 derivatives be continuous for xí¡X, and also let the

first p derivatives of <p(x) be continuous in a left neighborhood of x = X. Finally,

for all x's such that x <Xi <0, let

I <b(x) I ̂  M(- X)™-i,   I tf>«(x) I á Mi(- X)--*, (i - 1, 2, • • • ,pt,

where r¡ and 771 are positive, and m is the least of the three quantities mi, m2,

mi+nh.   Then formula (53) holds, and both of its members exist.

14. Entire operators; A[f](t) =0. If f(z) is an entire function of the com-

plex variable z, and satisfies condition (b) of §3 over the whole z-plane,

then f(D) will be said to be of type zero over the plane. Since entire trans-

cendental functions of genus zero are known to satisfy this condition, their

corresponding operators are of type zero over the plane. Polynomials in D

are also included.

We first prove that, for such operators, A [f] (t) vanishes identically. In

formula (8) of §3 choose C so that its vertex is at the origin. Let CN be the

portion of the line R(z) = — N, N>0, between the half-lines of C. Since /(z)

is entire, the integral in (8), limited to that part of C which is to the right

of this line, will equal the same integral over CN. Hence we have
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A[f](t) -■— lim    [ e»f(z)dz.
2irl JV-.»   JCn

By choosing k of condition (b) less than / cos a, this limit is seen to be zero.

An   immediate   consequence   of   this   result   is   that,   for continuous

<p(x), {f(D)}x„(p(x) is independent of the finite lower limit x0, since by (9),

{/(z>) }**(*) = {/(z>) }**(*).

The same is evidently true for x0= — oo, if tf>(x) satisfies the hypothesis of

Theorem XV. We can now easily show that when/(7>) is of type zero over

the plane, \f(D))xa<p(x) reduces to the formal result obtained by expanding

f(D) in powers of D. The function <p(x) is of course assumed to be analytic

in a left neighborhood of x = X. We can then choose Xi sufficiently near X

to apply the Leibnitz expansion (41) to {f(D)]xl<p(x).   We thus have

[f(D)\l<t>(x) = <t>(X){f(D)}xí + ~{f(D)}xí + •••'.

Now/(n)(7>) is of type zero over the plane for every ».  Hence

{/<»>(£) }*1=    {/<">(£) }?ool   =/<">(()),

the last by (46).   We therefore have the standard expansion

f'(0) f"(0)
(62)       {/(/>)}**(*) = f(0)4>(X) + J-~4>'(X) + J-~4>"(X) + ■■■ .

Suppose now, conversely, that {f(D)}Xo<p(x) is independent of x0 in a

certain x0 interval.   Differentiation of (9) with respect to x0 gives

A[f](X- x)</>(xo) = 0.

If then 4>(x0) does not vanish in this interval, ^4[/](i) must vanish over a

corresponding interval. Now formula (8) shows A [/](/) to be an analytic

function of / for every real and positive t. Hence if A [f] (t) vanishes over an

interval, it vanishes identically.   The question thus raised is answered by

Theorem XX. Iff(D) is of finite order, A [f](t) vanishes identically when,

and only when, f(D) is a polynomial; if f(D) is of type zero, A [f](t) vanishes

identically when, and only when, f(D) is of type zero over the plane.

The direct part of this theorem has already been demonstrated. As for

the converses, let/(7>) first be of finite order p. Then /w (D) will be of order

zero, so that, for R(a) >d, we shall have, by (48),
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/» 00

/W(o) =  I   tr"A[fw](t)dt.
Ja

Since under our hypothesis A[f](t) = 0, (37) gives us A [/<">](/) ¡a 0, so that

yw (a) = 0 for all a's in at least a half-plane, /(a) is therefore a polynomial in

that half-plane, and, being analytic, is a polynomial throughout.

Now let/(D) be of type zero, with A [f](t) =0.  Then, for R(a) >d,

{f(D)}x„e°x = {/(D) }*«,".

