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1. Introduction. The most important algebras for their applications are

normal division algebras of degree n (order «2) over an algebraic field R(6),

where R is the field of all rational numbers and 6 is a root of an equation with

rational coefficients and irreducible in R. All normal division algebras of

degree two and three have been shown to be cyclic (Dickson) algebras. +

In the following sections the author will prove that all normal division

algebras of degree four (order sixteen) over R(d) are cyclic (Dickson) algebras.

2. On crossed products. We shall assume the following known theory of

normal simple algebras of degree « (order «2) over any non-modular field F.

TheoremÎ 1. Let the minimum equation cb(u>) =0 of x in A have degree «

a«á be irreducible in F. Then the only quantities of A commutative with x are the

quantities of the algebraic field F(x). Moreover, if y in A has the same minimum

equation as x, then y = zxz~l where z is in A.

Let (p(w) = 0 have degree «, coefficients in F and a regular group for F. Let

a: be a quantity with cb(w) =0 as its minimum equation so that there exist

polynomials 9i(x) in F(x) such that

(1) <p(w) = [u - 8n(x)]-[u - 6n-x(x)] •••[«- 6x(x)]

where 6x(x) =x. It is then true that there exist a set of integers titj determined

by the group of c/>(co) =0 such that

(2) *«[«/(*)]-*«.,,(*) (i,j= 1, ■••,»)•

An associative algebra A is called a crossed product^ if A has a basis

(3) x*~lyi (i,j = 1, • • • , n)

* Presented to the Society, October 31, 1931; received by the editors September 29, 1931.

t For algebras of degree two by L. E. Dickson, Algebren und ihre Zahlentheorie, Zurich, 1927,

p. 45; for algebras of degree three by J. H. M. Wedderburn, these Transactions, vol. 22 (1921), p. 132.

t This is an immediate consequence of the corresponding theorems on »-rowed square matrices

and the fact that it is possible to extend F by a scalar of finite degree so that A' over the extension

F' is a total matric algebra. Cf. the author's On the construction of cyclic algebras with a given exponent,

to be published in the American Journal of Mathematics.

§ See Hasse, Theory of cyclic algebras over an algebraic field, these Transactions, January, 1932,

for an exposition of the theory of crossed products and the results given in the remainder of this

section.
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where yi = 1, and a multiplication table

(4) 4>(x) = 0,      yix = di(x)yi,      y¡yi = gi,j(x)yUtj,

with the gi,j(x) in F(x) and all not zero. A necessary and sufficient condition

that a normal simple algebra be a crossed product is that it contain a quantity

x whose minimum equation has degree equal to the degree of the algebra and

regular group. Conversely every crossed product is a normal simple algebra.

With Noether and Hasse we give the crossed product the notation

(5) A = (g, Z)

where Z = F(x) and g is the set of quantities

(6) g = (gi.i).

Let B be another crossed product with the same Z but a new set of gi,j

so that B = (7, Z), where

(7) 7 = (7.„).

Then we have the known result

Theorem 2. Algebra AxB has the expression

(8) AXB = MXC,

where M is a total matric algebra of degree n over F and C is the crossed product

(9) C = (gy,Z),  gy = (gij-yij).

For the particular case where all the g¿,,- are unity we write g = 1. We then

have the known result

Theorem 3. A crossed product (1, Z) is a total matric algebra.

3. An abelian group with two generators. We shall consider crossed pro-

ducts in which the group of c/>(co) =0 in (1) is an abelian group with two

generators so that n = pq, and the polynomials 6i(x) are given by the pq quan-

tities

(io) ei [ej(x)] = Qi [ei(*)] {* = °' ]' " ' ' * ~ 1; 1
yj = 0, 1, • • • , q - 1    )

such that

(11) dx'(x) =62g(x) = x.

But then if Z = F(x)

(12) Z = PXQ
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where P is a cyclic field of order p over F and Q is a cyclic field of order q over

F. This corresponds to the fact that the group of ci>(co) =0 in this case is a

direct product of two cyclic groups. In fact P is the field of all quantities of Z

symmetric in <f>2(x) and its iteratives, Q is the field of all quantities in Z

symmetric in <px(x) and its iteratives. If a(x) is any quantity in Z we define

three types of norms for a. First

(13) Nia) = II       a{ei[ejix)]\
i-0,1,- • • ,J>-1

,-o,i.-..,s-i

is a quantity of F. Then

(14) Niia) = J!        «[«!'(*)]
i-0,1,- • • ,p-l

is in Q, and

(15) Ntia) = II       «[W(*)l
1=0,1, ■■■.q-1

is in P. Obviously

(16) Nia) = Nx[N2ia)] = tf,[tf,(a)].

