A SECOND CORRECTION

BY

EDWARD V. HUNTINGTON

In my paper in the present volume these Transactions (vol. 35, pp. 274–304 and 557–558), the Example 5 on page 304 is erroneous and Postulate 5 on page 301 is redundant. That is, Postulates 1, 2, 3, 4, 6, 7 (without 5) form a set of independent postulates for the "informal" system of *Principia Mathematica*.

The proof of 5 from 1, 2, 3, 4, 6, 7 is as follows.*

6a. If \(a + b \) is in \(T \) and \(a \) not in \(T \), then \(b \) is in \(T \). (From 6.)
6b. If \(a \) not in \(T \) and \(b \) not in \(T \), then \(a + b \) not in \(T \). (From 6.)
7a. If \(a \) is in \(T \), then \(a' \) is not in \(T \). (From 7.)
3a. If \(b \) is in \(T \), then \(a + b \) is in \(T \).

For, by 7a, \(b' \) is not in \(T \). But by 3, \(b' + (a + b) \) is in \(T \). Hence by 6a, \(a + b \) is in \(T \).

4a. If \(b \) is in \(T \), then \(b + a \) is in \(T \).

For, by 3a, \(a + b \) is in \(T \), whence by 7a, \((a + b)' \) is not in \(T \). But by 4, \((a + b)' + (b + a) \) is in \(T \). Hence by 6a, \(b + a \) is in \(T \).

5a. If \(a \) is not in \(T \), then \(a' \) is in \(T \).

For, suppose \(a' \) not in \(T \). Then by 6b, \(a' + a \) not in \(T \), whence by 6b, \(a' + (a' + a) \) not in \(T \), contrary to 3.

5. If \(a, b, etc. \) are in \(K \), then \((b' + c)' + [(a + b)' + (a + c)] \) is in \(T \).

*Case 1: \(a \) in \(T \). By 4a, \(a + c \) is in \(T \). Hence the theorem, by 3a (twice).

*Case 2: \(b \) in \(T \). By 7a, \(b' \) is not in \(T \). If \(c \) is in \(T \), then by 3a, \(a + c \) is in \(T \), whence the theorem, by 3a (twice). If \(c \) is not in \(T \), then by 6b, \(b' + c \) is not in \(T \), whence by 5a, \((b' + c)' \) is in \(T \), whence the theorem, by 4a.

*Case 3: \(a \) not in \(T \) and \(b \) not in \(T \). By 6b, \(a + b \) not in \(T \), whence by 5a, \((a + b)' \) is in \(T \). Hence the theorem, by 4a and 3a.

The proof is thus complete. It can also be shown that 1, 2, 3a, 4a, 5a, 6a, 7 form a set of independent postulates equivalent to the set 1, 2, 3, 4, 6, 7.

* For valuable suggestions in this connection I am indebted to Professor Alonzo Church and Dr. K. E. Rosinger.

HARVARD UNIVERSITY,
CAMBRIDGE, MASS.
May 29, 1933.