We can apply (45) to the first member of this equation; and, as eax is an en-

tire function of x, (41) will yield a convergent series for the second. We thus

get

,n      ,tfffl,yi   |  lfV»}xA    .   {f"(D))Xx>x ,
/(a) = {/(D) | *1 H-a H-a2 H-.

Since this power series in a converges in a half-plane of a, its radius of con-

vergence must be infinite, and so f(a) is entire. To prove that it is of type

zero over the plane, note that, from the series, we have

{/<»>(D)}f,l =/<»>(<>).

Now let X be any positive number, however small, and choose xx between

0 and X.   Formula (41) will then yield the convergent series

{/(D) l^x-1 = x-y(o) - x-2/'(o) + x-»/"(o)-.

Since this converges for every positive X we must have

lim [/("'(O)]1'" = 0.

This condition on the coefficients of the expansion of an entire /(z) in powers

of z is equivalent to condition (b) of §3 holding over the z-plane. Hence/(z)

is of type zero over the plane.

The scope of Theorem XX is clarified by the following two observations.

First, f(z) may be entire, and of type zero in a sector of angle greater than ir,

and yet not of type zero over the plane; secondly,/(z) may be a transcendental

function of type zero over the plane without being of genus zero. For the first

case consider the function
/» 00

f(z) =  I    e-"er*2dt.
•'a

Since the integral converges uniformly over every bounded region of the
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z-plane, f(z) is an entire analytic function of z. Now it can easily be seen that,

if t is considered as a complex variable, the positive half of the real t axis,

used in the above integral for contour, can be replaced by any half-line from

the origin which makes an angle 6 between — 7r/4 and 7r/4 with that positive

t axis.   For any one 8, we find

A.
I/«I <

R(e»z) + Be

for R(eiez) > —Be. By combining the inequalities for 6 = Ox and 6= —dx we

thus easily see that f(z) is in fact of order zero over any sector of angle less

than 37t/2 bisected by the positive half of the real z axis. It is therefore also

of type zero. That it is not of type zero over the plane is seen by considering

negative real values of z, for which we have, with arbitrarily large N,

J 0
f(z) 2 e-"e-t2dt >- [e"<-«> - 1].

(- z)

For the second observation consider

n=2 L       (n log nyA

whose zeros are ±» log », » = 2, 3, • • ■ .   As^l/(« log «) does not converge,

f(z) is not of genus zero.  On the other hand

«     I" I  2 |2       "I

i/wK n i + rr4i <iM„_2 L        [nlognyj
I)

sinh (ir\z\ /log N)

ir\z\ /logN

where PN( \z \) is the polynomial in \z | formed from the first N — 2 factors.

By expressing the hyperbolic sine in terms of exponentials, we see that

condition (b) of §3 is satisfied over the plane, that is, f(z) is of type zero over

the plane.*

15. The Laplace integral equation. Except for a few results that fol-

lowed directly from our definition of generalized differentiation, the pre-

ceding sections studied that definition for operators which we called of type

zero. In the present and following sections, we shall make an independent

study of operators given as Laplace integrals. We have seen in §11 that

A [/] (t) satisfies the Laplace integral equation (48) when f(D) is of order

zero.   We turn now to an extension of the converse of this result.

It has been shown in the literature that if f^(t)e~:'dt, where \j/(t) is

* For the standard derivation of the same inequalities in the case of functions of genus zero see

Borel, Fonctions Entières, chapter 3.
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continuous for t^a, converges for f = f0, then it converges for all f's with

jR(f)>i?(fo), and represents an analytic function of J" in that half-plane.*

This proof is readily extended to the case where \{/(t) is continuous only for

t > a, by breaking up the interval of integration. With this in mind we state

Theorem XXI. Let ip(t) be a continuous function of t for t>0, and let

f^^e^'dt, considered improper at both its limits, converge for some value of f.

Then, if

me-t'dt = /(f)
v n

in the resulting half-plane of convergence, we will have, for t>0,

{- l)rM>(l/Ax)
(63) Ut) = A [f](t) =    lim    -i-7    \ -

AJ--.+0 r!Axr+1

'Ai-»!