The crossed product A has a basis

(17) x^y^yi-1   (* - 1, • • •, »;  j - 1, • • •, p;   k - 1, • • •, q)

and a multiplication table given as before but with now

(18) yi* = Oiix)yu       y2x = 02(x)y2,       y2;yi = aix)yxy2,

(19) yx* = gi,   y2" = g2,

where a, gx, and g2 are in F(x). L. E. Dickson has proved* that A is associative

if and only if

(20) gi is in Q, g2 is in P,

(21) Nxia)gx = gx[d2ix)],

(22) N*i«)g*[8iix)] = g2.

Consider the algebra A" = Mp-1XB, where, by Theorem 2, M is a total

matric algebra of degree « and B is a crossed product with a basis (17) and a

multiplication table as before with

(23) yxx = Bxix)yx,   y2x = B2ix)y2,

but now, by Theorem 2,

(24) yr* = g?,      y2" = g-?,      y2yx = a"yxy2.

* Algebren, p. 62, Theorem 17.
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We shall consider in detail the structure of algebra B. We replace yi in the

basis of B by a new quantity

(25) jx = grlyi,

where then

(26) ji» = 1,    y2/, = {giidiW^a'gijiyi.

Let P = F(u). Then obviously

(27) /i« = @i(«)/i,   ®i(u) = u[di(x)].

The algebra

Mp = (uij1') (i,j = 0,1,- ■■ ,p - I)

is a cyclic algebra of degree p over F with a multiplication table (27) i, (26) i.

By Theorem 3 algebra Mp is a total matric algebra. It follows from the well

known Wedderburn Theorem that

(28) B = Mp X C

where C contains Q = F(v) and is a cyclic algebra with a basis

(29) tf/V) (i,j = 0, 1, • ••,<?- 1),

and a multiplication table

(30) jiv = Oi(v)ji, j2° = 5,  e2(v) = v[02(x)],

where 5 is in F. We shall actually obtain the quantity j2 and hence its qth

power 5.

Using (21) we have

(31) a'gigitf,)-1 = a'Nibot)-1.

But evidently

(32) «"iVi(a)-1 = aa[öi(x)]-',

where

(33) a = aP-1-a[01(s)]"-!! • • • a[6x*-*(x)].

Hence if we let b = a"1 we have

(34) y2jx = b[e1(x)]b-1jxyi = b^jx^yù.

Let

(35) ji = a^y2 = by2.
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Then (34) is really

(36) À/'i =Á/2.

Since also y2w = wy2, we havej2« = Mj2 and/2 is commutative with all of the

quantities of Mv and is in C. Also

(37) y2v = @i(v)y2,  @2(v) = v[62(x)],

so that

(38) jtv.= ®i(v)ji.

Now

(39) j2" =Ni (b)y2" = N^a)-^*,

by (24). Also, by (22),

N2(a) = gigi^x)]-1.

Hence

Ni(a) = A^2(a)"-W2[a(ôi)]^2 • ■ • Nt[a(ß?-1)]

g?-1     gi(8ùp-2 gild?-2] gf
(40) =- •   ■  • —--; = - •

gi(ex)p~l gi(e?y-2      gi[ex*-1}    Nx(gi)

It follows that

(41) j¡ = Nx(g2).

The quantity g2^0 of P has a non-zero norm so that/2 has an inverse in C and

is the desired quantity of (29). We have proved

Theorem 4. Let A be a normal simple algebra of degree n = pq over F such

that A is a crossed product defined by a basis (17) and a multiplication table (18),

(19); the case where Z = F(x) is defined by an equation with a regular abelian

group with two generators of orders p and q respectively. Then Z is the direct

product Z = PxQ of a cyclic field of order p and a cyclic field of order q re-

spectively, the quantity g2 of (19) is in P and has a norm

(42) S = Ni(g2),

and

(43) A» = HXC,

where H is a total matric algebra and C is a cyclic algebra of degree q over F

with a basis (29), and a multiplication table (30) so that C is a crossed product

defined by Q and b.
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4. Algebras of order sixteen. The author has proved that every normal

division algebra of degree four (order sixteen) has a basis

(44) uWyfyf (i, j, k, r = 0, 1),

and a multiplication table

(45) uv = vu,    yxu = — uyx,    y2u = uy2,    yxv = vyx,    y2v = — vy2,

(46) y3 = yiy2,   y22 = 7i + 72«,   >-i2 = 73 + 74»,   yz2 = 7s + 76«»,

(47) u2 = p, v2 = <r,  y2yi = ayiy2,

,,-, yi2 = fi, y¡? = gi, yi = ¿3,
(48)

