ON DIVISION ALGEBRAS*

BY

O. C. Hazlett

1. Summary. Linear algebras have been studied in great detail for many years, but they have usually been studied over a field F. In the papers by Dickson,† Cecioni,‡ A. A. Albert§ and others, a division algebra over a field F can be regarded as a division algebra defined over an algebra containing F. In the present paper, it is proved that every division algebra over a field F can be regarded as an algebra E_i over a division algebra D_i, where D_i is in its turn an algebra E_{i+1} over an algebra D_{i+1}, etc. where each of the component algebras D_i is a division algebra defined over a field F_i contained in E_i of one of the three following types:

(1) fields,

(2) normal Dickson algebras,

(3) algebras which contain no Dickson subalgebras.

This paper does not determine whether there actually exist algebras of the third type, but the writer has the feeling that none such exist. This principle is applied to certain solvable algebras and it appears that under suitable conditions a solvable algebra is a direct product of solvable algebras.

2. Relation to the literature; definitions. We shall use the term field to denote a set of elements with two operations called addition and multiplication which is an abelian group with respect to addition and which, when we exclude the zero element (= the unit as to addition), is an abelian group with respect to multiplication: If, however, we do not insist on multiplication being commutative, then a set of numbers which is closed under the four rational operations (excluding division by zero) is said to form a division (or primitive) algebra, if it be always possible to solve for x in the algebra

* Presented to the Society, May 2, 1925; received by the editors in April, 1930.
both of the equations $xy = z$ and $yx = z$ when y and z are any two numbers in the algebra. These are division algebras over any field F.*

When the field F is the field R of reals, it is well known that the only division algebras are (1) an algebra of one unit, the field R itself; (2) an algebra of two units, 1 and i, the field C of ordinary complex numbers; (3) an algebra of four units $(1, i, j, k)$, real quaternions. When the field of definition is C, the only division algebra is C itself. But when F is any other field, the nature and number of types of division algebras has not yet been fully determined, although recently much work has been done.†

When F is any algebraic field, Dickson considered a general class of algebras that he called Type A. He defines an algebra of this type as any linear associative algebra A, the coördinates of whose numbers range over F and for which the following properties hold:

(a) There exists in A a number i satisfying an equation $\phi(x) = 0$ of degree n with coefficients in F and irreducible in F.

(b) Any number of A which is commutative with i is in $F(i)$.

(c) There exists in A a number j, not in $F(i)$, such that $ji = \theta j + \sigma$, where θ and σ are in $F(i)$.

All three of these conditions are satisfied by real quaternions, and the first two by any linear associative division algebra D over F, where we take i so that the degree of the irreducible equation in F satisfied by i is a maximum. Dickson‡ showed that every algebra of type A over F has a subalgebra S over F which can be exhibited as an algebra L over a field K with units θj_s, $s = 0, \ldots, r - 1$. Multiplication is defined by the relations $ji = \theta(i)j$, $j^r = g$ where i is an element of S satisfying in the field K a uniserial abelian equation of degree r, with the roots $i, \theta(i), \theta^2(i), \ldots, \theta^{r-1}(i)$, where $\theta^r(i) = i$ and where g is a number of K. Dickson showed for $r = 2, 3$ that g could be so chosen that in the algebra L, division (except by zero) is always possible and unique. Wedderburn,§ a few months later, showed that, for

‡ These Transactions, vol. 15 (1914), p. 37.

§ These Transactions, vol. 15 (1914), pp. 162–166.
general \(r, g \) can be so chosen that \(L \) (and hence \(S \)) is a division algebra. Wedderburn has called division algebras of the type of \(L \) Dickson algebras.*

A quadrate (normal) division algebra is any division algebra which contains no numbers other than scalars which are commutative with every number of the algebra. Any division algebra is the direct product of a field and a quadrate division algebra.†

Several years later, Wedderburn‡ proved that every division algebra of order 9 is either a field or a Dickson algebra. In a footnote of this paper he says that, although he has been unable to construct a division algebra analogous to Dickson algebras, but corresponding to a non-cyclic abelian equation, yet “it appears probable that they exist.” More recently, Cecioni§ considered division algebras over any field \(K \) whose order is a perfect square, \(n^2 \), and which contain an element \(i \) whose reduced equation is an abelian equation of degree \(n \) with coefficients in \(K \), and determined certain properties of them. In April 1926, Dickson published another beautiful paper|| on division algebras, in which he proved that just as there is a Dickson algebra corresponding to any cyclic group, so there is a division algebra corresponding to any solvable group.

More recently, A. A. Albert¶ considered normal division algebras of order \(n^2 \) over a non-modular field \(F \) of type \(R_k \).** He proved (Theorem 21): Let \(A = B \times C \), where \(B \) is an associative normal division algebra of order \(n^2 \) over \(F \), of type \(R_n \), and \(C \) is an associative normal division algebra of order \(m^2 \) over \(F \), of type \(R_m \). If \(A \) be an associative division algebra, then \(A \) is a normal division algebra of type \(R_{nm} \).††

* These Transactions, vol. 22 (1921), p. 134.
† Wedderburn, these Transactions, vol. 22 (1921), p. 130.
‡ On division algebras, these Transactions, vol. 22 (1921), pp. 129–135.
§ Loc. cit.
|| New division algebras, these Transactions, vol. 28 (1926), pp. 207–234.
** A normal division algebra is said to be of type \(R_k \) if it contain an element \(x \) of grade \(n \) and type \(R_k \). The element \(x \) is said to be of grade \(t \) if the degree of its minimum equation is \(t \); and of type \(R_k \) if its minimum equation have a set of \(k \) ordinary complex roots which are polynomials in one of the set.
†† In his proof that \(A \) is normal, he uses the assumption that \(B \) and \(C \) are of special types. If we define a normal algebra as any algebra \(A \) (not necessarily a division algebra) over \(F \) which is such that the only numbers commutative with every number of \(A \) are in \(F \), then we easily prove

Theorem 1. If \(B \) and \(C \) be two normal algebras defined over the field \(F \), then \(A = B \times C \) is normal.