Before we turn to the proof, note that when/(D) is of order zero, A [f](t)

may be discontinuous for t = 0. Hence the assumption of continuity for ij/(t)

only for positive t. Such an assumption of mere continuity is in accord with

the literature. Since we have observed that for/(D) not only of order zero,

but of type zero, A \J](t) is analytic for positive t, we see that the present

development must be a quite independent study of our fundamental defini-

tion.

The proof of the convergence theorem for Laplace integrals can easily

be extended to show that successive derivatives of the integral can be found

by differentiating under the integral sign. We therefore find, for the /(f)

of our theorem,

(- l)rM~>(l/Ax)       r°° e-ti^r
A[f](r,Ax)=- = _^^WA|

r!Axr+1 Jo     r!Axr+1

provided l/Ax is in the half-plane of convergence. Let t = rAxr. With the

help of Stirling's formula for r\ we obtain

[r/(27r)]1/2   /•-
A[f](r,Ax) = L/ J (e^r)^(rAx-r)dr,

l+«r Jo

where er—»0 as r—>°o. The function e1-rr attains a maximum value of one

for t = 1. Hence (e1~Tr)r stays equal to one for t = 1 as r—>oo, but otherwise

becomes inappreciable, as r increases, except for an ever narrowing neighbor-

hood of t = 1. This suggests that we break up the integral over limits

(0, 1—X), (1—X, 1+X), (1+X, oo), where X is between zero and one, and

* For references, see Pincherle, loc. cit., p. 40.
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show that the first and third parts can be neglected in finding the limit of

A [f](r, Ax).
With this in mind, let b be a real number in the half-plane of convergence

of the Laplace integral.  That means, with our change of variable, that

•^ n

e-»-rAxT^(rAx-r)dr

converges. Now rewrite the integrand (e1_rr)r^(rAxT) so that it reads

(e1-~r+b*XTT)re-b'rAxT\l'(rAx-T). For fixed X, and Ax sufficiently small,

(gi-r+»AxrT)r w¡u monotonically increase from t = 0 to t = 1—X, and mono-

tonically decrease from r = 1+X to t = «. We can therefore apply the second

law of the mean for integrals,* and obtain, with O=0 = l— X,

j       (ew+6Al-TT) re~b- rAx-Ttl>(rAx ■ r)dr

r
= [(e1_T+!,Al-TT)r]r^+o I    <ri,-rAl'riKrAx-T)dT

•'o
/•l-X

+ [(e1"'-+î,A*-rT)'-]T_i_x I       e-b-^x-^(rAx-T)dr.

Je

The first term of the right hand member is always zero. As for the second

term, the integral, expressed in the original variable t, is

>rAx(l-X)

e-btt(t)dt,

1 /• rAx

rAx J rAx- e

and, due to the convergence of f™e~bt\p(t)dt, stays bounded irrespective of its

limits of integration, as rAx approaches a finite limit. On the other hand, as

Ax—*+0, e1~T+h&x"rT, for t = 1— X, becomes and remains less than a fixed

positive quantity which is itself less than one. Since at the same time r

must increase indefinitely, we thus obtain

[r/(2ir)]112
lim   —-[(ew+i,A*-rT)--]r=i_x = 0.

a*-»+o     1 + er
rAl.i

Hence the (0, 1 —X) contribution to A [f](r, Ax) can be neglected in studying

its limit. An entirely similar proof shows the same to be true of the (1+X, oo )

contribution.   We thus have, provided either limit exists,

* In the present instance we need the second law of the mean for an improper integral that may

be only conditionally convergent. If, however, we first apply this law to the corresponding integral

with positive lower limit e (see de la Vallée Poussin, Cours d'Analyse, vol. 2,1925, pp. 1-3) and if we