g3(- uv)
a = -1

gigl(- v)

with p, a, 7i, • • ■ , 7e in F and such that

(49) 752 - 762o-p = (712 - 722p)(7s2 - 74V),

the associativity  condition.*  But  then  Nx(g2)=yx2 — y22p,  and  we have

proved, by Theorem 4,

Theorem 5. Let A be any normal division algebra of order sixteen over a

non-modular field F so that A can be given the notation of (44)-(49). Then

(50) A2 = H XC,

where 77 is a total mairie algebra of degree eight over F and G is a generalized

quaternion algebra

(51) C = (1, v, y, vy),  yv = — vy,  v2 = a,  y2 = 712 — 722p.

As is well knownf algebra C is a division algebra if and only if yx2 —yip

f^X]2 —X22a for any Xi and X2 in F. The exponent of A is defined to be the

least integer p such that A ' is a total matric algebra, and when A is a normal

division algebra of order sixteen its exponent is either two or four.î Suppose

first that there exist Xi and X2in F such that 712 —y£p=\x2 —X22a so that Qis

not a division algebra. Then if we write y0 = (Xi+X2u)_1y we have y02 =(Xi2

—X22a)-1(7i2 —72p) = 1, and C is a crossed product with g = 1, and is a total

* See the author's papers in these Transactions, vol. 31 (1929), pp. 253-260, and vol. 32 (1930),

pp. 171-195.
t Cf. L. E. Dickson, Algebren, p. 47.

% Cf. the author's paper On direct products, these Transactions, July, 1931, for the properties

of the exponent of an algebra which give this result.
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matric algebra by Theorem 3. Hence A has exponent two. Conversely if A

has exponent two then A2 is a total matric algebra, so that, by Theorem 5,

77 XC and hence C is a total matric algebra. But then there exist Xi and X2 in

F such that 712 — 722p=Xi2 — X2V.

Lemma 1. The exponent of A is two if and only if there exist \x and \2in F

such that

(52) 7i2 - 722P = W - X22<r.

The author has given* a rational proof holding for any non-modular field

F of

Lemma 2. If there exist \x and \2inF such that (52) holds, then A is the direct

product of two generalized quaternion algebras.

Hence A has exponent two if and only if A is the direct product of two

generalized quaternion algebras. For when A has exponent two, Lemma 1

and Lemma 2 imply that A is the direct product of two generalized quater-

nion algebras. Conversely, since, as is well known, the square of any general-

ized quaternion algebra is a total matric algebra, if A has an expression as a

direct product of generalized quaternion algebras, A has exponent two.

If A is not expressible as a direct product of two generalized quaternion

algebras so that C is a division algebra, then Ai = H2XC2 is a total matric

algebra and A has exponent four. The converse is obvious as we have shown

above and we have proved

Theorem 6. A normal division algebra A of degree four (order sixteen) over

any non-modular field F has exponent two or four according as A is or is not ex-

pressible as a direct product of two generalized quaternion algebras over F. A

necessary and sufficient condition that A be so expressible is that there exist \x

and \2in F such that

7i2 — 722P = Xi2 — X22<r

where p, a, 71, 72 are given by the constants in (44)-(49)/or A.

We shall consider finally a property of the generalized quaternion algebra

C assuming that it is a division algebra, that is, that A has exponent four. We

have

7s2 - 762<rp = (7i2 - 722p)(7s2 - 742c),

so that

7s2 - 7i2(732  - 742<r) = p[y¿o — 722 (732 — 7 42 «»■)]•

* These Transactions, vol. 32 (1930), pp. 171-195; p. 180.
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Then

(Yi2 — 722p)[t62o- - 722(T32 — 742<0] = (7i76)2<t — (727e)2,

and

(7i2 — 722p)[cr(762 + 7427a2) — (727a)2] = (7i7e)V — (727s)2.

Multiplying by cr(yi2 —yip)-1 and transposing we have

(7274<r)2 + (76<r)2 = (7273)2 +  [(7iY6<r)2 — (727s)2o-](7i2 — 722p)-1.

But then if

li = 7273,   £2 = 7i76<K7i2  — 722p)_1,    £3 = 727s(7i2 — 722p)"1

we obtain

(53) (7274er)2 + (y6o-)2 = tfer + (£22  - £32<r)(7i2 - 722p).

