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Introduction. Let ß be the phase space of a dynamical system. We sup-

pose that every motion can be continued along the entire time-axis. Thus we

are concerned with a steady flow in ß. The following concepts are of funda-

mental significance for the study of dynamical flows.

(a) There exists a curve of motion everywhere dense on ß.

The existence of such a motion is known under the name of regional transitiv-

ity. We now suppose that a measure m in the sense of Lebesgue invariant

under the flow exists on ß. Such a measure is usually defined by an invariant

phase element dm. The following property is stronger than (a).

(b) The curves of motion not everywhere dense on ß form a point set on ß

of w-measure zero.

Still stronger and more important than (b) is strict ergodicity. We suppose

m(ti) to be finite.

(c) Let f(P) be an arbitrary w-summable function on ß. The time-aver-

age oif(P) along a curve of motion is then,in general, equal to faf(P)dm/m(Q),

the exceptional curves forming a point set on ß of m-measure zero.

How these concepts are interrelated is seen most clearly if we state them in

the following way.

(a') Every open point set on ß that is invariant under the flow is every-

where dense on ß.

(b') Every open point set on ß that is invariant under the flow has the

measure m(ß).

(c') Every m-measurable point set on ß that is invariant under the flow

has either the m-measure zero orm(û).

The latter property of a flow is called metric transitivity.% Its importance rests

* Presented to the Society, September 13, 1935; received by the editors August 10, 1935.

t To August Kopff.

t G. D. Birkhoff and P. Smith, Structure analysis of surface transformations, Journal de Mathé-

matiques, (9), vol. 7 (1928), pp. 345-379.
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in its equivalence to (c) .* The problem whether a given flow is metrically tran-

sitive or not is, in general, as difficult as it is interesting. Beyond simple ex-

amples progress has recently been made in the direction of certain geodesies

problems. Let S be a surface (two-dimensional manifold) of class C3. We

denote by p an arbitrary point on 2 and by c/> the angle measuring directions

through p. Every geodesic on 2 is supposed to be continuable indefinitely

in both directions. The line elements

F = (p, d>)

then constitute the phase space ß associated with 2. To the uniform motion

along the geodesies on 2 there corresponds a steady flow on Q. The element

of volume

dm = dcd(j>,

da being the element of area, is well known to be invariant under the flow.

The particular surfaces! 2 considered in this paper are those of constant

negative curvature and of finite connectivity. Their geodesies are supposed to

satisfy the above condition of unlimited continuability. Differential geometry

shows that there exists a one-to-many correspondence between 2 and the

interior | z \ < 1 of the unit circle such that the elements of length ds and area

da go over into the NE-elements in \z\ < 1,

ds = 2(1 — zz)~x \dz\,    da- = 4(1 — zz)~2dxdy

respectively. The geodesies on 2 go over into the arcs of orthogonal circles

within | z | < 1 (NE-straight lines). The covering transformations are known

to form a Fuchsian group Ç of linear substitutions S transforming \z\ ^1

into itself. \z\ =1 is the principal circle of Ç.% A more general notion of the

* See the literature on the ergodic theorem, viz.

G. D. Birkhoff, Proof of a recurrence theorem for strongly transitive systems, Proceedings of the

National Academy, vol. 17 (1931), pp. 650-660.
T. Carleman, Application de la théorie des équations intégrales linéaires aus systèmes d'équations

différentielles non-linéaires, Acta Mathematica, vol. 59 (1932), pp. 63-87.

E. Hopf, On the time average theorem in dynamics, Proceedings of the National Academy, vol.18

(1932), pp. 93-100.
A. Khintchine, Zu Birkhoff's Lösung des Ergodenproblems, Mathematische Annalen, vol. 107

(1933), pp. 485-488.
J. v. Neumann, Proof of the quasi-ergodic hypothesis, Proceedings of the National Academy, vol.

18 (1932), pp. 70-82.
t Surface = Riemannian manifold. We refer, in this connection, to the papers by P. Koebe,

Riemannsche Mannigfaltigkeiten und nichteuklidische Raumformen, I-V, Sitzungsberichte der Preussi-

schen Akademie, 1927-30.

% An elementary introduction into the theory of Fuchsian groups is found in L. R. Ford, Aulo-

morphic Functions, New York, 1929.
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Fuchsian group will be considered here. In order to include one-sided surfaces

we shall admit anti-analytic substitutions, i.e., analytic substitutions of z.