then let 6 be a limit value of the corresponding $t's as «—»+0, we easily obtain the desired result.
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[r/(2ir)Y>2   r 1+X
lim   A[f](r,Ax) =   lim   - I      (e1~Tr)T4/(rAx-T)dT.
x-»+o Ax-i+o      1 + er      J i-\Ax

rAx-»t rAx-W

Since (e1-rT)r is positive, and \¡/(rAx-r) is continuous in t, we have

[r/(2ir)V2 Ç*» Nj
——- (^^^(rAx-^ár

1 + fr      •'l-X
[r/(2x)]'/2  f l+x

= iHrA*(l + e\)]- (e^rYdr,
1  + «r       «'l-X

with —1<0< 1.   Now consider the special case «/*(/) = 1.   From the Laplace

integral we find

/(f) =   fe-t'dt = 1/f.
•'o

For this / direct calculation gives

(- l)r/w(l/Ax)
A [f](r, Ax) = --'       \ = 1,

r!Axr+1

so that, from the above expression for lim A [f](r, Ax), we obtain

W(2ir) 112     /»1+X.'/(2.T WI rl
Inn   - I      (el-^rYdr = 1.

A*-»+o     1 + er    -'i-x
rAx,(

Combining these results, we thus see that

lim sup 4 [f](r, Ax) 5= M\,   lim inf A [f](r, Ax) ïï m\,
Ax->+0 Ax-»-f0

rAx-*£ rAx-»i

where M\ and m\ are the upper and lower bounds of ^[/(1+0X)] as 6 varies

from — 1 to 1. Now let X—»+0. The continuity of \f/ makes M\ and m\ both

approach \¡/(t) as limit. Hence the upper and lower limits of .4[/](r, Ax)

both equal \¡/(t), i.e., A [f](t) exists, and equals 4>(t).

16. Operator expressed as a Laplace integral.  With the help of the pre-

ceding section we shall now prove

Theorem XXII. ///(f) is given by the convergent Laplace integral

/«O =  f
J n

^(t)e-ildt,

where \¡/(t) is continuous for positive t, and the integral is considered improper

at both its limits, and if <p(x) is continuous in the closed interval (x0, X), then
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lim   lim sup   < / (-) >      4>(x)
A—1-0    A*—f-0    |(     \ Axf) x-h

= 0.

x rx
(64) {/(/>)}«.*(*)=    I    *(X - *)*(*)J«,

M«¿er eiíAer o/ the following two auxiliary conditions:

(a) the improper integral /* ^(í)¿¿ is absolutely convergent for positive h;

(b) <p(x) has a finite total variation in a left neighborhood of x = X.

It may be worth noting that (a) is the necessary and sufficient condition

on a \¡/(t) continuous for positive t that fx,\f'(X—x)<p(x)dx converge for every

continuous <p(x); while (b) is the necessary and sufficient condition on a

continuous <p(x) that this integral converge for every ij/(t) which is continuous

for positive t, and for which f* yf/(t)dt converges.

Since the preceding section proves that ^4[/](0 exists, and equals ty(t),

it is sufficient for the proof of our theorem, as in the treatment of operators

of order zero given in §5, to show that

We have by definition, and from the preceding section,

Í/(—-)\      *<*) *   llA[f](r,Ax)<t,(X - rAx)Ax,  q =  [h/Ax],
\      \Ax/)X-h r=0

/»co     g— i/Ax^r

A[f](r,Ax)= ———mdt.
Jo     r\Axr+1

We shall now break up this integral over limits (0, k), and (k, oo), where k

is greater than h but independent of r and Ax, and consider the two sums

into which the above sum is thus broken up.

The treatment of the sum arising from the integrals with limits (k, oo)

is independent of the special conditions (a), (b).  Let

g-./Ax^r

ar(t) =-
r!Axr+1

We observe that ar(t) is a monotonically decreasing function of t in the

interval (k, oo), due to the inequalities k>h>rAx. The same will then be

true of ar(t)e6t for sufficiently small Ax. As in the last section, the second law

of the mean for integrals is applicable, and gives

i/;
ar(t)t(t)dl = ar(k)ebk\   I    e-bli(t)dt

J h
Nar(k)ebk.