For let \(a = \sum b_i c_i \) be a number of \(A \) commutative with every number of \(A \) where each \(b_i < B \) and. each \(c_i < C \). We may assume without loss of generality that the \(b_i \) are linearly independent with respect to \(F \). Since \(a \) is commutative with every number \(\gamma < C \), then \(\sum b_i (\gamma c_i) = \sum b_i (\gamma c_i) \). By the definition of a direct product, the \(b_i \) are linearly independent with respect to \(C \) and thus \(c_i \gamma = \gamma c_i \).

Since \(C \) is normal, \(c_i < F \) and \(a < B \). Since \(a \) is commutative with every number of \(B \), then \(a < F \) and
In the second paper,* he shows that every normal division algebra of order \(4p^2\), \(p\) an odd prime, of the special type considered by Dickson† is of type \(R_{2p}\) and hence is “known,” as he calls it. A “known” algebra might be described as a division algebra \(\Gamma\) which is a Dickson algebra with respect to a proper subalgebra \(\Sigma\) which, in its turn, is a “known” algebra with respect to a proper subalgebra.‡

A is normal.

Similarly in his proof that \(A\) is of type \(R_m\), he uses the assumption that \(F(i)\) and \(F(k)\) are im-
bedded in division algebras of a special kind, but this is not necessary. In fact, it is easy to prove

Theorem 2. Let \(F(i)\) be a field of order \(n\) defined by \(i\) of type \(R_4\) and let \(F(k)\) be a field of order \(m\) defined by \(k\) of type \(R_m\). Then any number \(\omega\) that defines \(F(i, k)\), of order \(p\), is of type \(R_p\).

For \(F(i, k)\) is defined as an overfield of \(F\) by any number \(\omega\) satisfying an irreducible equation of degree \(p\), say

\[
t = t_0 + \sum \phi(i)k^\beta (\beta = 0, \cdots, m-1)
\]

where \(\phi(i) \in F(i)\). Then

\[
t = \sum \phi(i)k^\beta (r = 1, \cdots, n; s = 1, \cdots, m),
\]

where \(\theta, \cdots, \theta_n\) is a complete set of conjugates of \(i\) with respect to \(F\) and \(\phi_1, \cdots, \phi_n\) is a complete set of conjugates of \(k\) with respect to \(F_i\), in \(F(i, k)\) and thus is a polynomial in \(\omega\) with coefficients in \(F\). Hence \(\omega\) is a root of \(\phi(\omega) = \pi(\omega - \omega_m) = 0\) of degree \(mn\) and with coefficients in \(F\). Since the minimum function of \(i\) is a factor of \(\phi(\omega)\), then \(i\) is of type \(p\).

‡ Several of his theorems assert that if \(x\) be a number of a normal division algebra \(A\) satisfying certain conditions, then \(A\) contains a number satisfying certain other conditions and the proof of each of these theorems (32, 34, 35) actually uses numbers of \(A\) outside of \(F(x)\), although the theorem seems to be about \(F(x)\) rather than about \(A\). Theorem 32: Let \(A\) be normal division algebra. Let \(x < A\) have the property that \(-x\) satisfies the minimum equation of \(x\). Then the minimum equation of \(x\) has even powers only. Let \(x^2\) be of grade \(p\) with \(\phi(\omega) = 0\) as its minimum equation. Then \(x\) has grade \(2p\) and the minimum equation is \(\phi(\omega^2) = 0\). We can readily prove

Theorem 3. Let \(x\) generate a field \(F(x)\) and let \(x\) have the property that \(-x\) satisfies the minimum equation of \(x\). Then the minimum equation of \(x\) has even powers only; and if \(x^2\) be of grade \(p\) with \(\phi(\omega) = 0\) as its minimum equation, then \(x\) has grade \(2p\) and its minimum equation is \(\phi(\omega^2) = 0\).

For if \(x(\xi) = 0\) be the minimum equation of \(x\), then \(-x\) is a root of \(x(\xi) = 0\) and thus \(x\) is a root of \(x(\xi) = 0\). Since \(x(\xi) = 0\) is of the same degree as \(x(\xi) = 0\), the minimum equation, they must be identical except for a change of sign throughout, and thus \(x(\xi) = 0\) contains only even powers of \(\xi\). By hypothesis, \(F(x^2)\) is of order \(p\) and, since \(x\) satisfies an equation of degree at most 2 with respect to \(F(x^2)\), then \(F(x)\) is of order \(p\) or \(2p\). But, if the order were \(p\), then \(x\) would equal a polynomial in \(x^2\) of degree \(p\). Transposing the term \(x\), we have an equation \(\psi(\xi) = 0\) containing precisely one term of odd degree with non-zero coefficient. Since \(x(\xi)\) is a factor of \(\psi(\xi)\), then \(-x\) must satisfy \(\psi(\xi) = 0\) which implies \(x = -x\) and this is impossible. Hence \(F(x)\) is of order \(2p\) and thus its minimum equation is \(\phi(\omega^2) = 0\).

