NON-CYCLIC ALGEBRAS OF DEGREE AND EXPONENT FOUR*

BY

A. ADRIAN ALBERT

1. Introduction. I have recently† proved the existence of non-cyclic normal division algebras. The algebras I constructed are algebras \(A \) of order sixteen (degree four, so that every quantity of \(A \) is contained in some quartic sub-field of \(A \)) containing no cyclic quartic sub-field and hence not of the cyclic (Dickson) type. But each \(A \) is expressible as a direct product of two (cyclic) algebras of degree two (order four). Hence the question of the existence of non-cyclic algebras not direct products of cyclic algebras, and therefore of essentially more complex structures than cyclic algebras, has remained unanswered.

The exponent of a normal division algebra \(A \) is the least integer \(e \) such that \(A^e \) is a total matric algebra. A normal division algebra of degree four has exponent two or four according as it is or is not expressible as a direct product of algebras of degree two.‡ I shall prove here that there exist non-cyclic normal division algebras of degree and exponent four, algebras of a more complex structure than any previously constructed normal division algebras.

2. Algebras of order sixteen. We shall consider normal simple algebras of order sixteen (degree four) over a field \(K \). Algebra \(A \) has a quartic sub-field \(K(\alpha, \beta) \) where

\[
\begin{align*}
\alpha^2 &= \rho, \\
\beta^2 &= \sigma \\
\end{align*}
\]

\((\rho, \sigma \text{ in } K)\),

such that neither \(\rho, \sigma \), nor \(\sigma \rho \) is the square of any quantity of \(K \). Algebra \(A \) contains quantities

\[
\begin{align*}
j_1, j_2, j_3 &= j_1j_2,
\end{align*}
\]

such that

\[
\begin{align*}
(2) & \quad j_1\alpha = \alpha j_1, \quad j_1\beta = -\beta j_1, \quad j_1^2 = g_1 = \gamma_1 + \gamma_2\alpha \neq 0 \quad (\gamma_1, \gamma_2 \text{ in } K), \\
(3) & \quad j_2\beta = \beta j_2, \quad j_2\alpha = -\alpha j_2, \quad j_2^2 = g_2 = \gamma_3 + \gamma_4\beta \neq 0 \quad (\gamma_3, \gamma_4 \text{ in } K), \\
(4) & \quad j_3j_1 = \alpha j_3, \quad j_3^2 = g_3 = \gamma_5 + \gamma_6\alpha\beta \quad (\gamma_5, \gamma_6 \text{ in } K),
\end{align*}
\]

* Presented to the Society, August 31, 1932; received by the editors June 9, 1932. (Designated by Albert 1.)
† In a paper published in the Bulletin of the American Mathematical Society, June, 1932. (Designated by Albert 1.)
‡ See Theorem 6 of my Normal division algebras of degree four, etc., these Transactions, vol. 34 (1932), pp. 363–372. (Designated by Albert 2.)
A necessary and sufficient condition that A be associative is that
\begin{equation}
(6) \quad \gamma s^2 - \gamma s^2 \sigma = (\gamma t^2 - \gamma s^2 \rho)(\gamma z^2 - \gamma s^2 \sigma).
\end{equation}

A necessary and sufficient condition* that A be not expressible as a direct product of two algebras of degree two (that is, have exponent four) is that the equation
\begin{equation}
(7) \quad \alpha t^2 - \alpha z^2 \sigma - (\gamma t^2 - \gamma s^2 \rho)\alpha s^2 = 0
\end{equation}
be impossible for any $\alpha_1, \alpha_2, \alpha_3$ not all zero and in K.

Algebra† A has a sub-algebra $B=(1, v, j_1, vj_1)$ over $K(u)$. This algebra is a generalized quaternion algebra and it is well known that B is a division algebra if and only if
\begin{equation}
(8) \quad g_1 \neq a_1^2 - a_2^2 \sigma
\end{equation}
for any a_1 and a_2 in $K(u)$. But if $a_1=\alpha_1+\alpha_2 u$, $a_2=\alpha_3+\alpha_4 u$, the equation $g_1=a_1^2 - a_2^2 \sigma$ implies that $\gamma_1+\gamma_2 u=[\alpha_1^2 + \alpha_2^2 \rho - \sigma(\alpha_3^2 + \alpha_4^2 \rho)] + 2(\alpha_1 \alpha_2 - \sigma \alpha_3 \alpha_4) u$ so that $\gamma_1=\alpha_1^2 + \alpha_2^2 \rho - \sigma(\alpha_3^2 + \alpha_4^2 \rho)$. We have now

Theorem 1. A sufficient condition that B be a division algebra is that the quadratic form
\begin{equation}
(9) \quad Q = (\alpha_1^2 + \alpha_2^2 \rho) - \sigma(\alpha_3^2 + \alpha_4^2 \rho) - \gamma_1 \alpha_5^2
\end{equation}
in the variables $\alpha_1, \ldots, \alpha_5$ shall not vanish for any $\alpha_1, \ldots, \alpha_5$ not all zero and in K.

