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Introduction

In what follows we deal mainly with some inequalities for the zeros of

Legendre polynomials Pn(cos 0), given by Bruns [l],t and later independ-

ently by A. Markoff [6] and by Stieltjes [8], improving the results of Bruns.

Let 0i, 02, ■ ■ ■ , 0„ denote the zeros of P„(cos 0) in the interval (0, 7r) in in-

creasing order, so that

(1) 0 < 0i < 02 <  • • •   < dn < ir.

Then the inequalities of Bruns can be formulated as follows:

(2) V—— ir < dr < —*— it (r- 1, 2,- • ■ ,»).
n+\ n+\

The improved inequalities due both to A. Markoff and Stieltjes are

(3)--7T<0,   <—^-TT (v   =   1,   2,   •   •   ■ [W/2]).
n n + 1

This concerns only the group of zeros lying in the interval O<0<7r/2. The

symmetric property

(4) B, + 0n+l-,   =   *

yields however a similar estimate for the second group of zeros in the interval

7r/2<0<7T.

These inequalities indicate in particular the "regular distribution" of the

systems of zeros in the interval (0, 7r) if n—>» .

We show in the first part of this paper how the inequalities (2), (3) can

be derived in a very simple way using the classical ideas of Sturm and the

well known differential equation satisfied by the function P„(cos 0). The

second part contains some elementary facts about the zeros of a class of

trigonometric polynomials and gives also some inequalities for the zeros of

P„(cos 0) derived on the basis of these facts.

* Presented to the Society, September 13, 1935; received by the editors February 2, 1935.

f Numbers in bold face type refer to the Bibliography at the end of this paper.
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We start in §1 with a formulation of a theorem of Sturm adapted to our

later needs. In §11 we prove (2) and (3) by means of Sturm's method obtain-

ing the lower estimate of (3) in even a sharper form, [(v — ï)ir/(n + %) in-

stead of (v — |)x/w]. The proof of the upper bound is based on the following

remarkable property of the zeros in question, which is a simple consequence

of Sturm's theorem. The sequence

(5) 0 = 0o,0i,02, • ■ • ,0„+i, P =  [n/2],

is convex, that is to say, the differences 0„ — 0„_i are increasing if v runs from 1

to p + l. [Cf. the hint in Hille 5, p. 162.]
§111 treats of some analogous properties of the Bessel function /o(0) by

Sturm's method. We obtain some new inequalities for the zeros 6, in terms of

the zeros of /o(0). There is no difficulty in extending these results to some

ultra-spherical polynomials and to general Bessel functions (§IV).

In the second part we first consider trigonometric cosine polynomials

(6) X0 cos mt + Xi cos (m — l)t + ■ ■ ■ + Xm_i cos t + \m

with positive and monotonically increasing coefficients:

(7) Xo > Xi > X2 > • • • > Xm > 0.

Pólya has shown [7, p. 359], by a simple application of the principle of the

argument, that the zeros of such a polynomial are all real and simple. We

prove that, under the condition mentioned (and even if equality holds in

place of all inequalities (7) except the first), every interval

M — h p + h
(8)--7T<t<---x (m = 1   2. • ■ • ,m)

m + \ m + \

contains exactly one of these zeros (§V). These inequalities yield, under a rather

general condition, the "regular distribution" of the zeros for large values of m.

The extremely simple proof is based on the classical fact that the sums

(9) sin \t + sin f* + • • ■ + sin (m + \)t (m = 0,1,2,3, ■■■ )

are positive in the interval 0 < t < 2x. As an application of our result we derive

very simply the main theorem of Pólya's paper quoted above (§VI).

Legendre polynomials P„(cos 0) are not exactly of the form (6), (7). Our

method gives however also in this case some inequalities for the zeros which

are only a little less precise than those of Bruns. The same method can be

applied to some generalizations of Legendre polynomials due to Fejér [3].

In special cases an improvement of these results can be easily obtained. We

prove for instance the lower estimate in (3) by this elementary method.
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Part 1. Applications of Sturm's method

I. Preliminaries

1. With regard to the later applications it is advantageous to formulate

Sturm's theorem in the following form:

Letf(x) and F(x) be continuous functions ina<x¿b and let there f(x) ¿ F(x)

but f(x)^F(x). Let the functions y(x) and Y(x) satisfy in a<x¿b* the differ-

ential equations

(1) y"+f(x)y = 0,        Y"+F(x)Y = 0,

and further the following conditions :

(2) y(x) >0ina<x<b,  y(b) = 0;

(3) lim   {y'(x)Y(x) - y(x)Y'(x)\  exists and ^ 0.
l-»o+0

Then either the function Y(x) is identically zero or it assumes negative values

in some subintervals of (a, b).