The sum in question is thus not greater in absolute value than
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MN iar(k)ebkAx,
r-l)

where M is the upper bound of \<p(x) | in (x0, X). The above inequalities

k>h>rAx also show that aT(k) increases with r, as r varies from 0 to q.

Since (ff+l)Ax<Ä+Ax, we find this sum to be less in absolute value than

(h + Ax)MNaq(k)ebk.

As Ax—»+0, q increases indefinitely, and so «„(&)—>0. This sum can therefore

be neglected in our discussion.

For condition (a) it will be sufficient to observe that the sum for the (0, k)

integrals will not exceed in absolute value

M     (£—— )\Mt)\dt.
Jo   \r»o   r!Axr /

But we have directly

£ - < er«** £-es 1.
r_o   r!Axr r=o r!Axr

Hence this sum is less in absolute value than Mf* \ \p(t) \dt, and hence also

lim sup \\ /(-U      4>(x)    ^M\\^(t)\dt.
Ax-»+0    |   (.     \Ax/)x-h J\l

Now let h—>+0, and at the same time let ¿—»+0, while keeping k >h. Due

to the convergence of the last integral under condition (a), it will approach

zero as limit with k, thus proving our result.

For condition (b), we shall write this sum in the form

« n k

X>(X - rAx)^rAx,   ßr =   I    ar(t)i(t)dt,
r=0 •'0

with ar(t) as already defined, and use the identity

¿0(X - rAx)/3rAx = <t>(X) ¿j8rAx + [0(Z - Ax) - <b(X)] ¿^rAx
r=0 r=0 Ts=i

+ ■ • • + [cb(X - qAx) - cb(X - [q - l]Ax)]/34Ax.

We can write

¿frAx =    f y.W(t)dt,   7.(0  = ¿«r(/)Ax.
r=« *' 0 r=«

Integration by parts gives the relation
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f y.(t)Ht)dt = 7.(A)  f  «AW*-    f       f   ̂ (t)¿t]7.'(0A.
«'o •'o •'o  L •' o J

Let iV* be the upper bound of \fl^(r)dr | in the interval O^t^k. Note that

Nk is finite, since the convergence of the Laplace integral entails the con-

vergence of this integral.  We then have

f   y.W(t)dt    £Nk\y.(k)+  f    |7.'(0I*].
I   «'0 L. Jo J

Now we easily verify that

y,(k) < 1,  t.'W = a«-iW -aq(t).

Furthermore, we have, for as-i(0> and similarly for aq(t),

/» k /» 00

I     a.-i(t)dt <   j    a,-i(t)dt = 1,
•' n «' n

so that we find

E/îrAs f    y.(t)i(t)dt
Jo

<3Nk.

Returning to our identity we thus obtain

£i8r0(X - rAx)Ax <3Nk[\<j>(X)\ + Vz-h<Kx)]

where VX-h <t>(x) is the total variation of <p(x) in (X — h, X). Under hypothesis

(b), this is finite for sufficiently small h, and so does not then increase as

h—»0. On the other hand, Nk approaches zero as limit, as k, along with h,

approaches zero as limit.   Our theorem is thus proved under (b).

To illustrate (64), consider the operator B(D, n).   Through the change

of variable x = e~t, the usual integral for the beta function becomes

5(f,»)=    f
•'o

(1 - e-'Y^e-t'dt,

where R(n) >0 (and i?(f) >0).  Since condition (a) is satisfied, we thus have,

for <p(x) continuous in (x0, X),

(65) />x [1 - eH*-»)]»-i¿(*)d*.
T..