For if the sufficient condition of Theorem 1 were satisfied and yet B were not a division algebra we would have $\gamma_1=\alpha_1^2 + \alpha_2^2 \rho - \sigma(\alpha_3^2 + \alpha_4^2 \rho)$ so that $Q=0$ for $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ in K and $\alpha_5=1$, a contradiction.

It is also known‡ that, when B is a division algebra, A is also a division algebra if and only if there is no quantity X in B for which
\begin{equation}
(10) \quad g_2 = X'X,
\end{equation}
where if $X = b + dj_1$ then $X' = b(-u) + d(-u)aj_1$ with a and b of course in $K(u, v)$.

* See Albert 2.
† For the properties of this section see my paper in these Transactions, vol. 32 (1930), pp. 171–195. (Designated hereafter by Albert 3.)
‡ See L. E. Dickson’s *Algebren und ihre Zahlentheorie*, p. 64, for both the condition that B be a division algebra and A be a division algebra.
I have proved* that

\[(b_{ij})^2 = f_3 + f_4, \quad (d_{ij})^2 = f_5 + f_6uv,\]

where if

\[(b) = \beta_1 + \beta_2\sigma + (\beta_3 + \beta_4)u, \quad d = \delta_1 + \delta_2uv + (\delta_3 + \delta_4uv)u\]

and

\[b_1 = \beta_1^2 + \beta_2^2\sigma - \rho(\beta_3^2 + \beta_4^2\sigma), \quad b_2 = 2(\beta_3\beta_2 - \rho\beta_3\beta_4),\]
\[d_1 = \delta_1^2 + \delta_2^2\sigma - \rho(\delta_3^2 + \delta_4^2\sigma), \quad d_2 = 2(\delta_3\delta_2 - \sigma\rho\delta_3\delta_4),\]

then

\[f_3 = b_1\gamma_3 + b_2\sigma\gamma_4, \quad f_4 = b_1\gamma_4 + b_2\gamma_5,\]
\[f_5 = d_1\gamma_6 + d_2\sigma\gamma_7, \quad f_6 = d_1\gamma_8 + d_2\gamma_9.\]

I have also shown that if \(g_2 = XX'X\) then

\[f_3 + f_5 = 0, \quad f_3 + f_5 = \gamma_3^2 - \gamma_4^2\sigma.\]

But then \(\gamma_3b_2 = -\gamma_4d_1, \gamma_6d_2 = -\gamma_6d_1,\) so that from (16), (15),

\[\gamma_3\gamma_6(\gamma_3^2 - \gamma_4^2\sigma) = (\gamma_3^2 - \gamma_4^2\sigma)\gamma_6b_1 + (\gamma_5^2 - \gamma_6^2\sigma)\gamma_6d_1.\]

If \(A\) is associative then (6) is satisfied. Also \(g_2 \neq 0\) so that \(g_2(\sigma) \neq 0, \gamma_3^2 - \gamma_4^2\sigma \neq 0.\) Then (17) is equivalent to

\[\gamma_3\gamma_6 = \gamma_6d_1 + \gamma_3d_1(\gamma_3^2 - \gamma_4^2\sigma).\]

As in the proof of Theorem 1 we have immediately

Theorem 2. A sufficient condition that \(A\) with division sub-algebra \(B\) be a division algebra is that the quadratic form

\[Q = \gamma_6[(\alpha_1^2 + \alpha_2^2\sigma) - \rho(\alpha_3^2 + \alpha_4^2\sigma)] + \gamma_5(\gamma_1^2 - \gamma_2^2\rho)[(\alpha_5^2 + \alpha_6^2\sigma\rho) - \rho(\alpha_7^2 + \alpha_8^2\sigma\rho) - \gamma_3\gamma_6\alpha_9^2].\]

shall not vanish for any \(\alpha_1, \ldots, \alpha_9\) not all zero and in \(K.\)