It may be observed that our equations are not necessarily satisfied for

x = a.

The essential idea of the proof is well known. Namely as a consequence

of the assumption Yix) ¡z0, Yix) ^0 in a <x<b, we have

(y'Y - yY'fZl, =   f   (F(x) - /(*))F(*)y(*)d* = K > 0,

provided that a <Xi <b and xi — a is sufficiently small. Here the positive num-

ber K is independent of xx. Consequently we have [cf. (3) ]

y'ib)Y'b) - y(b)Y'(b) = y'(b)Y(b) > 0.

Now, by (2), y'ib) <0, whence F(¿>) <0, which is a contradiction.

If the limit in (3) is ¿0, the statement is changed in an obvious way. If

in addition to (2) the condition

(3') lim   {y'(x)Y(x) - y(x)Y'(x)\ = 0
x->a+0

is satisfied, Y(x) is either identically zero or it has at least one variation of

sign in a<x<b.

The same statement holds in the well known classical case in which condi-

tions (2) and (3') are replaced by

* For x=b this means that the left-hand derivatives of the first and second order exist at x = b

and satisfy differential equations (1). We write for brevity y'(b—0) = y'(b), y"(b—0) = y"(b) and so

on.
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(4) y(x) > 0 in a < x < b,  y(a) = y(b) = 0,

and both differential equations (1) are satisfied in the closed interval

a^x^b. In this case Y(x) ^0, Y(x) ^0, a<x<b, implies

y'(b)Y(b) - y'(a)Y(a) > 0.

This is a contradiction because

y'(a) > 0,   y'ib) < 0,   F(a) ^ 0,   F(¿) ^ 0.

2. We mention in this connection the following important application:

Let <j>ix) be continuous and decreasing in x0<x<Xo, and let y be a

solution of

(5) y" + <t>ix)y = 0

which is not identically zero. The sequence of zeros of y is always convex, i.e.,

the sequence of differences of consecutive zeros is increasing.

This theorem also goes back to Sturm [9, p. 173; cf. also Hille 5]; it can

be deduced by means of the following simple argument. Let p<q<r<s< ■ ■ ■

he the zeros in question,* q — p = h. We apply Sturm's theorem in the interval

(a, r) to the equations

y" + 4>ix)y = 0,  Y" + 4>ix - h)Y = 0,

the second having the solution F(x) =y(x — A) ; it is evident that <p (a;) <<f>ix — h),

so that r — q>h, i.e., r — q>q — p.

Remarks. This proof, and consequently the last inequality, remain valid

under the following more general assumption :

(6) (¡>ix) > 4>iq) for x < q and 4>(x) < <i>iq) for x > q.

Furthermore we can also have p = xB in the sense that lim^^+oyOr) =0, pro-

vided that condition (3'), §1, is fulfilled for y(«) and Yix) =yix — h) at x = q.

This means that

lim   {y'ix)yix — h) — yix)y'ix — h)} =0,   h = q — x0,
x->q+0

or, since the first term tends to zero and y (a;)/(a; — q) tends to a limit different

from zero,

(7) lim  ix — q)y'ix — h) =   lim  ix — x0)y'ix) = 0.
I-.Î+0 i-»x0+0

3. In what follows we apply these theorems to the Legendre differential

equation in the form

* We suppose, of course, the existence of at least three zeros in the interval considered.
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(A) z" + {(n + i)2+ (2 sin0)-2)z = 0,       z = (sin 0)1'2Pn(cos 0),

to the Bessel differential equation

(B) u" + Jl + (20)-2¡m = 0,      u = 01'VO(0),

to the differential equation of the ultraspherical polynomials

(C) 2„" + {(» + p.)2 + m(1 - M)(sin 0)-2]zM =0,     «„ - (sin $ypf (cos 0),

and to the general Bessel differential equation

(D) iix" + {l + (l - 4X2)(20)-2}mx = 0,      «x = 0l/27x(0).

The equations (A) and (C) are satisfied in the open interval 0, 7r; (B)

and (D) are valid for 0>O.