Theorem 4. Let \(F(x)\) be a field of order \(2p\) and let \(x\) satisfy

\[
\phi(\omega) = \omega^p + \alpha_1 \omega^{2p} + \cdots + \alpha_p = 0 (\alpha_i < F)
\]

such that \(\phi(\omega) = \psi(\omega^2)\) where \(\psi(\rho) = 0\) is cyclic. Then \(\phi(\omega) = 0\), and \(\phi(\omega) = 0\) is solvable.

For since \(\psi(\rho) = 0\) is a cyclic resolvent equation of \(\phi(\omega) = 0\), then the adjunction of the root of the former reduces the group \(G\) of the latter to an invariant subgroup \(G_1\) and the quotient group \(H_1 = G/G_1\) is cyclic of order \(p\). Now \(G_1\) is the group of

\[
\phi(\omega) = \pi(\omega^3 - \rho_k) = 0
\]

for the enlarged field containing the \(\rho_k\) and hence is of order \(2^k\). Hence the group of \(\phi(\omega) = 0\) is of order \(2^k p\) and has a series of composition \(p, 2, \cdots, 2\). Thus the theorem.
3. General division algebras. Let D be a division algebra over any algebraic field F, and let it contain a number i whose reduced equation, $\phi(x) = 0$ of degree r, has at least two roots in $F(i)$. Then this equation has a root in $F(i)$ distinct from i, say $\theta(i)$; and hence its distinct symbolic powers $\theta, \theta^2, \ldots, \theta^n = i$ are, also, roots of $\phi(x) = 0$. By previous work,* there is a number $J \neq 0$ in D and a polynomial $\theta(i)$ with coefficients in F such that $Ji = \theta(i)J$ if and only if $\theta(i)$ is a root of $\phi(x) = 0$. Moreover, corresponding to each root of $\phi(x) = 0$ which is in $F(i)$ there corresponds a number J in D which is essentially unique in the sense that all such numbers J corresponding to the same root are products of a particular such J by some (any) number in $F(i)$.†

Accordingly, let $J_1, J_2, \ldots, J_l = 1$ be a set of non-zero numbers of D such that $J_k i = \theta_k(i)J_k(k = 1, \ldots, l)$ where each θ_k is a polynomial in i and (by the foregoing remarks) is a root of $\phi(x) = 0$. Also let the set of $\theta_k(k = 1, \ldots, l)$ be such that they form a closed cycle,‡ namely, such that if θ_a and θ_b be any two θ's of the set (coincident or distinct), then $\theta_a \theta_b$ is also in the set. Then we have

Lemma 1. Let A be any algebra over F of Dickson's type A (defined as above) and let i be any number $\neq 0$ of A whose reduced equation, of degree r, has at least two roots, i and $\theta(i)$, in $F(i)$. Then there is a number $j \neq 0$ of A such that $ji = \theta(i)j$. If J_1, J_2, \ldots, J_l be any set of numbers of A such that $J_k i = \theta_k(i)J_k$ is a polynomial in i where the θ's form a closed cycle (defined above), then the totality of numbers of the form $B = \sum A_k(i)J_k$, where the A_k range over all polynomials in i with coefficients in F, form an algebra B of order rl. For the set of numbers B is closed under addition and subtraction. Also, $J_kJ_l^i = J_k\theta_l(i)J_l = \theta_l(\theta_k)J_kJ_l = \theta_l(\theta_k)J_kJ_l$ where $\theta_p(i)$ is in the set of θ's since they form a closed cycle. Hence $J_kJ_l = X(i)J_l$, where $X(i)$ is a polynomial in i§ and the set B is an algebra over F. It is already known that the set is of order rl. Note that B contains i itself since if we let $\theta_1 = i$ then $ji = i$ and thus $j_1 = i$.

Dickson proved this lemma|| for the case when the θ's are symbolic powers of one of them.

By this lemma, there is in the algebra D a subalgebra D_1 corresponding

* Dickson, these Transactions, vol. 15 (1914), p. 35.
† Hazlett, these Transactions, vol. 18 (1917), p. 171.
‡ This is equivalent to saying that the corresponding substitutions (H) of Dickson's paper in the Transactions for April, 1926, form a group.
§ Hazlett, these Transactions, vol. 18 (1917), p. 171.
|| These Transactions, vol. 15 (1914), p. 36.
to each root of the reduced equation \(\phi(x) = 0 \) of the number \(i \) which is in \(F(i) \). Since \(D \) is an associative division algebra, so also is \(D_1 \). Moreover, since the algebra \(D_1 \) is an algebra of the type \(A \) discussed by Dickson, his results apply here. Thus a number \(x \) of \(D_1 \) is commutative with all numbers of \(D_1 \) if \(x \) is in the field \(K \) generated by the elementary symmetric functions of \(\theta_1, \theta_2, \cdots, \theta_l \). Also, \(D_1 \), an algebra of order \(r \) over \(F \), can be regarded as a quadrate algebra \(Q_1 \) of order \(r^2 \) and rank \(r \) over \(K \). Hence \(D \) over \(F \) contains a quadrate subalgebra \(Q_1 \) of order \(r^2 \) defined over \(K \), where \(K \) is an overfield of \(F \) which lies in \(D \).

