ON ORTHOGONAL POLYNOMIALS

BY
J. GERONIMUS

1. Let \(f(z) \) be a function which is analytic inside and on the ellipse \(C \), having the points \(\pm 1 \) for its foci. We suppose also that, for real \(x \) in the interval \((-1, +1)\), \(f(x) \) is real. We have

\[
f(y) = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{z - y}.
\]

Consider now the function \(p(x) \), summable and not negative in the interval \((-1, +1)\) and satisfying the condition that

\[
\int_{-1}^{1} \log p(x)dx
\]

exists.

Consider also the normal orthogonal polynomials \(P_0, P_1(x), P_2(x), \ldots, \)

\[
P_k(x) = d_0^{(k)} x^k + d_1^{(k)} x^{k-1} + \cdots + d_k^{(k)} \quad [d_0^{(k)} > 0],
\]

corresponding to the characteristic function \(p(x) \), i.e.

\[
\int_{-1}^{1} p(x)P_k(x)P_s(x)dx = \begin{cases} 0, & k \neq s, \\ 1, & k = s. \end{cases}
\]

Then the series

\[
\sum_{k=0}^{\infty} a_k P_k(y) \quad \left(a_k = \int_{-1}^{1} \frac{p(y)P_k(y)}{z - y}dy \right)
\]

converges absolutely and uniformly with respect to \(y \), if \(y \) lies in any domain lying wholly inside the ellipse \(C \), which passes through the point \(z \) and has the points \(\pm 1 \) for its foci, \(\dagger \) i.e.,

\[
\left| \frac{y + (y^2 - 1)^{1/2}}{z + (z^2 - 1)^{1/2}} \right| < 1 - \epsilon \quad (\epsilon > 0 \text{ arbitrarily small}),
\]

\[
\left| z + (z^2 - 1)^{1/2} \right| > 1, \quad \left| y + (y^2 - 1)^{1/2} \right| \geq 1.
\]

* Presented to the Society, December 30, 1930; received by the editors in June, 1929.
Hence, introducing the functions $Q_k(z)$ of the second kind\(^*\)
\begin{equation}
 a_k = Q_k(z) \quad (k = 0, 1, 2, 3, \cdots),
\end{equation}
\begin{equation}
 \frac{1}{z - y} = \sum_{k=0}^{\infty} P_k(y)Q_k(z).
\end{equation}
Inserting this value of $1/(z - y)$ in (1) we get
\begin{equation}
 f(y) = \frac{1}{2\pi i} \int_C \left\{ \sum_{k=0}^{\infty} P_k(y)Q_k(z) \right\} f(z)dz = \sum_{k=0}^{\infty} C_k P_k(y),
\end{equation}
\begin{equation}
 C_k = \frac{1}{2\pi i} \int_C f(z)Q_k(z)dz \quad (k = 0, 1, 2, 3, \cdots).
\end{equation}
The coefficients C_k may be found independently:
\begin{equation}
 C_k = \int_{-1}^{1} p(x)f(x)P_k(x)dx \quad (k = 0, 1, 2, 3, \cdots),
\end{equation}
whence we find the relation
\begin{equation}
 \frac{1}{2\pi i} \int_C f(z)Q_k(z)dz = \int_{-1}^{1} p(x)f(x)P_k(x)dx \quad (k = 0, 1, 2, 3, \cdots).
\end{equation}
\iffalse
\begin{equation}
 \int_{-1}^{1} p(x)f(x)P_k(x)dx = \int_{-1}^{1} f(x)P_k(x)dx \quad (k = 0, 1, 2, 3, \cdots).
\end{equation}
\fi
\iffalse
\begin{equation}
 \frac{1}{2\pi i} \int_C f(z)Q_k(z)dz = \int_{-1}^{1} f(x)p(x)P_k(x)dx = \int_{-1}^{1} f(x)P_k(x)dx \quad (k = 0, 1, 2, 3, \cdots).
\end{equation}
\fi
\iffalse
\begin{equation}
 \int_{-1}^{1} f(x)p(x)P_k(x)dx = \int_{-1}^{1} f(x)P_k(x)dx \quad (k = 0, 1, 2, 3, \cdots).
\end{equation}
\fi
\fi
Put $k = 0$ and $f(x) = P_s(x)P_r(x)$. Then
\begin{equation}
 \frac{1}{2\pi i} \int_C Q_0(z)P_s(z)P_r(z)dz = \int_{-1}^{1} p(x)P_s(x)P_r(x)dx = \begin{cases} 0, & s \neq r, \\ 1, & s = r. \end{cases}
\end{equation}
This formula shows that the polynomials $P_s(x)$, which are orthogonal and normal in the interval $(-1, +1)$ with the characteristic function $p(x)$, have the same property (x being replaced by the complex variable z) on the contour C with the characteristic function
\begin{equation}
 \frac{Q_0(z)}{P_0} = \int_{-1}^{1} \frac{p(x)dx}{z - x}. \dagger
\end{equation}
In particular, we find that the normalized trigonometric polynomials
\begin{itemize}
 \item J. Sokhotzki, The Theory of Integral Residues with Applications (Thesis in Russian), St. Petersburg, 1868, p. 59, where formula (7) was established in a different way.
\end{itemize}
$$Tk(z) = \left(\frac{2}{\pi}\right)^{1/2} \cos k \arccos z$$