II. Legendre polynomials

1. We compare (A), z = Y, with the solution y = sin («+§)(#—x0) of

(1) y" + (n + i)2y = 0.

This gives at once the existence of at least one zero of (sin 0)1/2P„(cos 0) in

every interval of length Tr/(n+\), especially in the intervals

-t < 0 < -7T (» - 1, 2, • ■ • , »)
n + \ » + è

[in the first interval condition (3'), §1, is satisfied]. Consequently every in-

terval contains exactly one zero 0„ and

(2) V——- ir < 0, < —^— t (v = 1,2, • • ■ , »).
» + 2 n + i

The lower estimate can be improved by means of the symmetric property

n + 1 — v v — \
0»  =   7T  —  0n+i_,,   ]>  7T  —  - IT   =   - TV,

n+2 «+I

so that we obtain the inequalities of Bruns.

2. We now prove first the upper estimate (3) of the Introduction. Since

(2 sin 0)-2 decreases in 0<6¿ir/2, Sturm's theorem (§1, 2) asserts the con-

vexity of the sequence of 6, [(5) of the Introduction]. For even values of n

the first remark in §1, 2 [cf. (6)] must be used in the interval 0„/2<0<0„/2+i.

Hence the convexity of the sequence

(3) O! =0,-— ir (o = 0, 1, 2, ■• ■ , [n/2] + 1)
n + 1
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also follows. Now a convex sequence attains its maximum only at the end

points of any interval, that is to say, always for the first or the last value of

v. Since 0O' =0 and, for n odd, 0(»+i)/2 = O, this gives at once the upper bound

for n odd. Let further n he even; then 0n/2 + 0n/2+i = O, so that there are only

the possibilities

0n/2 < 0,  0n/2+i > 0; 0n/2 > 0,  0„/2+i < 0; 0„/2 = 0„/2+i = 0.

Each of the last two cases is impossible : 0O' = 0, 0„/2+i < 0 implies 0„/2 < 0 and

the third assumption would give, since 6¿ =0, that 0„' =0 for each v, i.e., the

identity "of P„(cos 0) and sin (»+l)0/sin 0. But 8n/2<0 yields 6! <0, v = l,

2, ■ ■ ■ , n/2, therefore we have again the upper bound obtained above.

We base the proof of the lower bound on the inequality

(4) 0, - 0,_i < r/in + J) (v = 1, 2, • ■ • , n; 0O = 0)

which is a consequence of the comparison of (A) with (1). We put now

"-Í
(5) ei'=e,--x;

n + \

according to (4) we have 6!' — 0 -i<0, so that 0„" is decreasing. For n odd,

0(*+d/2 = O, consequently 0„" >0, v<in + l)/2. For n even it is sufficient to

prove 0n/2>O. This follows from (4), because-

071/2+1  —  0n/2  =   X  —  0n/2  —  0„/2   <  x/(» +  |) .

Thus our theorem is completely proved.

III. Bessel function Jo(0) and Legendre polynomials again

1. We compare (B) first with y"+y = 0. This gives at once the existence

of an infinite number of zeros of 01/2 Jo(0) :

(1) 0 = j0 < jx < j2 < ■ • ■ ,

for which

(2) j, — j,-x < ir and /„ < ex (r — 1, 2, 3, • • • ).

Moreover the differences /, —j,-x are monotonically increasing, so that the

sequence {/„} is convex. These facts are well known.*

Using (2) we see that /, — vtt is decreasing, therefore

/„ — w Sä ji — x *■ 0.764 • • • x — x,

whence

* Cf. Sturm 9, pp. 174-175.
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(3) j, ¿(v- \)t + 0.014 • ■ • x.

2. Now we compare (A), z = Y, with

(B') y" + {(« +!)2+(20)-2}y = 0,

which has the solution y = 01/2/o[(»+è)0], O<0<tt [condition (3'), §1, at

0 = a = 0 is satisfied ]. Since sin 0 < 0 we obtain the existence of at least one zero

of P„(cos0) in every interval/»_i/(»+£),/»/(«+!), v = i, 2, ■ ■ ■ , ». The fact

that /n/(» + |) <7T, implies the existence of exactly one zero in each of these

intervals, so that

(4) j,-i/(n + \)< d, < j,/(n + i)        (v - 1, 2, • • • , »).