Since \(D \) is a quadrate division algebra, there is some overfield \(F_1 \) of \(F \) such that \(D \) is equivalent in \(F_1 \) to a simple matric algebra, \(M \). Also, \(Q_1 \), considered as an algebra over \(K \), where \(K \) is an algebra over \(F_1 \), is equivalent to a simple matric algebra \(M_1 \) which is a subalgebra of \(M \). Hence, by one of Wedderburn's theorems, \(M \) is the direct product of \(M_1 \) and a simple matric algebra \(M_2 \) of order \(p^2 \), where \((p^2)^2 \) is the order of \(D \). By the foregoing, \(M_1 \), considered as an algebra over \(K \), where \(K \) is an algebra over \(F_1 \), is equivalent in \(F_1 \) to \(Q_1 \) over \(K \), where \(K \) is now an algebra over \(F \); but, since \(M_2 \) contains all numbers of \(M \) commutative with every number of \(M_1 \), this means that the numbers of \(K \) come from \(M_2 \) and \(K \) is equivalent in \(F_1 \) to a subalgebra of \(M_2 \). Moreover, \(M_2 \) does not have a basis which, when expressed in terms of the numbers of \(D_1 \), is rational in \(F \). For, if it did, then (by one of Wedderburn's theorems) \(M_2 \) would be equivalent in \(F_1 \) to a division algebra \(D_2 \) over \(F \) which is a subalgebra of \(D \) and thus* \(D \) would be the direct product of \(D_2 \) and another quadrate division algebra, \(D_3 \), which contains all numbers of \(D \) commutative with every number of \(D_2 \). Thus \(D_2 \) would be equivalent to \(M_1 \) and hence would be equivalent to \(D_1 \) in \(F_1 \); and, since \(D_1 \) and \(D_2 \) are both subalgebras of \(D \), then they would be equivalent in \(F \). But this last is impossible since \(M_1 \) does not have a basis which, when expressed in terms of numbers of \(D_1 \), is rational in \(F \). Hence \(M_2 \) does not have a basis rational in \(F \).†

Thus we have

Remark 1. Let \(D \) be a division algebra over the field \(F \) and let \(D \) contain \(Q_1 \) when \(Q_1 \) is a quadrate division algebra defined over \(F(x) \) where \(x \) is in \(D \) but not in \(F \). Then \(D \) can be represented as a division algebra defined over \(Q_1 \).

Applying this to our algebra \(D \), we see that if \(D \) contain any Dickson algebra \(D_1 \) as a subalgebra, then \(D \) can be represented as a division algebra defined over a quadrate Dickson algebra \(Q_1 \), where \(Q_1 \) is defined over \(F(\alpha) \), an over-field of \(F \). From the foregoing paragraphs, there is such a quadrate algebra \(Q_1 \) determined by \(i \) and any set of polynomials \(\theta_j(i), \cdots, \theta_l(i) \) which

* On division algebras, these Transactions, vol. 22 (1921), p. 132.
† I here want to thank Professor Wedderburn for pointing out a mistake in this part.
are roots of $\phi(x) = 0$ provided the θ's form a closed cycle. Since the symbolic powers of any such θ form a closed cycle, we may take these symbolic powers of θ which are distinct; then they (including $\theta^n = i$) satisfy an equation $g(x) = 0$ of degree n with coefficients in K (the field of the symmetric functions of $\theta, \theta^2, \cdots, \theta^n = i$) which is, moreover, irreducible in K. In this case, Q_1 is a quadrate Dickson algebra of order n^2 over K. If n is composite, let $n = pq$ where p is a prime. Then θ^2 is a polynomial in i with coefficients in F such that its first p symbolic powers are distinct, form a closed cycle, to which the above results apply, and thus are the roots of an equation of degree p with coefficients in K^{*1} (field of the symmetric functions of the symbolic powers of θ^2) which is irreducible in K. The quadrate algebra, Q, defined by this closed cycle is accordingly a Dickson algebra of order p^2 over K.

Applying Remark 1, we have

Remark 2. If the division algebra D has a Dickson proper subalgebra D_1, then D_1 is a quadrate Dickson algebra Q_1 over $F(\alpha)$, where $F(\alpha)$ is an overfield of F, and D can be represented as an algebra E_1, defined over D_1. In its turn, D_1 can be regarded as an algebra E_2 over an algebra D_2, etc., where each of the component algebras D_1 is a division algebra (defined over a field F_1 contained in E_1) of one of the three following types:

1. algebraic fields,
2. normal Dickson algebras,
3. algebras which contain no Dickson subalgebra.

4. Solvable algebras. We now turn our attention to the algebras of Dickson's two most recent papers on division algebras. The above argument applies here.

In the first of these papers, he is concerned with any associative algebra Γ with modulus 1 over any field F with the following properties.

(I) Γ is of order n^2.

(II) Γ contains an element i which satisfies an equation $f(x) = 0$ of degree n irreducible in F.

(III) The only elements of Γ which are commutative with i are polynomials in i with coefficients in F.

(IV) The roots of $f(x) = 0$ are rational functions, $\theta_r(i)$, of i with coefficients in F.

(V) The group, G, of $f(x) = 0$ is solvable.

(VI) Γ contains elements $j_r \neq 0 (r = 1, \cdots, n)$ satisfying $j_r = \theta_r(i)j_r$.

(VII) The product of any j_i and j_r of VI is not zero.

† New division algebras, these Transactions, vol. 28 (1926), pp. 207–234.
Such an algebra he called of Type E. For convenience, we might call any algebra of this type a solvable algebra. Note that any solvable algebra whose order is the square of a prime is necessarily a Dickson algebra, and that all Cecioni and Dickson algebras are special cases of solvable algebras.