3. **Algebras over** \(K(q).\) Let \(L = K(q)\) be a quadratic field over \(K\) where

\[q^2 = \delta = \delta_1^2 + \delta_2^2 \quad (\delta_1 \text{ and } \delta_2 \text{ in } K).\]

It is well known that if \(K\) contains no quantity \(k\) such that \(k^2 = -1\) then every cyclic quartic field over \(K\) contains a quadratic sub-field \(L\) of the above type. Hence a sufficient condition that an algebra of degree four be non-cyclic is that \(A\) contain no quadratic sub-field \(L\) as above. But also \(A\) contains no sub-

* Albert 3, p. 178.
field equivalent to any given quadratic field \(L \) if and only if \(A \times L \) is a division algebra.* Hence we have

Theorem 3. If no \(k \) in \(K \) has the property \(k^2 = -1 \), a sufficient condition that a normal simple algebra \(A \) of order sixteen over \(K \) be a non-cyclic normal division algebra is that \(A \times L \) be a division algebra for every quadratic field \(L = K(q) \),

\[
q^2 = \delta = \delta_1^2 + \delta_2^2 \tag{21}
\]

(\(\delta_1 \) and \(\xi_2 \) in \(K \)).

We shall apply Theorem 3 as follows. We shall choose a particular field of reference, \(K \). We shall then define \(A \) by a choice of \(\rho, \sigma, \gamma_1, \cdots, \gamma_6 \). Then also \(A \times L \) is evidently a normal simple algebra (of the same kind as \(A \) over \(K \)) over \(L \) when we show that neither \(\rho, \sigma \), nor \(\sigma \rho \) is the square of any quantity of \(L \) (not merely \(K \)). We shall then prove that \(A \) (not \(A \times L \) which can have exponent two) has exponent four, while \(A \times L \) is a division algebra. This latter step will be an application of Theorems 1 and 2 applied to \(A \times L \) over \(L \). The algebras \(A \) over \(K \) will be non-cyclic algebras of exponent four by Theorem 3.

4. The field \(K \). Let \(F \) be any real number field, and let \(x, y, \) and \(z \) be independent marks (indeterminates). The field \(F(x, y, z) = K \) is a function field consisting of all rational functions with (real) coefficients in \(F \) of \(x, y, z \). We shall deal with quadratic forms \(Q \) and equations \(Q = 0 \) so that we shall always be able to delete denominators and hence take our quantities in

\[
J = F[x, y, z],
\]

the domain of integrity consisting of all polynomials in \(x, y, z \) with coefficients in \(F \). We shall of course also consider the domains \(F[x], F[x, y], \) etc.

Consider a field \(K(q) \) as in §3. It is evident that the quantity \(q \) defining such a quadratic field may always be chosen so that \(\delta, \delta_1, \delta_2 \) are in \(J \). Also in a quadratic form \(Q = 0 \) with coefficients in \(J \) and variables over \(K(q) \) we may always take the variables to be in the domain of integrity \(J[q] \) of all quantities of the form

\[
a + bq
\]

where \(a \) and \(b \) are in \(J \).

Every quantity \(a = a(x, y, z) \) of \(J \) has a highest power \(z^n \) with coefficient in \(F[x, y] \) not identically zero. We shall call \(n \) the \(z \)-degree of \(a \), the coefficient of \(z^n \) the \(z \)-leading coefficient of \(a \). Similarly \(a \) has an \(x \)-degree, \(y \)-degree, \(x \)-leading coefficient, \(y \)-leading coefficient. A restriction of the \(z \)-degree of a certain expression and its \(z \)-leading coefficient evidently does not affect its \(x \)-degree, etc.

* Cf. Albert 1.
If the coefficient of z^n above is $b(y, x)$ and the coefficient of the highest power y^m of y in b is $c(x)$, then m is called the (z, y)-degree of a, $c(x)$ the (z, y)-leading coefficient of a. Finally the degree of $c(x)$ is the (z, y, x)-degree of a, its leading coefficient in F, the (z, y, x)-leading coefficient of a.

We have similarly (x, y, z)-degree and leading coefficient, etc. Using these definitions an elementary result is

Lemma 1. The field K contains no quantity k such that $k^2 = -1$.

For let $k^2 = -1$. Then $rk = s$, where r and s are in J and are both not zero. It follows that $s^2 = -r^2$. The (x, y, z)-leading coefficient of s^2 is evidently a real square and is positive, that of $-s^2$, negative so that the polynomial identity $r^2 = -s^2$ is impossible.