The upper estimate is particularly important. It is better than the upper

estimate of Bruns. It yields at once a lower bound for/„. In fact, let v be any

positive integer, and « = 2^ — 1. Then v = (n+l)/2, 0„ = ir/2. We have there-

fore 7t/2 <j,/(2v — %), that is, in view of (3),*

(5) f> - I)* < j, ¿(v- D* + 0.014 - - - ir        iv - 1, 2, 3, • • • ).

The upper estimate (4) for 0„ = B,(n) is the best possible for fixed v, n—-><».

Indeed it is known that

(6) lim (n + |)0, = j,.
n—»»

3. The first inequality in (4) is not particularly sharp. To obtain a better

one, we use the elementary inequality!

(sin 0)"2 - 0"2 ¿ 1 - (2/ir)2 = k, 0 < 0 ¿ v/2,

and compare (A), z = y, with

(B") Y" + \ (n + i)2 + k/4 + (20)-2} 7 = 0

instead of (B')- Thus we obtain

(7) 0„ > j,/[(n + |)2 + k/4]1'2,  0 < e,¿ ir/2,  k/4 = 0.148678816

The same argument gives a sharper inequality for the zeros in the interval

O<0:£z», where v is a fixed positive number, v<ir/2; we then obtain (7) with

a constant kv instead of k, where kv = (sin v)~2 — v~2. For example,

lk*„ = 0.094715264 • • • ,

\krio = 0.088109344 • • • .

* Cf. Watson 11, p. 489—490; there it is shown that the positive zeros of Ja(B) lie in the intervals

(? — i)ir, (v—j)x (theorem of Schafheitlin).

t The function on the left side is increasing in 0, t/2.
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Formula (7) gives also an upper bound iorj,, putting as before n = 2i> — l,

v = in + l)/2,d, = ir/2:

xT ¿T/2 r k/i    ll

>.<T|_<*-»'+7]  -'"«'L' + T^r^J
kw

<iv- i)x H-
32(, - |)

This inequality for v = 1 is not as good as (3) ; it is much better, however, for

v 2:2 and especially for large v.

IV. UlTRASPHERICAL POLYNOMIALS AND GENERAL BESSEL FUNCTIONS

1. We consider equation (C) in the "principal case" 0<p<l. The same

argument as in the special case \i = \ (§11, 1) gives, with the same notation

as was used in that case,

(1) V—~- x<0, <—"—t iv = 1,2, ■ • ■ ,n),
n + ß n + p

from which we obtain by means of the symmetric property

v — (1 — p) V
(2) -x<0, <-x (r- 1, 2, • •• ,«).

n + ¡x n + p

These are the inequalities corresponding to those of Bruns.

2. We have further

K-K1-Í») V
(3) -;-x<0„<—— x (r- 1, 2, ••• ,»),

n + p n + 1

corresponding to the Markoff-Stieltjes inequalities. The proof is the same as

in §11, 2 ; it is based on the convexity of the sequences 0„, and

V - Ml  - M) r
(4) 0,-!i-x (, = 0,1,2, ■ -., [»/2] + l),

» + p

and on the inequality

(5) 6, - 0,_i < x/(w + p) (f-1, 2, ■ • • ,»).

3. In the "principal case" — §<X<| we obtain similar results for the

zeros ;„(X) of 0I/2/^(0) as in §111, 1. We have in particular

(6) /,(X) - >-i(X) < x, j,i\) < w* iv = I, 2, 3, • ■ • ,/o(X) = 0),

and

(l+xyi*<l+x/2, x>0.
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(7) ¿WS(r-l)»+/i<X).

We further compare (C) with (D) putting ¿t=X + |; we obtain [condition

(3'), §1, is satisfied]

(8) /,_i(X)/(n +/i) < e,<j,(\)/in + u) (v = 1, 2, • • • , n).

The upper estimate here is the best possible in a sense analogous to §111, (6).

We obtain from it as before w/2<j,(\)/(2v — l+p), so that*

(9) (v + X/2 - \)tt < j,i\) <(v- l)*+ji(\)  (<vt)   (v = 1, 2, 3, ■ • • ).

Remarks. Comparison of (sin 0) »P™ (cos 0) with 01/2/_x(0) [for X = 0 with

the Bessel function of the second kind Fo(0)] is also possible. Condition (3),

§1, is now satisfied only if X <0. We consequently obtain

0„ < /,(- X)/(» + p) if X < 0; 0„ < j„+i(- X)/(n + M) if X ̂  0.