$$= \left(\frac{2}{\pi}\right)^{1/2} \frac{\left(\frac{z + (z^2 - 1)^{1/2}}{2} + \frac{(z - (z^2 - 1)^{1/2})^k}{2}\right)}{2}$$

$$\left(k = 1, 2, \ldots ; T_0 = \left(\frac{1}{\pi}\right)^{1/2}\right),$$

orthogonal on $(-1, 1)$ with the characteristic function $\rho(z) = 1/(1 - z^2)^{1/2}$, are orthogonal on the contour C with the characteristic function $\pi/(z^2 - 1)^{1/2}$.

In fact, according to S. Bernstein,* we have

$$Q_0(z) = \left(\frac{\pi}{z^2 - 1}\right)^{1/2}, \quad Q_k(z) = \frac{(2\pi)^{1/2}}{(z^2 - 1)^{1/2}} \frac{\{z + (z^2 - 1)^{1/2}\}^k}{k!}$$

($k = 1, 2, \ldots$).

2. A well known property of the polynomials (9) is the following. The formal developments

$$f(x) \sim \sum_{k=0}^{\infty} A_k T_k(x), \quad \phi(x) \sim \sum_{k=0}^{\infty} B_k T_k(x)$$

$$A_k = \int_{-1}^{1} \frac{f(x) T_k(x)}{(1 - x^2)^{1/2}} dx, \quad B_k = \int_{-1}^{1} \frac{\phi(x) T_k(x)}{(1 - x^2)^{1/2}} dx$$

imply, provided the integrals $\int_{-1}^{1} (f^2(x)/(1 - x^2)^{1/2}) dx$ and $\int_{-1}^{1} (\phi^2(x)/(1 - x^2)^{1/2}) dx$ exist,

$$\int_{-1}^{1} f(x)\phi(x) \mathrm{d}x = \sum_{k=0}^{\infty} A_k B_k.$$

Apply (11) to $f(x) = \phi(x)(1 - x^2)^{1/2}$, $\phi(x) = 1/(z - x)$, assuming that

$$\int_{-1}^{1} \rho^2(x)(1 - x^2)^{1/2} dx = \int_{0}^{\pi} \rho^2(\cos \phi) \sin^2 \phi d\phi$$

exists. Thus we get, writing

$$\rho(x)(1 - x^2)^{1/2} \sim \sum_{k=0}^{\infty} \rho_k T_k(x)$$

$$\left(\rho_k = \int_{-1}^{1} \rho(x) T_k(x) dx \right),$$

$$\frac{1}{z - x} = \sum_{k=0}^{\infty} T_k(x) Q_k(z),$$

ON ORTHOGONAL POLYNOMIALS

(15) \[
\frac{Q_0(x)}{P_0(x)} = \int_{-1}^{1} \frac{p(x)(1 - x^2)^{1/2}}{z - x} \frac{dx}{(1 - x^2)^{1/2}} = \sum_{k=0}^{\infty} c_k Q_k(z)
\]

(see (3), \(Q_k(z)\) given by (10)).