Lemma 2. There exist quantities λ, μ in $F[x, y]$ such that $\lambda^2 + \mu^2$ is not the square of any quantity of $F(x, y)$.

We prove the above lemma with the example $\lambda = x$, $\mu = y$. If $x^2 + y^2 = b^2$, where b is a rational function of x and y, it is evident that b must be a polynomial in x and y. For the square of a rational function in its lowest terms and with denominator not unity is never a polynomial. Hence we may put $b = b_1x + b_2$ where b_1 is in $F[y]$, b_1 merely in $F[x, y]$. Then $x^2 + y^2 = b_1^2x^2 + 2b_1b_2x + b_2^2$ identically in x and y. It follows that $b_1^2 = y^2$, $b_2 = \pm y$. Then $x^2 = b_1^2x^2 \pm 2b_1xy$. Hence b_1 divides x and is a power of x. But then $\pm (2b_1)y = x - b_1^2x$ in $F[x]$, b_1 in $F(x)$, which is impossible.

5. The S-polynomials. The quadratic forms (9), (19) over L shall be treated as follows. If $Q = \sum \alpha_i^2\lambda_i$ with λ_i in J (not in $J[q]$) vanishes for α_i in L and not all zero, then obviously, by multiplying Q by the square of the least common denominator, not zero and in J, of $\alpha_1\alpha_2 + \alpha_2\alpha_3 + \alpha_3\alpha_1$ in K, we shall have $Q = 0$ for α_i in $J[q]$, that is, α_{11} and α_{12} in J. But then

$$Q = \sum \lambda_i[(\alpha_i^2 + \alpha_i^2\delta) + (2\alpha_i\alpha_3)q] = 0$$

so that

$$\sum \lambda_i S_i = 0,$$

where

$$(22) \quad S_i = (\alpha_{1i})^2 + (\alpha_{i2})^2 + (\alpha_{i3})^2.$$

We shall call a polynomial of the form (22) an S-polynomial. All such polynomials have the properties that all their degrees are even, all their (x, y, z)-leading coefficients positive. Moreover such a polynomial is zero if and only if $\alpha_i = \alpha_{1i} = \alpha_{i2} = 0$. Hence we have
Lemma 3. A sufficient condition that a quadratic form \(\sum \lambda_i \alpha_i^2 \) with \(\lambda_i \) in \(J \) shall not vanish for any \(\alpha_i \), not all zero and in \(K(q) \) is that \(\sum \lambda_i S_i \) shall not vanish for any \(S \)-polynomials \(S_i \), not all zero.

6. The multiplication constants of \(A \). We now choose \(\rho, \sigma, \gamma_1, \cdots, \gamma_6 \) in \(J \). We shall take

(23) \(\sigma \) of even \(z \)-degree, even \((z, y) \)-degree, odd \((z, y, x) \)-degree.

We shall define \(\gamma_1 \) and \(\gamma_6 \) in terms of certain quantities \(\varepsilon_1, \varepsilon_6 \), where

(24) the \(z \)-degree of \(\varepsilon_6 \) is odd \(> \) (\(z \)-degree of \(\varepsilon_1 \gamma_3 \));

(25) the \(z \)-degree of \(\gamma_3 \) is odd \(> \) (\(z \)-degree of \(\gamma_4 \sigma \));

(26) the \(z \)-degree of \(\gamma_2 \) \(> \) (\(z \)-degree of \(\gamma_0 \sigma \));

(27) the \((z, y) \)-degree of \(\gamma_3 \) even, of \(\varepsilon_6 \) odd.

The above conditions are restrictions merely on the \(z \)-leading coefficients of our quantities. By making the corresponding \(z \)-degrees sufficiently large we evidently only restrict a single term in each quantity, satisfy the above conditions, and yet permit any desired inequalities between \(x \)-degrees, \(y \)-degrees of the same quantities. Moreover \((z, y, x) \)-leading coefficients other than the \((z, y, x) \)-leading coefficients may be taken to have any desired sign, and the evenness or oddness of \((z, y, x) \)-degrees, etc., other than those already given above are still at our choice. We therefore may continue with

(28) \(\sigma \) of even \(y \)-degree, odd \((y, x) \)-degree;

(29) \(y \)-degree of \(\varepsilon_1 \) odd \(> \) (\(y \)-degree of \(\varepsilon_6 \));

(30) \(y \)-degree of \(\gamma_3 \) \(> \) (\(y \)-degree of \(\gamma_4 \sigma \));

(31) \(y \)-degree of \(\gamma_2 \) \(> \) (\(y \)-degree of \(\gamma_0 \sigma \));

(32) \(\sigma \) of odd \(x \)-degree.