Suppose first that £ 1 = £2 = £3 = 0. If then A has the generalized quaternion

sub-algebra y» = 0,

(1, u, y3, uy3),  u2 = p,   yi = 75,   y3u = - uy3,

over F, and, by the Wedderburn direct product theorem, A is the direct

product of two generalized quaternion algebras, a contradiction of our hy-

pothesis that A has exponent four. Hence 0-76^0 and

— 1 = (72747e_1)2.

Similarly y2^0, so that, since £3 = 0, 712 — 722p^0, we have 75 = 0. But then

y32 =76«z>, y3i = yio-p. The field F(y3) is a cyclic quartic field over F which

contains a quantity whose square is — 1, and A is a cyclic algebra.

Let next £1, £2, £3 be not all zero. Then the quantity

(54) t = {,» + (£2 + hv)y

is not in F and has the property that

(55) t2 = tfa+ (£22 - £32<t)(7i2 - 722p) = A12 + A22,

where Ai = 7274er and A2 = 76er are in F. We have proved

Theorem 7. Let A be a normal division algebra of degree four over F and let

A have exponent four. Then either — 1 is the square of a quantity of F and A is a

cyclic algebra or

A2 = II X C,
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where H is a total matric algebra and C is a generalized quaternion division

algebra over F which contains a quantity t not in F and such that

t2 = Ai* + A22

for Ai and A2 in F.

5. Algebras over an algebraic field. Let R be the field of all rational num-

bers, and let

(56) F = R(6)

where 6 is a root of an equation with rational coefficients and irreducible in R.

The quantity 6 may be any abstract quantity, a matrix, or a number, but in

any case the field F is simply isomorphic with a field of algebraic numbers.

We shall assume the following known* results :

Lemma 1. The direct product of two generalized quaternion algebras over

R(d) is not a division algebra.

Lemma 2. Let A be a normal simple algebra of degree « over F and let Z be

an algebraic field over F. Then AxZ is a normal simple algebra with the same

basis and multiplication table as A over Z.

Lemma 3. Let A be a normal division algebra over F and let Z = F(£) be an

algebraic field of prime order over F. Then A' = AXZ is not a division algebra if

and only if A contains a sub-field F(u) simply isomorphic with Z.

Lemma 4. Let A be a normal division algebra of degree n over F and let %be a

scalar root of the minimum equation of degree n of a quantity x in A. Then

A XF(£) is a total matric algebra over F(£).

Lemma 5. A normal division algebra of degree four over afield F = R(6) is a

cyclic (Dickson) algebra if A contains a quantity u not in F such that

u2 = A2 + A22 (Ai and A2 in F).

We shall now apply our lemmas. First the application of Lemma 1 to

Theorem 6 gives immediately

Theorem 8. The exponent of any normal division algebra of order sixteen

over F = R(B) is four.

Next we use Theorem 5 and have ^42 = 77xC. By Theorem 7 either A is a

cyclic algebra or C contains a quantity t not in F but such that t2=Ax2 +A22

* For Lemmas 1 and 5 see the author's Division algebras over an algebraic field which has been

offered for publication to the Bulletin of the American Mathematical Society. For the remaining

lemmas see the author's On direct products, loc. cit.
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with Ai and A2 in P. In the latter case let £ be a scalar such that £2 = Ai2 +A22.

The field F(£)=P(0, £) is an algebraic field over P. Consider the algebra

A' = A XP(£), a normal simple algebra of order sixteen over P(£), by Lemma

2. Evidently

(A')2 = HXC, C =CXP(|),

is a total matric algebra by Lemma 4. Hence the exponent of A' is not four,

and by Theorem 8, algebra A' is not a division algebra. But P(£) is a qua-

dratic field over F, two is a prime, and Lemma 3 implies that there exists a

quantity u in A and not in F such that m2=Ai2 +A22 with Ai and A2 in P. By

Lemma 5 algebra A is a cyclic algebra. Hence A is a cyclic algebra in all

cases.

Theorem 9. Every normal division algebra of order sixteen over an algebraic

field R(6) is a cyclic (Dickson) algebra*

* (Note added to proof, February 1, 1932.) Since this paper was written, Theorem 9 has been

proved by other methods for any order n2. A proof by A. A. Albert and H. Hasse has been offered

for publication to these Transactions. This does not, of course, affect the priority of the result in

Theorem 9. Also the theory in the sections preceding §5 still represents results which have not

been extended to the general case (order n2) for algebras over any non-modular field F.

The University or Chicago,

Chicago, III.