On identifying all points of \z\ < 1 equivalent under any Fuchsian group Q

one defines, conversely, an associated surface 2.

Q always possesses a fundamental region R. It can be chosen so as to

form a NE-convex polygon bounded by a finite number of segments of NE-

straight lines and a finite number of arcs of \z\ =1. The images of R under

all S of Çcover the whole of \z\ < 1 simply.

We are to distinguish between two fundamentally different kinds of

Fuchsian groups Ç, and, therefore, of surfaces 2. Ç and 2 are of the first

kind if the surface area of 2 or, what is the same, the NE-area of the funda-

mental region R is finite. In the opposite case, o-(2) = oo, we speak of the

groups and surfaces of the second kind.* If Ç is of the first kind, R has no

arcs of |z\ =1 on its boundary. Its vertices lie partly in \z\ <1, partly on

\z\ =1, the angle being zero in the latter case. A well known example is offered

by the case where R is bounded by a regular NE-polygon with the sum of the

angles equal to 27r. If the 4p sides (p > 1) be paired in a certain way, 2 repre-

sents a closed two-sided surface of genus p. Another well known example is

furnished by the modular group where R is bounded by a NE-triangle with

one vertex on \z\ =1. The surface 2 has, in this case, a cuspidal singularity.

For every group Ç of the second kind, however, R has at least one arc of

| z | = 1 on its boundary and 2 possesses, accordingly, at least one funnel.

For surfaces 2 of the first kind, the regional transitivity (a) has been

proved,! m various degrees of generality, by Artin, J. Nielsen, Koebe and

Löbell, whereas Myrberg discovered the property (b). It is only recently

that Hedlundf succeeded in proving the deeper property of metric transi-

tivity of the two examples mentioned above. It is the purpose of the present

paper to develop an entirely novel and simple method that yields a proof of

the metric transitivity for all surfaces 2 of the first kind.

* This definition is readily found to be in agreement with the one usually given.

t E. Artin, Ein mechanisches System mit quasiergodischen Bahnen, Abhandlungen des Mathe-

matischen Seminars, Hamburg, vol. 3 (1924), pp. 170-175.

J. Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Mathe-

matica, vol. 50 (1927), pp. 189-358.
P. Koebe, loe. cit., IV (1929), p. 414.

F. Löbell, Über die geodätischen Linien der Clifford-Kleinschen Flächen, Mathematische Zeit-

schrift, vol. 30 (1929), pp. 572-607.

P. J. Myrberg, Ein Approximalionssalz für die fuchsschen Gruppen, Acta Mathematica, vol. 57

(1931), pp. 389-409.
î G. Hedlund, Metric transitivity of the geodesies on closed surfaces of constant negative curvature,

Annals of Mathematics, (2), vol. 35 (1934), p. 787; A metrically transitive group defined by the modular

group, American Journal of Mathematics, vol. 57 (1935), pp. 668-678.
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Theorem. For all surfaces 2 of the first kind, the flow associated with the

geodesies problem on 2 is metrically transitive.

On surfaces 2 of the second kind (treated in §5), the geodesies show an

entirely different behavior. The corresponding theorem can be stated without

reference to the phase space fí.

The geodesies through an arbitrarily given point p of 2 disappear, for almost

all directions through p, into the funnels of 2.

By this we mean that the corresponding NE-straight lines end on one

of the arcs of \z\ =1 belonging to the boundary of R, or on one of the images

under Ç of those arcs. The theorem, therefore, merely states that those arcs

and their images form a set on | z | = 1 of the same measure as the unit circle

itself, which statement, in contrast to the theorem concerning surfaces of

the first kind, is most readily proved.

The essential tools used in this paper are potential theory and the NE-

metric in \z\ <l.

1. Preliminaries on Fuchsian groups. The cross ratio

Z3 — Zi Zi — z2

[Zx, Z2, Z3, Z4J   =-
Z3 — Z2  Z4 — Zi

is unchanged by an analytic linear substitution, whereas it goes over into its

conjugate value under an anti-analytic one. The same holds for the differ-

entials

dz2     z3 — Zi
(1)-= — |zi, zt, z3, z2 + dz2]

Zi — z2 z3 — z2

and

(2) (zi — z2)~2dzxdz2 = — [zi, z2, zi + dzu z2 + dz2].