In the following discussion, we shall consider \(f(x) = 0 \) as an ordinary algebraic equation and shall restrict attention to its roots \(\theta \) in an overfield of \(F(i) \). Let \(G \) be the Galois group of order \(n \) of the equation \(f(x) = 0 \). If the elements of \(G \) be denoted by \(\Theta_r \), the notation may be so chosen that \(\Theta_r \) is the only substitution that replaces \(i \) by \(\Theta_r(i) \), and also \(\Theta_r \Theta_s = \Theta_t \) if and only if \(\Theta_r \Theta_s = \Theta_t \). Moreover, since \(G \) is solvable, it has an invariant subgroup \(G_1 \) of prime index \(p \) and order \(q \), such that every substitution of \(G \) can be expressed in the form \(\Phi \Theta_k (1 \leq k \leq q; 0 \leq r \leq p) \), where \(\Theta_k \) ranges over the substitutions of \(G \), and \(\Phi \) is a substitution of \(G \) not in \(G_1 \) and such that the \(p \)th power of \(\Phi \) is the lowest power of \(\Phi \) in \(G_1 \).*

If \(\Theta_r \) and \(\Theta_s \) be any two substitutions of \(G_1 \), then \(\Theta_s \) is in \(G \), and we have \(j \Theta_r = \Theta_k(i) j_k \ (1 \leq k \leq q) \) and \(j \Theta_s = c_r j_i (c_r < F(i)) \). Thus the totality of linear functions of \(j_1, j_2, \ldots, j_q \) with coefficients in \(F(i) \) is a subalgebra, \(A_1 \), of \(\Gamma \) of order \(nq = pq^2 \) over \(F \). Moreover, each number of \(A_1 \) is commutative with every number of the field \(F_1 \) of the symmetric functions of \(\theta_1 = i, \theta_2, \ldots, \theta_q \). Since \(F(i) \) is an algebraic field of order \(n = pq \) with respect to \(F \) and of order \(q \) with respect to \(F_1 \), then \(F_1 \) is of order \(p \) with respect to \(F \) and is defined by an irreducible equation \(g_1(x) = 0 \) of degree \(p \), with coefficients in \(F \). Thus \(A_1 \) is a subalgebra \(S_1 \) of order \(q^2 \) and rank \(q \) over \(F_1 \).

From this it follows that we can arrange the \(n \) roots of \(f(x) = 0 \) in \(p \) rows of \(q \) each and arrange similarly the corresponding solutions \(j \neq 0 \) of the equations \(ji = \Theta(j) \) as in the accompanying array:

\[
\begin{align*}
\Phi_1(\theta_1) &= i, & \Phi_1(\theta_2) &= \theta_2, & \cdots, & \Phi_1(\theta_q) &= \theta_q \\
j_1 j_1 &= j_1 = J_1 = 1, & j_2 j_1 &= j_2, & \cdots, & j_q j_1 &= j_q \\
\Phi_2(\theta_1) &= \phi_2, & \Phi_2(\theta_2), & \cdots, & \Phi_2(\theta_q) \\
j_2 j_2 &= J_2, & j_2 j_2, & \cdots, & j_q j_2 \\
\Phi_p(\theta_1) &= \phi_p, & \Phi_p(\theta_2), & \cdots, & \Phi_p(\theta_q) \\
j_p j_1 &= J_p, & j_2 j_2, & \cdots, & j_q j_p
\end{align*}
\]

where we have placed each solution \(j \neq 0 \) directly below the corresponding \(\theta \). The \(q \) \(\theta \)'s in the first line are the roots of \(f_1(x) = 0 \) of degree \(q \), the \(q \) \(\theta \)'s in the second line are the roots of an equation \(f'_1(x) = 0 \) obtained by replacing \(i \) in

* For details, see the paper by Dickson cited in the previous footnote.
the coefficients of \(f_1(x) = 0 \) by \(\phi_2(i) \); etc. Since \(\Phi^p < G \), then \(\phi^p \) is a root in the first row, but is not \(i \) unless \(\Phi = 1 \).

Now \(G_1 \) is the group of \(f_1(x) = 0 \) for the field \(F_1 \). For, if we adjoin to \(F \) a root of \(g_1(x) = 0 \), this is equivalent to enlarging \(F \) to \(F_1 \) and the group is reduced to an invariant subgroup of \(G \). Since any symmetric function of the roots of \(f_1(x) = 0 \) is unaltered by every transformation of \(G_1 \), then the group contains \(G_1 \) and thus is precisely \(G_1 \).

From this, it follows that the group of \(g_1(x) = 0 \) for the field \(F \) is the quotient group \(G/G_1 = H_1 \) and \(g_1(x) = 0 \) is a cyclic equation. Since \(g_1(x) = 0 \) is completely solvable in \(F(i) \), we may denote any of its roots by \((i) \). Since \(g_1(\psi(x)) = 0 \) has the root \(i \) in common with the irreducible equation \(f(x) = 0 \), then it has all the roots of the latter and thus \(g_1(x) = 0 \) has \(\psi(\theta) \) as a root where \(\theta \) is any root of \(f(x) = 0 \). If \(h(x) = \pi(x - \psi(\theta_k)) \) \((1 \leq k \leq n) \), then every coefficient of \(h(x) \) is a symmetric function of the roots of \(f(x) = 0 \) and thus is in \(F \). Moreover, every root of \(h(x) = 0 \) is a root of the irreducible equation \(g_1(x) = 0 \). Thus every root of \(g_1(x) = 0 \) is of the form \(\psi(\theta) \), and \(h(x) \) is the \(q \)th power of \(g_1(x) \).

