Sufficient conditions for a problem of Mayer in the calculus of variations
HTML articles powered by AMS MathViewer
- by G. A. Bliss and M. R. Hestenes PDF
- Trans. Amer. Math. Soc. 35 (1933), 305-326 Request permission
References
-
Kneser, Lehrbuch der Variationsrechnung, Braunschweig, 1900, pp. 227-261.
- D. Egorow, Die hinreichenden Bedingungen des Extremums in der Theorie des Mayerschen Problems, Math. Ann. 62 (1906), no. 3, 371–380 (German). MR 1511381, DOI 10.1007/BF01450517
- Oskar Bolza, Über den ”Anormalen Fall” beim Lagrangeschen und Mayerschen Problem mit gemischten Bedingungen und variablen Endpunkten, Math. Ann. 74 (1913), no. 3, 430–446 (German). MR 1511773, DOI 10.1007/BF01456753 Goursat, A Course in Mathematical Analysis, translated by Hedrick and Dunkel, vol. 2, Part 2.
- Gilbert Ames Bliss, The problem of Mayer with variable end points, Trans. Amer. Math. Soc. 19 (1918), no. 3, 305–314. MR 1501104, DOI 10.1090/S0002-9947-1918-1501104-7
- Gillie A. Larew, Necessary conditions in the problems of Mayer in the calculus of variations, Trans. Amer. Math. Soc. 20 (1919), no. 1, 1–22. MR 1501112, DOI 10.1090/S0002-9947-1919-1501112-7
- Gillie A. Larew, The Hilbert integral and Mayer fields for the problem of Mayer in the calculus of variations, Trans. Amer. Math. Soc. 26 (1924), no. 1, 61–67. MR 1501264, DOI 10.1090/S0002-9947-1924-1501264-0 Kneser, Lehrbuch der Variationsrechnung, 2d edition, Braunschweig, 1925, pp. 240-304. Bliss, The problem of Lagrange in the calculus of variations, American Journal of Mathematics, vol. 52 (1930), pp. 673-742. Morse and Myers, The problems of Lagrange and Mayer with variable end points, Proceedings of the American Academy of Arts and Sciences, vol. 66 (1931), pp. 235-253.
- Marston Morse, Sufficient Conditions in the Problem of Lagrange with Variable End Conditions, Amer. J. Math. 53 (1931), no. 3, 517–546. MR 1507924, DOI 10.2307/2371163
- Gilbert Ames Bliss, The problem of Bolza in the calculus of variations, Ann. of Math. (2) 33 (1932), no. 2, 261–274. MR 1503050, DOI 10.2307/1968328
Additional Information
- © Copyright 1933 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 35 (1933), 305-326
- MSC: Primary 49K05
- DOI: https://doi.org/10.1090/S0002-9947-1933-1501685-1
- MathSciNet review: 1501685