On the other hand the ordinary form of Sturm's theorem gives at once

/,(—X)>/»(X) in the first case, j,+i(—X) >>(X) in the second, so that these

bounds are less precise than (8).

The lower estimate in (8), on the other hand, is always valid with —X

in place of X. For negative X this result is better than (8).

4. We obtain a better lower bound of 0„ than that given in (8) in a way

similar to that of §111, 3 :

(10) 0, > jr(\)/[(n + p)2 + kp.il - /z)]1'2, 0 < 6,¿ ir/2,

where k has the same meaning as in §111, 3. Hence it follows as before that

(11) /,(X) < (v + X/2 - \)r + (*/8)(l - X2) ——^--•
v + X/2 — i

For large values of v, this bound is better than either the upper bound in (9)

or that due to Schafheitlin, quoted in the last footnote.

Part 2. Trigonometric polynomials

V. Distribution of zeros

1. Let Xo, Xi, X2, • • • , Xm be non-negative numbers satisfying the ine-

qualities

* Cf. Watson 11, pp. 490-491, where a theorem of Schafheitlin (in extended form) is stated: the

zeros of J\(9) lie in the intervals

(» + X/2 - í)tt S 9 Ê (* + X/4 - IV {p - 1, 2, 3, • • • , - | < X < i).

The upper bound (9) is better than this, since

y,(x) < (x/4 + i>,     - i < x < i,

for/x[(X/4-|-i)7r]<0 (cf. Watson 11, p. 491, <¿ = 7r/8).
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(1) Xo > Ai = X2 ̂  • • •  ^ \m ^ 0.

We shall prove that the trigonometric expressions

pit) = X0 cos ml + Xi cos (m — l)t + ■ ■ ■ + Xm_i cos / + Xm,

qit) = X0 sin mt + Xi sin (m — l)t + ■ ■ ■ + \m-x sin t,
(2)

r(l) = Xq cos im + \)t + Xi cos (m — %)t + ■ • ■ + Xm_i cos f¿ + Xm cos \t,

s(t) = X0 sin (m + %)t + Xi sin (*» — §)<+•■•+ Xm-i sin fi + Xm sin \t

have only real and simple zeros which are regularly distributed in the follow-

ing sense. Denoting by ti, t2, t3, ■ ■ ■ the zeros in question in the interval

0</<x, in increasing order, we have for p(t), q(t), r(t), s(t) respectively

P  —   2 P +  5
'* < t» < —rrT        (ß = 1,2, ■ ■ ■ ,m),

m + \ m + \

p p + 1
-—- t < h <-—- x    (p = 1, 2, • • • , m - 1),
m + k m + h

(3) 2i ii
M — 2 M + è

-—r t < i„ <-—■ x (p = 1, 2, • • • , m),
m + 1 m + l

p p + 1
x < /,, <-x (p = 1, 2, ■ • ■ , m).

m + 1 m + l

Besides these zeros in the interval 0 < t < it, there are, of course, the other zeros

±2„+2Ax; moreover qit) has the zeros hw, rit) the zeros (2Â+l)x, sit) the

zeros 2Äx. Here h is an arbitrary integer. All these zeros are simple.

As another formulation, we have in the open intervals

/p-| P+|\ /p P+l\
I-x, - x I, I -x, - xl,
\w+5 w + |/ \m + § m + f    /

/M-è M+è    \ /     M      ^ M+1    \

\w +1 m + 1     /' \w +1 w + 1     /'

respectively, exactly one zero of pit), qit), rit), sit); p. runs here over all in-

teger values except

p = 0 (mod 2m + 1),      p = — 1, 0 (mod 2m + I),

p = 0 (mod 2m + 2),       p. m - 1, 0 (mod 2m + 2)

in the corresponding cases. In the second and fourth case we further have the

trivial zeros ¿ = 0, + 2x, ±4x, • • • ; all zeros (4) are "non-trivial" except in

the intervals p = w (mod 2m + l) in the second, p = m + l (mod 2m+ 2) in

the third case, containing the zeros t = ±w,± 3x, ■ • • .



1936] ZEROS OF LEGENDRE POLYNOMIALS 11

2. The proof of the inequalities just formulated is very simple and can

be based entirely on the classical fact that the trigonometric sums

(6) <rm(t) = sin \t + sin |< + • ■ • + sin (w + \)t        (w = 0, 1, 2, 3, • ■ • )

are all non-negative for 0 < t < 2w. This property is well known from Fejér's

summability theory of Fourier series, in which it plays a decisive role.