From this relation of the roots of \(g_1(x) = 0 \) to the roots of \(f(x) = 0 \), we readily obtain a set of numbers \(j \) of the algebra \(\Gamma \) satisfying the equation \(j\psi(i) = \chi(i)j \). For if \(\theta \) be any root of \(f(x) = 0 \) and \(j \neq 0 \) a solution of \(ji = \theta j \), then \(j\psi(i) = \psi(\theta)j \). Moreover, if \(\chi(i) \) be any number of \(F \) such that there exists a number \(J \neq 0 \) satisfying \(J\psi(i) = \chi(i)J \), then \(0 = Jg_1(\psi) = g_1(x)J \) and hence \(\chi \) is a root of \(g_1(x) = 0 \). Accordingly, all such polynomials \(\chi \) are of the form \(\psi(\theta) \), where \(\theta \) is a root of \(f(x) = 0 \); and we find a solution \(J \neq 0 \) in \(\Gamma \) of each possible equation \(J\psi = \chi J \) by taking as \(\chi \) in turn every polynomial of the form \(\psi(\theta) \) and then a corresponding \(J \) is the \(j \) corresponding to \(\theta \) in the equation to \(ji = \theta j \).

It is to be noted that, although a number \(j \) in \(\Gamma \) such that \(ji = \theta j \) is essentially unique* in the sense that any other \(j \) satisfying the equation is of the form \(\beta(i)j \), yet a number \(j \) in \(\Gamma \) such that \(j\psi(i) = \psi(\theta)j \) is not essentially unique. For, since \(f(x) = 0 \) has \(n \) roots, there are \(n = pq \) essentially distinct numbers \(j \) that satisfy in turn the \(p \) possible equations \(j\psi = \chi j = \psi(\theta)j \). Since \(h(x) \) is the \(q \)th power of \(g_1(x) \), the roots \(\psi(\theta) \) of \(h(x) = 0 \) are equal in sets of \(q \) each but the \(q \) corresponding \(j \)'s are not essentially equal. In fact, \(\psi(i) \) is a polynomial in \(i \) which is a symmetric function of the roots \(\theta \) in the first row of the array \(I \) and the distinct roots of \(g_1(x) = 0 \) are respectively the \(\psi \)-functions of each of the roots in the first column, and thus each \(\psi(\phi_k) \) is a symmetric function of the roots in the \(k \)th row. Thus we may choose as the numbers \(j \) corresponding to the roots of \(g_1(x) = 0 \) any \(q \) numbers such that one

* Since, under the assumptions, \(\Gamma \) has the basis \(ij(r, k, r=1, \ldots, n) \).
is chosen from each row. That is, we may choose the \(j's\) of the first column; and sometimes we may so choose them that the corresponding \(\theta's\) form a closed cycle. In the latter case, these \(j's\) are closed under multiplication except, possibly, for multipliers in \(F(i)\). In any case, denote the \(j's\) by \(J_1 = 1, J_2, \ldots, J_q\). The totality of numbers

\[
\sum_{l,t} a_{lt} [\psi]^t J_l (a \in F; l, t = 1, \ldots, p)
\]

will be denoted by \(\Gamma_1\).

Then the set of numbers \(j\) corresponding to the roots of \(f(x) = 0\) is obtained by forming all possible products \(J_{ij}([k = 1, \ldots, p; l = 1, \ldots, q])\) or, if we wish, by forming all possible products \(j_iJ_k\). Every number of \(\Gamma\) is of the form

\[
\sum_{s,t} \beta_{st}(i) J_s J_t \quad (s = 1, \ldots, q; t = 1, \ldots, p),
\]

where each \(\beta \in F(i)\) and therefore is of the form

\[
\sum_{k,l} \alpha_{kl} i^k [\psi]^l \quad (k = 1, \ldots, q; l = 1, \ldots, p).
\]

Hence every number of \(\Gamma\) is of the form

\[
\sum \beta_{kst} (i^k j_s) ([\psi]^t J_t),
\]

where each \(\beta \in F\). Let \(A_1\) denote the totality of numbers of the form

\[
\sum b_{kst} i^k j_s \quad (k, s = 1, \ldots q).
\]

Note that, although the foregoing was proved under the assumption that \(p\) is a prime, yet the same reasoning holds if \(G_1\) be any invariant subgroup of index \(p\) under \(G\), a solvable group, since a resolvent equation of a solvable equation is always solvable.

Since (1) every number linearly dependent with respect to \(F\) on the products \(i^k j_s (k, s = 1, \ldots, q)\) is a number of \(A_1\) and conversely every number of \(A_1\) can be expressed in one and only one way as such a linear combination; (2) every number linearly dependent with respect to \(F\) on the products \([\psi]^t J_t (l, t = 1, \ldots, p)\) is a number of \(\Gamma_1\) and conversely, we shall say that \(\Gamma\) over \(F\) has been represented as the algebra \(\Gamma_1\) over the algebra \(A_1\), where \(A_1\) is defined over \(F\).

If the \(J's\) can be so chosen that the set is closed under multiplication except for multipliers in \(F_1\), then \(\Gamma_1\) is an algebra of order \(p^2\) over \(F\). Moreover, \(\Gamma_1\) is a normal algebra, for if \(x = \sum x_{ki} [\psi]^k J_i (x_{ki} \in F)\) be any number of \(\Gamma_1\) that is commutative with every number of \(\Gamma_1\), then \(x\psi = \psi x\) is equivalent to
where \(J_\psi = \psi J_1 \), and this is equivalent to

\[
\sum_{k,l} x_{kl}[\psi]^{k+1}J_1 = 0.
\]

For each value of \(l \) there are two possibilities: \(\psi = \psi_1 \) or \(\sum x_{kl}[\psi]^{k} = 0 \). But \(\psi \neq \psi_1 \) unless \(l = 1 \), and hence \(\sum x_{kl}[\psi]^{k} = 0 \) (\(l \neq 1 \)), so that \(x < F(\psi) = F_1 \). Furthermore, \(x(\psi)J_r = J_r x(\psi) \) if and only if

\[
\sum_{k} x_{k}(\psi) - [\psi]^{k}J_r = 0, \quad x_{k}(\psi) - [\psi]^{k} = 0,
\]

which is equivalent to saying that \(x_k = 0 \) unless \([\psi]^{k} = [\psi_r]^{k} \) for every \(r \). But \(\psi \neq \psi_r (r \neq 1) \) and thus \(x_k = 0(k \neq 0) \), so that \(x < F \).