* (65) in conjunction with (44) leads to the solution of certain linear differential equations with

exponential polynomial coefficients by means of definite integrals. Note, of course, that B(J), n)

is of order zero for R(n)>0.
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17. Carson's form; e~aD as operator.  Carson has given a form for gen-

eralized differentiation which, with our notation, reads, if

/(f)     rw
^= X(t)e~t>dt,

f ^o

/(f)

then

(66) {/(7>)}x,<K*) = — f  x(X - x)<t>(x)dx.*
dXJx„

We shall show that this form results from our definition in either of the fol-

lowing two cases:

(a) x(0 is continuous for t^O, with limt^»e~^'x(t) =0 for sufficiently large

f ; x'Q) exists for t>0, and, with <p(x), satisfies the hypothesis of Theorem XXII.

(b) x(t) *s continuous for t>0, with /o|xW|^ convergent, and <f>'(x)

exists, and is continuous, for x0=x = X.

It may be noted that in case (a) Carson's form reduces to that of §16,

while in case (b) it is related to that of §16 much as our operators of order

one are related to those of order zero.

In case (a), let first x(0) =0.   We have directly

— I   x(X - x)4>(x)dx =   f  x'(X - x)<t>(x)dx.
dXJXa J x„

On the other hand, integration by parts of the integral for/(f)/f gives

/(f) -   f   X'(t)e-t'dt,
Jo

so that, by Theorem XXII, we have also

x rx
{/(7J) }„«(*) = x'(X- x)4>(x)dx.

J x0

(66) thus follows.  If x(0)=c, we have

f °° /(f) - c
[x(t) - c]e-i'dt = --— ■

Jo f

The case just proved can therefore be applied to f(D) — c, so that

* J. R. Carson, The Heaviside operational calculus, Bulletin of the American Mathematical Soci-

ety, vol. 32 (1926), pp. 43-68. Numerous papers on this subject by Carson are to be found in the

Bell System Technical Journal.
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x d     Cx
{/(£>) - c] „«(*) = —-        [X(X - x) - c]<t>(x)dx,

dX J x„

which easily reduces to (66)

In case (b), replace X—x by a new variable.  We thus get

d    rx rx
—-       x(X - x)<p(x)dx =        x(X - x)<i>'(x)dx + x(X - xo)<t>(x0)
dXJx, J Xo

where we returned to the old variable x in the end.   Now by §§15 and 16

A [«">/(«) ](0 = x(t), {D-yrZ)) }*.*'(*) =   f x(X- x)tf>'(*)áx.

If we turn then to the first existence proof for operators of finite order, with

p = 1, we see that it will hold here provided

¿ \A [«->/(«) ](r, Ax) | Ax
r=0

is bounded as Ax—>+0. But the discussion of §16, with w_1/(w) in place of

/(«), shows that for k>X—x0

p /• *
lim sup    Y^\A [«_1/(«) ](r, Ax) | Ax g   J    | x(t) | ¿<,
Ax->-|-0        r=o J 0

which is here assumed finite. Hence formula (17), with p = 1, can be used to

give
x Cx

{f(D)]xMx) = x(X - x)4>'(x)dx + x(X - xo)4>(xo),
J x„

which is just what we found for the other member of (66).

More generally, if x(¿) and <p(x) satisfy the hypothesis of Theorem XXII,

(66) is equivalent to the relation

{/(/?)}'*(*) = -£-{D-y(D)}Ui*),
dX

which offers no difficulty when/(7>)) is of finite order, or of type zero (see §7).

However, the complete discussion of this relation when /(f)/f is given by a

Laplace integral offers considerable difficulty, and can only be made the

subject of a separate investigation. We shall merely append an examination

of the special operator e~aD, a>0, which, in addition to its relation to the

Laplace integral treatment, throws considerable light on our previous work

with operators of type zero.
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This operator comes under Carson's treatment by assigning to x(0 the

value 0, for Og/^a, 1, for t>a. Since x(0 is not even continuous for ¿>0,

agreement of the results with our definition cannot be sought for in the above

two cases, but must be obtained directly.   From our definition,

,z -A  e-°/Alar (X — xo)
{e-atA/Ax)}^) = £ -¿(X - rAx), p = 1-}.

r=o    r!Axr I     Ax     ;

The coefficient of <p(X — rAx) attains its largest value for rAx<a^ (r+l)Ax.