We have

- Se-i(-m+imt{p(t) + iq(t)) = - 3e-i<"'+1>'{r(0 + is(t)}

(7) A
=  2^ X* sin (k + %)t.

i-0

Partial summation shows at once that the last expression is non-negative for

0 < / < 27T. More precisely, it remains there decidedly positive because

m

£ Xi sin (k + h)t = (Xo - Xi>o(i) + (Xi - X,Vi(0 + • • •
(8) i_o

+  (Xm_l — \m)Cm-l(t) + \mam(t),

the first term being positive. From this remark we deduce the important in-

equalities

p(t) sin (m + h)t - q(t) cos (m + \)t > 0,

(9)
rit) sin im + l)t - sit) cos im + l)t > 0,      0 < / < 2x,

so that for the values of ¿u mentioned in (3)-,

sgn p I-—r tt) = sgnq(-— ir ) = sgn r (-—■ ir )
\m + i    / \m + i    / \m + 1    /

= sgns(—ß— ir) = (- l)*+i
\m + 1    /

and this gives our assertion.

3. Under more restrictive conditions than (1), sharper inequalities can be

stated. Let the coefficients satisfy, for example, the following conditions:

(11) 2Xo - Xi > Xi - X2 ̂  X2 - X3 ̂  • • • â; Xm_! - Xm ̂  Xm ̂  0.

(This is always satisfied if the sequence X0, Xi, • • • , Xm, 0, 0 is convex and not

identically zero.) We then prove that

.... p        p + h p p + i
(12) —ir,   -ir,   -ir,   -ir

m m m + \        m + \
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can be taken as upper bounds of /„, instead of those in (3) respectively. To

show this, it is sufficient to prove that

sgn p(— x) = sgn q[- x) = sgn r(-—- x)
\m     / \   m       / V» + f    /

/M + è    \
= sgn s[-—-x)= (- 1)".

V» + t   r

We have

m m—1

(1 - ei() £ A**«—*)' = - Xoei(m+1)i + ¿ (À* - Xt+i)««—*>' + Xm.
t-o *-o

so that

m

— ^e~i<-m+ll2)t(l — eil) 52 Xie*'"1-4"

*-o
m—1

= X0 sin it + ^ (\k — X*+i) sin (k + |)< + Xm sin (« + |)i
(14) *_o

= (2Xo - Xi) sin it + (Xi - Xi) sin f< + • • •

+ (Xm_i — Xm) sin (m — i)t + Xra sin (m + i)t.

The positivity of this trigonometric polynomial in 0, x (even in 0, 2x) is a

consequence of our condition, so that

(15) p(t) cos mt + qit) sin ml > 0,        0 < / < 2x.

Similarly it is shown that

(16) r(t) cos (m + i)t + sit) sin (w + i)t > 0,        0 < t < 2x.

Thus our theorem is established.

4. The reality of the zeros of

(17) apil)+ßqit), arit)+ßsit)

follows in the same way as in 2, provided that the inequalities (1) are satisfied ;

here a, ß are arbitrary real constants not vanishing simultaneously. For these

zeros inequalities similar to those given above hold ; they are all simple.

To prove this statement, put a+iß =peiS(p >0, b real). We obtain from (9)

for (m+i)t=(ß-i)ir+b, 0<t<2ir,

(- l)"+l{i(/) cos 5 + q(t) sin 5}  > 0,

so that

(18) [Sgn apit) + ßqit)}   = (- iy+K
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We can assume 0<5 <7r, b^ir/2. The last result gives immediately the exist-

ence of at least one (consequently of exactly one) zero in each interval

(p - i)ir + 5 (p + i)x + 5
—- <t <—-,  p = 1,2, • • • ,2m, ifO <5 < ir/2,

m+\ m+\

(M - *)t + 8 Q, - \)rc + o
- < / < -j   m = 1, 2, • ■ • , 2m, if ir/2 < o < ir.

m + 5 w + J

These are the zeros in the interval 0</<2ir. All zeros are real and simple,

lying in the intervals (19), where p. runs over all integer values, p^O (mod

2m+l).

Trigonometric polynomials ar(t) +ßs(t) can be treated in an analogous

way with a similar result.