Since \(\Gamma_1 \) is a quadrate and is defined over the same field \(F \) as \(\Gamma \), then, by by one of Wedderburn's theorems, \(\Gamma \) is the direct product of \(\Gamma_1 \) and another quadrate division algebra, \(\Gamma_2 \), over \(F \). To determine \(\Gamma_2 \), we must determine the totality of numbers of \(\Gamma \) that are commutative with every number of \(\Gamma_1 \). Now every number of \(\Gamma \) is of the form \(x = \sum s \cdot x_{s}(\psi)J_s \). Accordingly, \(x\psi = xx \) is equivalent to

\[
\sum_{s} x_{s}(\psi)(\psi(\theta))j_sJ_s = \sum_{s} x_{s}(\psi)J_sj_sJ_s,
\]

Thus \(x_s = 0 \) unless \(\psi(\theta) = \psi \), and this last is equivalent to \(\psi_1 = \psi(\phi_i) = \psi(\theta_i) = \psi \), where \(\theta_i(\theta_i) = \psi \). Thus \(x_{s} = 0 \) unless \(l = 1 \), so that \(x = \sum x_s(\psi)J_s \).

But the totality of such numbers \(x \) contains all numbers of \(F(\psi) \). Now if \(x < F(\psi) \), then \(xJ_r = J_r x \) if and only if \(x(\psi)J_r = x(\phi_r)J_r \), and thus such an \(x \) is commutative with every \(J_r \), if and only if \(x < F_2 \), the field of symmetric functions of the \(\phi_r \). Just as we proved that \(F_1 \) is of order \(p \), so we prove that \(F_2 \) is of order \(q \).

Since \(\Gamma_2 \) is a quadrate division algebra of order \(q^2 \) containing the number \(\chi \) defining \(F_2 \) which satisfies an irreducible solvable equation of degree \(q \), then \(\Gamma_2 \) is a solvable algebra and contains a set of numbers \(K_i (l = 1, \cdots, q) \) such that \(K_i(\chi) = \rho_i(\chi)K_i \) where \(\rho_i \) is a polynomial in \(\chi \) with coefficients in \(F \), and such that every number of \(\Gamma_2 \) is of the form \(\sum y_i K_i (l = 1, \cdots, q) \) where \(y_i < F_2 \). Since \(\rho_i(\chi) \) is a conjugate of \(\chi \) with respect to \(F \), then each \(\rho \) is of the form \(\chi(\theta) \), where \(\theta \) is a conjugate of \(i \) with respect to \(F \). But \(\chi \) is a symmetric function of the roots of \(f(x) = 0 \) in the first column of \(I \), and hence (by the argument used above for the conjugates of \(\psi \)) the conjugates of \(\chi \)

*Note that, even if \(\Gamma_1 \) be not an algebra, the totality of such numbers \(x \) is precisely the totality of numbers of \(\Gamma \) commutative with the numbers of \(F_1 \).
are the same symmetric functions of the roots in the second column, in the third column, and so on. If $\chi = \chi(i)$, then the conjugates of χ are $\chi(\theta_l)$ ($l = 1, \ldots, q$). Hence $K_l \chi(i) = \chi(\theta_l) K_l = \chi_1 K_1$.

But $K_1 = \sum x_s(i) j_s$, and this last is equivalent to

$$x_s \chi(\theta_l) = x_l \chi(\theta_l)$$

which is equivalent to $\chi_s = \chi_l$ if $x_s \neq 0$. Since the q conjugates of χ are distinct, then $x_s = 0$ unless $s = l$, and thus

$$K_l = x_l(i) j_l$$

Since $K_l \neq 0$ and $K_l i = \theta_l K_1$, we may take K_l in place of the old j_l, and we shall assume henceforth that we have so done. With this choice of j_1, \ldots, j_q, Γ_2 is the totality of numbers of the form $\sum x_s j_s$, where $x_s \in F_2$.

Note that the new set of j's is closed under multiplication except for the multipliers in F_2.

Thus we have the

Theorem. Let Γ be a solvable algebra of order n^2 over a field F. Let i be any number of Γ satisfying a solvable irreducible equation $f(x) = 0$ of degree n with roots in $F(i)$ as given by the square array I and let the essentially unique number $j \neq 0$ of Γ satisfying the equation $j i = \theta j$ corresponding to each such root θ be as given directly below θ in I. Let F_1 be the field of symmetric functions of $\theta_1, \ldots, \theta_q$ of the first row, and let it be defined by χ where χ satisfies an irreducible equation in F of degree p. Assume that the set of numbers J_1, \ldots, J_p corresponding to the roots of the first column is closed under multiplication except for multipliers in F_1. Then the totality of numbers $\sum x_s j_s$, where $x_s \in F_2$, form a solvable division algebra Γ_1 of order p^2. Also, the set of roots ϕ of the first column is closed under iteration and their symmetric functions determine a field $F_2 = F(\chi)$ defined by an irreducible equation of degree q. If the set of numbers j_1, \ldots, j_q is not closed under multiplication except for multipliers in F_2, then each j_s may be multiplied by a suitable number $x_s(i) \neq 0$ such that the set $x_1 j_1, \ldots, x_q j_q$ is closed under multiplication except for multipliers in F_2.