Let the \(x \)-leading coefficient of \(\gamma_6 \) be \(\pi_1 \), that of \(\gamma_2 \gamma_4 \) be \(\pi_2 \) such that

(33) \[\pi_1^2 + \pi_2^2 \not\equiv \lambda^2 \text{ for any } \lambda \text{ of } F(y, z). \]

This restriction may be satisfied by Lemma 2 and there merely restricts the \(x \)-leading coefficients of \(\gamma_6 \) and \(\gamma_2 \gamma_4 \). Also take

(34) \((x \)-degree of \(\gamma_6 \) \(= \) (\(x \)-degree of \(\gamma_2 \gamma_4 \) \(> \) (\(x \)-degree of \(\gamma_2 \gamma_3 \)),

that is, the \(x \)-degree of \(\gamma_4 \) greater than the \(x \)-degree of \(\gamma_3 \), and, if we desire, the \(x \)-leading coefficient of \(\gamma_2 \) unity, that of \(\gamma_4 \), \(y \), that of \(\gamma_6 \), \(z \), and (33) is satisfied.
Finally let

(35) \[e = \gamma_3 \cdot (\gamma_3 - \gamma_4 \sigma) - \gamma_5 \sigma, \]

(36) \[\rho = e \cdot \left[e_1^2 (\gamma_3 - \gamma_4 \sigma) - e_5 \right], \]

(37) \[\gamma_1 = e_1 e, \quad \gamma_5 = e_5 e. \]

Then

\[\gamma_1^2 - \gamma_2^2 \rho = e_1^2 e^2 - \gamma_2^2 \rho \]

\[= e \cdot \left[\gamma_2 (\gamma_3 - \gamma_4 \sigma) - \gamma_5 \sigma \right] - e_2^2 (\gamma_3 - \gamma_4 \sigma) + \gamma_2 e_5 e, \]

and

(38) \[\gamma_1^2 - \gamma_2^2 \rho = e \cdot \left[(\gamma_3 e_2)^2 - (\gamma_5 e_1)^2 \sigma \right]. \]

Also

\[\gamma_5^2 - \gamma_6^2 \rho = e_5 e^2 - \gamma_6^2 \rho \]

\[= e_2^2 (\gamma_3 - \gamma_4 \sigma) - e_3^2 (\gamma_3 - \gamma_4 \sigma) + \gamma_2 e_5 e - e_2^2 (\gamma_3 - \gamma_4 \sigma) \]

\[= (\gamma_2 - \gamma_4 \sigma) e \cdot \left[(\gamma_3 e_2)^2 - (\gamma_5 e_1)^2 \sigma \right]. \]

By (38) we have

Theorem 4. If \(\rho, \sigma, \gamma_1, \ldots, \gamma_6 \) are chosen as in (35), (36), (37), the corresponding algebra \(A \) satisfies

\[\gamma_6^2 - \gamma_4^2 \rho = (\gamma_2 - \gamma_4 \sigma) (\gamma_3 - \gamma_4 \sigma) \]

and is associative.

7. Elementary properties. In (25) we chose the \(z \)-degree of \(\gamma_3 \) to be greater than the \(z \)-degree of \(\gamma_4 \). In (26) we took the \(z \)-degree of \(\gamma_2 \) greater than that of \(\gamma_3 \). It now follows that the only term of \(e \) containing its highest power of \(z \) is \((\gamma_3 e_2)^2 \). Similarly, by (24), (25) the term of \(\left[e_1^2 (\gamma_3 - \gamma_4 \sigma) - e_5 \right] \) containing its highest power of \(z \) is \(-e_5^2 \). Hence the term of \(\rho \) containing its highest power of \(z \) is \(-(\gamma_2 e_3 e_5)^2 \).

Lemma 4. The \(z \)-degree of \(\rho \) is positive, even, and the \(z \)-leading coefficient of \(\rho \) is the negative of a perfect square.