VI. On a theorem of Pólya

The elementary inequalities of the preceding paragraph lead in a direct

way to a theorem of Pólya [7], giving even a slightly more precise result. We

consider the entire functions of z

(1) ^(2) =        /(*) cos zxdx,        V(z) =   I    f(x) sin z» dz
Jo Jo

and we prove the following theorem :

Let f(x) be non-negative, monotonically non-decreasing and not identically

zero in 0<x<l; further, let the integral / f(x)dx exist. Let a and ß denote

real constants not both zero, a+iß=peiS, p>0, 0<ô^7r. The entire function

aU(z) +ßV(z) has only real and simple zeros; every interval

(2) (p-h)T + 6,        (p + ï)t + 5 (p = 0,±l,±2,---),

except that with z = 0* contains exactly one zero as inner point.

The only exception is the case in which fix) is a step function with jumps

at the points of the form 1 — 2irh/[ip — |)ir+5], h and p integers. In this case the

zeros are also real and lie in the closed intervals (2).

The proof is based (in a somewhat different form from that in the paper of

Pólya 7, p. 361) on the trigonometric expressions

1   m     /     k    \ k
Um(z) = — E'/(-—T ) cos-TT 2'

m k-a     V» + 3/ rn + %

\^)
1    m      /      k     \ k

Vm(z) = — Z'/(-—7) sin-T-T2»
_ m k=0     V» + 2/        ™ + 2

* Fora = cos 6=0, i.e., for V{z) itself, we have two exceptional intervals, namely — w, 0 and 0, w

with the single simple zero s = 0.
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the symbol X)' meaning that the highest term k = m is to be multiplied by

1+OT-1 or more generally by a factor >1 tending to 1 for m—><x>. These ex-

pressions tend respectively to Uiz) and Viz) uniformly in an arbitrary finite

region of the z-plane. The same is valid for aUmiz) +/3Fm(z). Hence we obtain,

by means of the results of §V, 4, and of a well known theorem of Hurwitz

(used also by Pólya), that all the zeros of aUiz)+ßViz) lie in the closed in-

tervals (2).

Zeros in the inner part of these intervals are of course always simple. The

only double zeros must have the form z = z0 = (po — |)ir+5 (p0 integer). Now

we have*

- 3«-*{ 17(a) + iViz)]

(4)
= — 3ie~" I    f(x)eizxdx

Jo

/il y» oo

/(l — x) sin zx dx=   I    g(x) sin zxdx,
o J 0

putting g(x) =f(l—x) iorO<x<l, g(x) = 0 for a;>l. The last integral can be

written for z > 0 in the form (cf. Pólya 7, p. 378)

sin zx{g(x) — g(x + x/z) + g(x + 2x/z) - g(x + 3ir/z) + ■ ■ ■  ]dx,
0

which is positive "in general" for all values of z, z>0. Consequently we ob-

tain for z = Zo = (po — i)ir +5

(6) (- l)"°+l{ U(zo) cos 5 + F(zo) sin b] > 0,

so that Zo is not a zero for Z7(z) cos 5 + V(z) sin 5. Incidentally, this argument

yields at once the existence of at least one zero in the intervals (2).

Zeros of the form z = z0 = (p0 — i)ir+b, z0 > 0,f can occur only if the integral

(5) vanishes for z = z0, that is, if

(7) g(x) - g(x + x/zo) = 0, gix + 2x/zo) - gix + 3x/zo) = 0, • • • ,

0 < x < x/z0.

This means that gix) =/(l — x) is a step function with jumps at the points

2x/z0, 4x/zo, 6x/zo,

Indeed under this assumption we have

* The following argument corresponds to the treatment of the "algebraic" case given in §V, 2.

f We can assume Zo>0 because (4) is an odd function.
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í/(z) cos 5 + Viz) sin 5 =   I    f(x) cos izx — b)dx =   I   g(a;) cos (za; — z + 5)da;
«^ 0 v o

m-l n(k+X)d

(8) = S g* j cos (zx — z + b)dx,
k=0       J kd

go = gx è • • • ^ gm-i ^0,  go > 0; d = 2x/z0,  m = [z0/(2x)].

Now the last sum is
"Z,1      sin (z(k + i)d — z + o) — sin (zkd — z + 5)

= X, gk-—-■-
fc=0 z

2 sin (zd/2) ^'
= -2^ g* cos (z(k + |)d — z + S).

Z *=0

Both factors have here the simple zero z = z0.

The theorem proved in §V, 3, gives similarly the results of Pólya for

convex and increasing f(x).