If we take these as a new set of j_1, \ldots, j_q then the totality of numbers of the form $\sum x_s j_s$, form a solvable division algebra Γ_2 of order q^2. The algebra Γ is the direct product of Γ_1 and Γ_2.

It should be noted that the assumption that the set of numbers J_1, \ldots, J_p corresponding to the roots of the first column is closed under multiplication except for multipliers in F_1, is not as strong as it may at first seem. For if the set of numbers J_1, \ldots, J_p of the first column is not closed under multiplication, there may be p non-zero numbers in $F(i)$, y_1, \ldots, y_p,
such that the set \(y_1 J_1, \ldots, y_J J_p \) is closed under multiplication except for multipliers in \(F_1 \). Moreover, even if this be not possible it may be possible for another set of \(J_1, \ldots, J_p \); for \(J_2 \) is any non-zero solution \(j \) of the equation \(ji = \theta j \) where \(\theta \) is any root of \(f(x) = 0 \) not in the first row; \(J_3 \) is any non-zero solution when \(\theta \) is any root not in the first two rows; etc.

Moreover, this assumption as to the closure of the set of \(J \)'s is not incompatible with the assumption that \(\Gamma \) is an associative solvable algebra, as will be seen if we turn to Dickson’s article.* In §1, he exhibits a class of solvable division algebras of order \(p^2 q^2 \) over \(F \) with basal numbers \(i \) satisfying an irreducible equation of degree \(pq \) with roots \(\theta^k [\theta^k(i)] = \psi^r [\theta^k(i)] \) \((k = 0, 1, \ldots, q-1; r = 0, 1, \ldots, p-1) \) where \(\psi = i, \psi^p = i \). Multiplication is determined by the associative law in conjunction with \(j^s = g, k^x = r, kj = \alpha j k, ji = \theta j, ki = \psi k \) where \(q, r, \alpha < F(i) \). The conditions for associativity reduce to

\[
g = g(\theta), \quad \alpha \alpha \alpha(\theta^2) \cdots \alpha(\theta^{q-1}) g = g(\psi),
\]
\[
r = r(\psi), \quad \alpha \alpha \alpha(\psi^2) \cdots \alpha(\psi^{p-1}) r(\theta) = r.
\]

Here the powers of \(j \) play the rôles of \(j_1, \ldots, j_q \) of the present paper and the powers of \(k \) play the rôles of \(J_1, \ldots, J_p \). To see that our assumption as to the set of the \(J \)'s is not inconsistent with the above condition for associativity, take \(g \) and \(r \) as numbers in \(F \) and then both the sets of \(j \) and those of \(J \) are closed under multiplication. From the work above, it follows that \(kj = jk \) and therefore \(\alpha = 1 \) and all conditions for associativity are satisfied.

Brauer† has proved that any quadrate division algebra of order \(p^2 q^2 \) where \(p \) and \(q \) are relatively prime is the direct product of a division algebra of order \(p^2 \) and a division algebra of order \(q^2 \). In particular, any solvable algebra \(\Gamma \) of order \(p^2 q^2 \) is a direct product of a division algebra \(\Gamma_1 \) of order \(p^2 \) and a division algebra \(\Gamma_2 \) of order \(q^2 \). If \(\Gamma_1 \) be solvable, then it contains a number \(i \), which satisfies an irreducible solvable equation in \(F \) of degree \(p \); and similarly with \(\Gamma_2 \). Applying Theorem 21 of A. A. Albert’s first paper‡ or by Theorem 2 of our footnotes re his theorem (see our §2), it follows that the \(i \) specified above may be taken as any number defining \(F(i, i) \). As the resolvent equation \(g_1(x) = 0 \), we shall take any defining equation of \(F(i) \).

Using the notation of the proof of the theorem, we first have the numbers \(J_1, \ldots, J_p \) given us in \(\Gamma_1 \), and thus we have \(J_1 i = \alpha_1(i) J_1 \). But \(i \) is a polynomial in \(i \), say \(\psi(i, i) \); and hence, by the proof of the theorem, \(\alpha_1(i) = \psi(\phi_i) \)

* These Transactions, vol. 28, p. 207.
† Loc. cit., p. 104.
‡ Loc. cit., p. 329.
where \(\phi \) is some root of \(f(x) = 0 \), the irreducible equation defining \(i \). We may take the present \(\phi_2, \phi_3, \phi_4, \ldots \) as the \(\phi_2, \phi_3, \phi_4, \ldots \) of \(I \). For the \(\alpha_i \) combine under iteration in a manner that might be described as simply isomorphic with the manner in which the corresponding elements of the group \(H_1 \) of \(g_1(x) = 0 \) combine under multiplication, and the corresponding \(J_i \) combine in the same manner, so to speak, except that the order of multiplication is reversed.* Since \(H_1 \) is the quotient group, there is an \(\alpha_i \) corresponding to each row of \(I \), this correspondence applying to multiplication; also, there is a \(J_i \) corresponding to each row of \(I \) and this \(J_i \) may be taken as one of the \(j \)'s in that row of \(I \). It is only a matter of rearranging the elements of one row to put this element first in the row. Hence the present \(J_1, \ldots, J_p \) can be taken as the \(J_1, \ldots, J_p \) of \(I \) and then the present \(\phi_1, \ldots, \phi_p \) become the \(\phi \)'s of \(I \). Since the set of \(J \)'s is closed under multiplication except for multipliers in \(F_1 = F(i) = F(\psi) \), we see that the assumptions of our theorem are satisfied whenever \(\Gamma \) is the direct product of two solvable division algebras.

* For details, see array \(I \).

University of Illinois, Urbana, Ill.