Consider the \(y \)-degree of \(\rho \). By (31) the \(y \)-degree of \(\gamma_3^2 - \gamma_4 \sigma \) is positive and its \(y \)-leading coefficient is a perfect square (in \(\gamma_5^2 \)). By (35) the leading \(y \)-term of \(e \) is then in \((\gamma_4 e_3)^2 \), while the leading \(y \)-term of \(e_1^2 (\gamma_3^2 - \gamma_4 \sigma) - e_5^2 \) is then in \((e_1^2 e_3)^2 \). Hence the term of \(\rho \) containing its highest power of \(y \) is \((e_1^2 e_3)^2 \).

Lemma 5. The \(y \)-degree of \(\rho \) is positive and even, and its \(y \)-leading coefficient is a perfect square.
Consider the x-degree of e. We have taken the x-degree of γ_6 equal to the x-degree of $\gamma_2\gamma_4$ and the x-degree of γ_4 greater than the x-degree of γ_3. But $e = -(\gamma_2\gamma_4)^3 + \gamma_6^3 + \gamma_2^3\gamma_3^2\sigma - (\gamma_2\gamma_3)^3$. Hence the x-leading coefficient of e is the product of the x-leading coefficient of γ_6 by $\pi_1^3 + \pi_2^3$. But the x-degree of σ has been taken odd.

Lemma 6. Let σ_0 be the x-leading coefficient of σ. Then the x-leading coefficient of e is $-\sigma_0(\pi_1^3 + \pi_2^3)$ and the x-degree of e is a positive odd integer.

The quantity $\gamma_2^2 - \gamma_2^2\rho$ is determined by (38). We shall require

Lemma 7. The z-degrees of $\gamma_2^2 - \gamma_2^2\rho$ are all even.

For proof we notice that we have already shown that the z-degree of e is even, in fact the leading term of e when arranged according to powers of z is a perfect square. Also we have taken the z-degree of $(\gamma_2\epsilon_1)^2$ greater than that of $(\gamma_6\epsilon_1)^2$. Hence the z-degree of $\gamma_2^2 - \gamma_2^2\rho$ is even. In fact its z-leading coefficient occurs only in $(\gamma_2^2\epsilon_1\gamma_3^2)^2$ and is a perfect square, so that all its z-degrees are even.

One of the properties required in our definition of A is that neither p, σ, nor σ_0 shall be the square of any quantities of K. We shall prove

Lemma 8. Neither p, σ, nor σ_0 is the square of any quantity of $K(q)$.

For let $p = \alpha^2$ where α is in $K(q)$. Then $\mu\alpha = \lambda$ where λ is in $J[q]$ and μ is in J. Then $\rho\mu^2 = \lambda^2$ in J. A quantity λ of $K(q)$ has its square in K if and only if it is either in K or a multiple of q by a quantity of k. If λ in $J[q]$ is in K then λ is in J so that $\rho\mu^2 = \lambda^2$ is impossible because the (z, y, x)-leading coefficient of ρ and hence $\rho\mu^2$ is negative while that of λ^2 is positive. Hence $\lambda = \nu q$ with ν in J. Then $\lambda^2 = \nu^2q^2$ is an S-polynomial and cannot be identical with $\rho\mu^2$ of negative (z, y, x)-leading coefficient.

Similarly $\sigma \neq \alpha^2$ where we now use the property that σ has odd x-degree. Finally by (28) and Lemma 5 σ_0 has odd (y, x)-degree and $\sigma_0 \neq \alpha^2$ for any α of $K(q)$.

Corollary 1. The quantities ρ, σ, σ_0 are not the squares of any quantities of K.

It follows from Corollary 1 that $K(u, v)$ is a quartic field over K and that $g_1 = 0$ if and only if $\gamma_1 = \gamma_2 = 0$. By Lemma 7, $g_1 \neq 0$. Also (31) implies that $g_2 \neq 0$, while the associativity condition (38) implies that $g_3 \neq 0$.

8. The exponent of A. We shall use (7) to prove that A has exponent four, that is, A is not a direct product of two algebras of degree two. Assume that A has not exponent four so that (7) is satisfied for $\alpha_1, \alpha_2, \alpha_3$ in K and not all zero. As we have already remarked we may take $\alpha_1, \alpha_2, \alpha_3$ in J. If $\alpha_2 = \alpha_3 = 0$,
\[\alpha_1^2 - \alpha_2^2 \sigma = (\gamma_1^2 - \gamma_2^2 \rho)\alpha_3^2 \]

implies that \(\alpha_2^2 = \alpha_1 = 0 \), a contradiction. Hence if \(\alpha_3 = 0 \) then \(\alpha_2 \neq 0 \) and \(\sigma = (\alpha_2 \alpha_3^{-1})^2 \), a contradiction of Corollary 1. Thus \(\alpha_3 \neq 0 \).