VII. Trigonometric polynomials of the Legendre type

1. Let

(1) «o, «i, a2, ■ ■ ■ , an, ■ ■ •

be a given sequence of positive numbers. The cosine polynomials
2

ian/2, if n is even,

f„(8) = a0an cos »0 + aian_i cos (n — 2)0 + • • • + «(n-l)/2O!(n+lV2COS0,

if n is odd,[n/2]

(2) = Z' «*«n-* cos (n - 2k)6*
k-a

have been considered by Fejér [3 ] ; Legendre polynomials P„(cos 0) are par-

ticular cases for

1-3 • • • (2n- I)

(3) * " ** "       2-4... 2n
= (1/x) f x**-'/2(l - xY^Hx.

J 0

In what follows we use also the corresponding sine polynomials

[n/2]

(4) gn(B) = ¿2'akan-k sin (n - 2k)B.
k=a

I have proved in a previous paper [10 ] that all zeros of/„(0) are real and

simple provided that the sequence

(5) ax/a0, a2/ax, a3/a2, • • • , an/an-x, • • •

* For n even, the last term v = n/2 is to be multiplied by J.
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is monotonically increasing. Under this condition the coefficients of (2) are

monotonically increasing. On putting 20=/ and m = n/2 or m = (n —1)/2,

/„(0) becomes of the type pit) or rit) in §V, (2), respectively. The inequalities

of §V, (3), give at once the following information about the zeros 0„ of fn(0),

O<0!<02< • • • <0„<ir:

V ~\ v + A
(6) —— ir<0„< —— ir (r- 1,2, •••,»).

n + 1 m + 1

2. The inequalities just obtained are not so precise as those of Bruns.

By making some restrictions on the sequence \an\, they can be improved.

We show the possibility of deriving by this very elementary method the

lower estimate not only in the theorem of Bruns but also in that of Markoff-

Stieltjes.

Let the sequence \an\ be of the form

n   =     I      Xnf(x)
J 0

(7) an =   I   xnf(x)dx,
J 0

where fix) is non-negative and integrable in the Lebesgue sense with «o > 0.

The sequence an=gn, corresponding to the Legendre polynomials, is of

this type [cf. (3)] i
As a consequence of our condition we first see that the sequence

(8) a0ctn, a¡an-i, • • • , apa„_p, p =   [n/2],

is positive, monotonically decreasing, and convex. Indeed Schwarz's inequal-

ity gives a2 <ak-ictk+i, so that otk/otk-i is increasing. The convexity follows

from the representation

(9) ctkan_k =   J       I    xkyn~kf(x)f(y)dxdy.
J o    J o

We show further that

(10) sgn fnÇ-~ T?) = (- iy+i (,- 1,2,3, ••• ,p- [n/2])

which is (in the case, of Legendre polynomials) equivalent to the lower

estimate in the Markoff-Stieltjes theorem.*

To this end we use the following inequality due to Fejér [4] :

(qm/2 sin mt,
(11) ci sin / + q2 sin 2t + ■ ■ ■ + qm sin mt > < 0 < / < ir.

I— qm/2 sin (m + l)t,

* We obtain immediately from (10) the existence of at least one zero in each of the intervals

("—h)*/n<6<(v+%)irln, c=l, 2, 3, • • -, p — 1. An easy discussion shows then the existence of an

additional zero in (p —j)ir/»<o<ir/2.
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Here ql7 q2, • • ■ , qm is a. positive, monotonically decreasing, and convex

sequence. Fejér gives only the first inequality; the second arises from the first

by considering the sequence ffi, q2, ■ ■ ■ , qm, qm, which has, of course, the same

properties as qh q2, ■ ■ ■ , qm.

Let n he even. On putting 20 = t, n/2 = m, in the first inequality (11),

we see at once that

[n/2] [n/2]

(12) - Se-*"* £W«-^i("-24)dl =   X)'«*«»-* sin 2*0
k=0 k-0

is positive in the interval 0 <0 <x/2. We have therefore

(13) fn(6) sin «0 - gniO) cos nd > 0,        O<0<x/2,

so that (10) is valid. If n is odd, we put again 20 = /, (n — l)/2 = m, and

observe that the particular value t = (2v — l)ir/n satisfies the equation ml

+ (m+l)t = (2v — l)x, so that sin mt = sin(m + l)t. This means that the two

expressions on the right side of (11) have opposite signs. The expression on the

left side is therefore positive and this gives again (10).
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