Hence, the formal trigonometric expansion

(16) \[
\phi(x) \sim \left(\frac{2}{\pi}\right)^{1/2} \left\{ \frac{a_0}{2^{1/2}} + \sum_{k=1}^{\infty} a_k \cos k\phi \right\}
\]

\[
\left(a_k = \int_{0}^{\pi} \phi(x) \sin \phi \cos k\phi d\phi \right)
\]
yields at once, under condition (12), the expansion for \(Q_0(z)/P_0\) with the same coefficients:

(17) \[
\frac{Q_0(z)}{P_0} = \left(\frac{2\pi}{z^2 - 1}\right)^{1/2} \left\{ \frac{a_0}{2^{1/2}} + \sum_{k=1}^{\infty} a_k [z - (z^2 - 1)^{1/2}]^k \right\}.
\]

If \(\phi(x)\) is a finite trigonometric sum, then \(Q_0(z)/P_0\) is also a finite sum. For example, taking

(18) \[
\phi(x) = (1 - x^2)^{1/2}, \quad \phi(x) \sin \phi = \sin^2 \phi = \frac{1}{2} - \frac{1}{2} \cos 2\phi,
\]

we find

(19) \[
\frac{Q_0(z)}{P_0} = \pi \left\{ z - (z^2 - 1)^{1/2} \right\}.
\]

In other words, the polynomials

(20) \[
P_0 = \left(\frac{2}{\pi}\right)^{1/2}, \quad P_k(z) = \frac{\{z + (z^2 - 1)^{1/2}\}^{k+1} - \{z - (z^2 - 1)^{1/2}\}^{k+1}}{(2\pi)^{1/2}(z^2 - 1)^{1/2}} \quad (k = 1, 2, 3, \ldots)
\]

are orthogonal and normal on the contour \(C\) with the characteristic function \(\pi \{z - (z^2 - 1)^{1/2}\}\).

3. We proceed to derive some interesting properties of the functions \(Q_n(z)\). Darboux has shown* that they satisfy the same recurrence relation as the \(P_n(x)\):

(21) \[
A_{n+1}Q_{n+1}(z) + A_nQ_{n-1}(z) = (B_n + z)Q_n(z) \quad (n = 1, 2, 3, \ldots),
\]

\[
A_1Q_1(z) = (B_0 + z)Q_0(z) - \frac{1}{P_0} \quad (A_i = \text{const.}).
\]

* Loc. cit., p. 415.
We multiply both members of Darboux's formula*

\[\sum_{k=0}^{n} P_k(x)P_k(y) = A_{n+1} \frac{P_{n+1}(x)P_n(y) - P_n(x)P_{n+1}(y)}{x - y} \quad (A_{n+1} = \frac{d_0^{(n)}}{d_0^{(n+1)}}) \]

by \(p(x) \) and \(p(x)/(z - x) \), and integrate between \(-1\) and \(1\). We get

\[Q_n(z)P_{n+1}(z) - Q_{n+1}(z)P_n(z) = \frac{1}{A_{n+1}}, \quad \uparrow \]

\[\sum_{k=0}^{n} P_k(y)Q_k(z) = A_{n+1} \frac{Q_{n+1}(z)P_n(y) - Q_n(z)P_{n+1}(y)}{z - y} + \frac{1}{z - y}, \quad \downarrow \]

Suppose now that \(p(-x) = p(x) \) ("symmetric" orthogonal polynomials). Then, as is known,

\[P_k(-x) = (-1)^k P_k(x), \]

and we get from (22), denoting by \([m]\) the greatest integer \(\leq m\),

\[\sum_{s=0}^{[n/2]} P_{2s}(x)P_{2s}(y) = A_{n+1} \frac{xP_{n+1}(x)P_n(y) - yP_n(x)P_{n+1}(y)}{x^2 - y^2}, \]

which, combined with the recurrence relation for \(P_k(x) \), gives

\[\sum_{s=0}^{[n/2]} P_{n-2s}(x)P_{n-2s}(y) = A_{n+1}A_{n+2} \frac{P_{n+2}(x)P_n(y) - P_n(x)P_{n+2}(y)}{x^2 - y^2}. \quad \uparrow \]

The same method applied to (23) gives

\[\sum_{s=0}^{[n/2]} P_{n-2s}(y)Q_{n-2s}(z) = A_{n+1}A_{n+2} \frac{Q_{n+2}(z)P_n(y) - Q_n(z)P_{n+2}(y)}{z^2 - y^2} + \frac{z}{z^2 - y^2}, \quad (n \text{ even}), \]

\[\sum_{s=0}^{(n-1)/2} P_{n-2s}(y)Q_{n-2s}(z) = A_{n+1}A_{n+2} \frac{Q_{n+2}(z)P_n(y) - Q_n(z)P_{n+2}(y)}{z^2 - y^2} + \frac{\nu}{z^2 - y^2}, \quad (n \text{ odd}). \]

4. Assume now again that the integral

\[\int_{-1}^{1} \frac{\log p(x)}{(1 - x^2)^{1/2}} \, dx \]