By Lemma 7 \(\gamma_2^2 - \gamma_3^2 \rho \neq 0 \) so that \(h = (\gamma_2 \epsilon_3)^2 - (\gamma_3 \epsilon_1)^2 \sigma \neq 0 \). The equation \(\gamma_2^2 - \gamma_3^2 \rho = he \) gives

\[(\alpha_2^2 - \alpha_3^2 \sigma) h = (\alpha_3 h)^2 \epsilon. \]

Let \(\beta_3 = \alpha_3 h \neq 0, \beta_1 = \alpha_1 \gamma_2 \epsilon_3 + \alpha_2 \gamma_6 \epsilon_1 \sigma, \beta_2 = \alpha_1 \gamma_6 \epsilon_4 + \alpha_2 \gamma_2 \epsilon_5. \) Then, as may be easily computed,*

\[\beta_1^2 - \beta_2^2 \sigma = e \beta_3^2 \quad (\beta_3 \neq 0, \beta_1, \beta_2, \beta_3 \text{ in } J). \]

But then \(\beta_3^2 = \sigma \beta_2^2 + e \beta_3^2 \). The \(x \)-leading coefficient of \(e \beta_3^2 \) has the form \(-\sigma (\pi_1^2 + \pi_3^2) \beta_3^2 \) by Lemma 6. The \(x \)-leading coefficient of \(e \beta_3^2 \) has the form \(\sigma \beta_3^2 \). But \((\pi_1^2 + \pi_3^2) \beta_3^2 \neq 0 \) is not the square of any quantity of \(K(y, z) \). Hence the \(x \)-leading coefficient of \(e \beta_3^2 + e \beta_3^2 \) is not zero. But the \(x \)-degree of this expression is odd since \(\sigma \) has odd \(x \)-degree, \(e \) has odd \(x \)-degree, \(\beta_3 \neq 0 \). It follows that (40) is impossible for \(\beta_3 \neq 0 \), a contradiction.

9. The first norm condition. We wish to prove that algebra \(B \) is a division algebra, that is, prove that \(gX7¿a-a(—v) \) for any \(a \) of \(A(u, v) \), the so called first norm condition. As we have shown this condition will be satisfied if we can show that the equation

\[S_1 + S_2p - \sigma(S_3 + S_4p) = \gamma_1 S_5 \]

is impossible for \(S \)-polynomials \(S_1, \ldots, S_5 \) not all zero, a consequence of §5 applied to (9).

By Lemma 2 the \(y \)-degree of \(\rho \) is even and the \((y, z, x) \)-leading coefficient of \(\rho \) is positive. Also the \(y \)-degree of \(\sigma \) is even. Hence the \(y \)-degree of each of \(S_1, S_2p, S_3, S_4p \) is even. But the \((y, z, x) \)-leading coefficients of these terms are all positive. Moreover \(S_1 + S_2p, S_3 + S_4p \) have even \((y, z) \)-degree, while \(\sigma \) has odd \((y, z) \)-degree. Hence the \((y, z) \)-degree of \(S_1 + S_2p - \sigma(S_3 + S_4p) \) is either even or odd according as the \((y, z) \)-degree of \(S_1 + S_2p \) is greater or less than the \((y, z) \)-degree of \((S_3 + S_4p) \sigma \). In any case the corresponding \((y, z, x) \)-leading coefficient is zero if and only if \(S_1 = S_2 = S_3 = S_4 = 0 \). We have shown that \(T = S_1 + S_2p - \sigma(S_3 + S_4p) \) has even \(y \)-degree and \((y, z, x) \)-leading coefficient zero if and only if \(S_1 = 0 (i = 1, \ldots, 4) \).

By (35), (30), (31) the \(y \)-degree of \(e \) is even. By (37), (29) the \(y \)-degree of \(\gamma_1 \) is odd. Hence the \(y \)-degree of \(\gamma_1 S_5 \) is odd unless \(S_5 = 0 \). But \(\gamma_1 S_5 = T \) has even \(y \)-degree. Hence \(S_5 = 0, T = 0, T \) has \((y, z, x) \)-leading coefficient zero so that \(S_1 = 0 (i = 1, \ldots, 5) \).