As in the treatment of the Laplace integral equation, it can be shown that

only values of rAx in a neighborhood of this value affect the limit as Ax—»+0.

We thus similarly obtain, for continuous <j>(x),

(67) X - xo < a: {e~aD}^>(x) = 0; X - x0 > a: {e-"D)Xx^(x) = <fi(X- a),*

which agree exactly with Carson's results.f We may note in passing, that

(31) gives the relation

A [«—/(«) ](r, Ax) =  ¿  6        a A [/(«) ](r - s, Ax),
s=o    s!Ax*

from which, in a similar manner, we find

(68) t < a: 4 [«-*"/(«) KÖ = 0; t> a: A[er"f(u)](t) = A\j(u)](t - a),

provided f(D) is of type zero. If we replace f(u) by w-iy(w), we also obtain,

by (12),

(69) X-x0<a: {<r*D/(D)}* l=0;X-x0>a: {e-°f(D)}*,1 = {/(D)}'; 1.

Consider now some non-formal aspects of this and related operators. We

found in §3 that, when f(D) is of type zero, A [/] (t) exists for every positive

t.  By contrast, the formula

* For X— xn=a, terms on but one side of the maximum are included. Due to approximate

symmetry of the coefficients with respect to this maximum, the result for X—x0=a is seen to be

*(X-a)/2.
t The reader may be interested in the following formal "derivation" of the formula of §16 from

this formula. Writing symbolically

f(D) =   ("t(t)e-<Ddt,

and noting that {«""^Ji^O) vanishes for OX— xo, we would be led to

\f(D)}f0 «(*) =  f " #W [{c* {I *{x) ]dt =    f   ~"mt>(X - t)dt.

By replacing X— t by x, we obtain the formula in question. A rigorous proof along these lines may be
possible.
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e-«/Axar

e-A[™](r,Ax) = —-
r!Axr

shows that A [e~°tt](0, while zero for every other positive /, fails to exist for

t = a through becoming infinite. Stronger still is the contrast furnished by

e"D, a>0, for which A [eau](t) fails to exist for every positive t not exceeding

a certain positive a, and is zero for t>a. Of course e~aD and eaD are not of

type zero. They are however closely related to operators of type zero, since

the corresponding analytic functions satisfy the analyticity condition (a),

given in §3, for operators of type zero, and also the inequality of (b), not,

however, for each positive k, but only for k > k0, k0 > 0. Calling operators satis-

fying (a), and this qualified (b), operators of type one, we easily find from

§3 that, for them, A [/] (/) exists for t greater than some positive a. Also,

by a modification of the treatment of part (b) of §6, we obtain the existence

and expansion in series (21) of {f(D) }x<p(x), provided X—Xi is greater than

this a and the radius of convergence of <p(x) at Xi is greater than X—Xi by

more than a certain fixed positive ß. These results were not included in the

paper since the method used gave values to a and ß larger than those

demanded by the operators themselves. They serve, however, to clarify

the non-existence of A [e~au](t) and A [e~au](t) for certain t's* and the differ-

ence in form of {e~aD}xo<p(x) for X—x0<a, andX—x0>a.

We may, in fact, think of our definition of generalized differentiation as

not beginning to work, in the latter case, until X—x0>a. As a increases,

this period of adjustment, as we may call it, increases. It is then interesting

to observe that in the case of the operator e~D* this period of adjustment is

never completed, since, for finite x0,

(70) {e-Dl}XMx) = 0.

Here, then, we must take x0 = — °o, for which, at least, (45) holds. e~D% can

be considered of type higher than one. This failure of our definition of

generalized differentiation, with its partial failure in the case of operators

of type one, throws into greater relief its peculiar applicability to those

operators we have called of type zero.

* That A [e-°u](/) and A [e°«](<) are identically zero for l>a corresponds to e-"D and eaD being

operators of type one over the plane.

New York City, N. Y.