* Loc. cit., p. 413.
† F. Neumann, Beiträge zur Theorie der Kugelfunktionen, 1878, p. 71 \((p(x) = 1)\).
‡ Darboux, loc. cit., p. 415.
exists, and use the results of §1, concerning the expansion

\[\frac{1}{z - y} = \sum_{k=0}^{\infty} P_k(y)Q_k(z). \]

Combining (23), (3), we get the expansion*

\[\sum_{k=1}^{\infty} P_{n+k}(y)Q_{n+k}(z) = A_{n+1} \frac{P_{n+1}(y)Q_n(z) - P_n(y)Q_{n+1}(z)}{z - y}. \]

Multiplying (26), (27) by \(p(y)/(x-y) \) and integrating between -1 and 1, we get the expansions

\[\sum_{k=0}^{\infty} Q_k(x)Q_k(z) = \frac{Q_0(x) - Q_0(z)}{P_0(z - x)}, \]

\[\sum_{k=1}^{\infty} Q_{n+k}(x)Q_{n+k}(z) = A_{n+1} \frac{Q_n(z)Q_{n+1}(x) - Q_{n+1}(z)Q_n(x)}{z - x}, \]

which are valid for

\[|x + (x^2 - 1)^{1/2}| > 1 + \epsilon, |z + (z^2 - 1)^{1/2}| > 1 + \epsilon_1, \]

where \(\epsilon \) and \(\epsilon_1 \) are arbitrarily small but fixed positive constants.

In particular, for \(z = x \), we derive from (28), (29),

\[\sum_{k=0}^{\infty} Q_k^2(x) = - \frac{Q_0'(x)}{P_0}, \]

\[\sum_{k=1}^{\infty} Q_{n+k}^2(x) = A_{n+1} \{Q_{n+1}(x)Q_n'(x) - Q_n(x)Q_{n+1}'(x)\}. \]

In the case of symmetric orthogonal polynomials, we get from (26)

\[\sum_{k=0}^{\infty} P_{2k}(y)Q_{2k}(z) = \frac{z}{z^2 - y^2}. \]

Similarly,

\[\sum_{k=0}^{\infty} P_{2k+1}(y)Q_{2k+1}(z) = \frac{y}{z^2 - y^2}. \]

From (25) and (33) we find†

\[\sum_{k=1}^{\infty} P_{n+2k}(y)Q_{n+2k}(z) = A_{n+1}A_{n+2} \frac{P_{n+2}(y)Q_n(z) - P_n(y)Q_{n+2}(z)}{z^2 - y^2}. \]

All these expansions are valid for
\[
| z + (z^2 - 1)^{1/2} | > 1, \quad | y + (y^2 - 1)^{1/2} | \geq 1,
\]
\[
\frac{| y + (y^2 - 1)^{1/2} |}{z + (z^2 - 1)^{1/2}} < 1 - \epsilon.
\]

Multiplying (33), (34), (35) by \(p(y)/(x-y) \) and integrating between \(-1\) and \(1\), we get the expansions

\[
\sum_{k=0}^{\infty} Q_{2k}(x)Q_{2k}(z) = \frac{xQ_0(z) - zQ_0(x)}{P_0(x^2 - z^2)},
\]
\[
\sum_{k=0}^{\infty} Q_{2k+1}(x)Q_{2k+1}(z) = \frac{zQ_0(z) - xQ_0(x)}{P_0(x^2 - z^2)},
\]
\[
\sum_{k=1}^{\infty} Q_{n+2k}(x)Q_{n+2k}(z) = A_{n+1}A_{n+2} \frac{Q_{n+2}(x)Q_n(x) - Q_n(x)Q_{n+2}(x)}{x^2 - z^2},
\]

which are valid under condition (30). Putting \(z = x \), we get

\[
\sum_{k=0}^{\infty} \frac{Q_{2k}(x)}{x} = \frac{Q_0(x) - xQ_0'(x)}{2P_0(x)},
\]
\[
\sum_{k=0}^{\infty} \frac{Q_{2k+1}(x)}{x} = - \frac{Q_0(x) + xQ_0'(x)}{2P_0(x)},
\]
\[
\sum_{k=1}^{\infty} \frac{Q_{n+2k}(x)}{x} = A_{n+1}A_{n+2} \frac{Q_{n+2}(x)Q_n(x) - Q_n(x)Q_{n+2}(x)}{2x}.
\]