* That is, let \(a = a_1 + a_2 v, b = \gamma_2 \epsilon_3 + \gamma_4 \epsilon_1 \sigma. \) Then \(ab = (a_1 \gamma_2 \epsilon_3 + a_2 \gamma_4 \epsilon_1 \sigma) + (a_1 \gamma_6 \epsilon_4 + a_2 \gamma_2 \epsilon_5) \sigma = \beta_1 + \beta_2 v, \) and \(a \cdot a(—v) \cdot b(-v) = (a_1^2 - a_2^2 \sigma) \cdot h = ab \cdot ab(-v) = \beta_1^2 - \beta_2^2 \sigma. \)
10. The second norm condition. This is the condition \(g_2 = X'X \) which, by §5 and (19), is satisfied if we can prove that

\[
(42) \quad \gamma_5 [S_1 + S_2 \sigma - \rho (S_3 + S_4 \sigma)] + \gamma_6 (\gamma_5^2 - \gamma_2^2 \rho) [S_5 + S_6 \sigma \rho - \rho S_7 - \sigma S_8] = \gamma_5 \gamma_6 S_9
\]

is impossible for \(S \)-polynomials \(S_i (i = 1, \ldots, 9) \) not all zero. Notice that we have replaced \(\alpha \rho = (\alpha \rho)^2 \) of (19) by the \(S \)-polynomial \(S_9 \) instead of the formally corresponding \(\rho S_9 \).

By (24) the \(z \)-degree of \(\gamma_5 \) is odd. By the proof of Lemma 4 the \(z \)-degree of \(e \) is even and the \(z \)-leading coefficient of \(e \) is a perfect square. Applying (27) we have

Lemma 9. The \(z \)- and \((z, y)\)-degrees of \(\gamma_6 \) are odd.

We have taken \(\rho \) to have all even degrees and negative \((z, y, x)\)-leading coefficient by Lemma 4. Also \(\sigma \) has even \(z \)-degree, \((z, y)\)-degree, but odd \((z, y, x)\)-degree. Hence the \((z, y, x)\)-leading coefficient of any \(S_i - \rho S_i \) is positive or zero according as not both or both of \(S_i \), \(S_i \) are zero. Hence the \((z, y, x)\)-leading coefficient of a combination \(T = S_i - \rho S_i \pm \sigma (S_i \pm \rho S_i) \) is zero if and only if the four \(S_i \) are zero. Moreover \(T \) has even \((z, y)\)-degree and \((z, y)\)-leading coefficient which is identically zero only when all the four \(S_i \) are zero. But the \((z, y)\)-degree of \(\gamma_6 \) is even, the \((z, y)\)-degree of \(\gamma_5^2 - \gamma_2^2 \rho \) is even, while that of \(\gamma_6 \) is odd. Hence the \((z, y)\)-leading coefficient of

\[
R = \gamma_5 [(S_1 - \rho S_2) + \sigma (S_2 - \rho S_3)] + \gamma_5 (\gamma_5^2 - \gamma_2^2 \rho) [S_5 - \rho S_7 - \sigma (S_6 - \rho S_8)]
\]

is either the \((z, y)\)-leading coefficient of its first bracket or of its second bracket, while \(R \) has \(z \)-leading coefficient identically zero if and only if \(S_i = 0 \) \((i = 1, \ldots, 8) \). But the \(z \)-degree of \(R \) is odd unless the \(S_i \) are zero since the \(z \)-degree of \(\gamma_5 \) is odd by (25), that of \(\gamma_6 \) odd by Lemma 9. By (42) \(R = \gamma_5 \gamma_6 S_9 \) has even \(z \)-degree. Hence \(R = 0, S_9 = 0, \) and \(R \) has \(z \)-leading coefficient zero. This proves that \(S_i = 0 \) \((i = 1, \ldots, 9) \) as desired. We have proved

Lemma 10. Let \(F \) be a real number field, \(x, y, z \) indeterminates, and let \(A \) be an algebra of order sixteen over \(K = F(x, y, z) \) defined by (1)-(5), (23)-(37). Then \(A \) is a normal division algebra of degree and exponent four over \(K \), \(A \times L \) is a normal division algebra of degree four over \(L \) for every quadratic field \(L = K(q), q^2 = \delta = \delta_1^2 + \delta_2^2 \) \((\delta_1, \delta_2 \) in \(K) \).

As an immediate corollary of Lemma 10 we then have

Theorem. The algebras of Lemma 10 are non-cyclic algebras of degree four not expressible as direct products of cyclic algebras of degree two.