Only those substitutions 5 will be considered in the sequel which leave | z | ¿ 1

invariant. The relation

yields the invariant

(3)
w

5(1/8) = l/Siz)

= [z, 1/z, w, l/w],
1 — zw \

and, according to (1), the differential invariant

dz      I — zw
(4)-= [1/z, z, w, z + dz].

1 — zz    w — z
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From (3) and (4) we obtain Poincaré's invariant NE-element of length

(5) ds = 2(1 - zz)-l\dz\.

The corresponding NE-element of area is then

(6) da = 4(1 - zzYHxdy.

The absolute value of (2) with Zi = f, z2 = z, after being divided by (5), finally

furnishes the invariant Poisson differential

1 — zz .      .
(7) r--,-,  # •

If - zl

A group Ç of substitutions 5 preserving | z \ < 1 is called Fuchsian if it is

infinite and discontinuous, i.e., if it contains no infinitesimal 5. From now on,

we suppose Ç to be Fuchsian. A point z, \z\ < 1, and all its equivalent points

5(z) determine the same point of the surface 2. Associated with Ç is a group

T of contact transformations T in the space of the line elements

(z, 4>), 0 = arg (dz),
where T has the form

(8) (*,«)-» (5(a),  0 + argS'(z))

in the case of an analytic 5 and a similar form when 5 is anti-analytic. Equi-

valent line elements define the same point P in the phase space ß. As 5 pre-

serves angles, the transformations T leave the volume element

(9) dm = dcd4>

in the space of line elements invariant.

We now introduce the new coordinates

(Vi, V2, s);  I vi I  = I V2 I = 1, Vi ̂  V2,   — °°  < 5 < 00 ,

in the space of line elements. 571 and r¡2 are initial and end point, respectively,

of the sensed NE-straight line passing through (z, 0). Let 5 denote the NE-

distance of z from the point z0 bisecting the circular arc (r/i, 172), the sign of s

being plus (minus) if z is met after (before) z0 on (r/i, r/2). The correspondence

between (z, 0) and (r/i, 772, s) is evidently one-to-one. In the new coordinates,

the transformations T are easily seen to be of the form

(10) ivi, V2, s) -> (S(ni), S(n2), s + fs(vi, V2)).

We now prove that the volume element (9) becomes

I d.711 I dij2 I
(11) dm = k -,-r— ds,

2
Vi — Vi\
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k being a positive constant. Indeed we can always find a linear substitution

preserving \z\ =1 which transforms an arbitrarily given line element

(z, <p) = im, r¡2, s)

into any other one,

(*',*') = (ví,VÍ,s').

The associated contact transformation is of the form (8) and therefore leaves

(9) invariant. Being of the form (10), it also leaves invariant the right-hand

side of (11) in view of the invariance of (2) and (5). Hence, the two sides

can differ by a constant factor only.

In the new coordinates the flow associated with the geodesies on 2 is de-

scribed by the simple formulas

(12) P = im, V2, s)->P,~ (m, m, s + t).

The invariance of dm under the flow is now a trivial consequence of (11)

and (12).

The explicit connection between the coordinates is readily established,

.      r i li + la
5 = log Lit, 12, z, zoj,        zo =

2 + | IJl — TJj. |

(z - m)(z - vi)
<j> = arg —-•

Il  —  12

but it is not needed for our purposes.

2. Another formulation of the theorem. A Fuchsian group of the first kind

possesses a fundamental region 7? of finite NE-area. To the subdivision of

|z| <1 into the NE-congruent parts S(R) there corresponds a subdivision of

the (771, 772, s) space into cells congruent to each other under the transforma-

tions T of T. Each of these cells is a representative of Œ, with

m(Q) = 27rcr(S) < 00 .

For the proof of the announced theorem it is sufficient to prove

Theorem A. A point set A on the (m, 172) torus which is measurable in the

sense of ordinary Lebesgue measure, for which

wdrjx I I dr¡2 I > 0

and which is invariant under the simultaneous substitutions S(r¡i), S(r¡2) of Ç,

has the measure of the entire torus.
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Suppose Theorem A to be proved. We start with a point set on ß satisfy-

ing the hypothesis of the theorem announced in the introduction. According

to (12), this set represents, in the (171, r/2, s) space, a cylindrical set, i.e., a set

on the (iii, ri2) torus. According to (11), the part of this set within each of the

above cells is of positive measure

r r\ dr,i 11 dVi I

J J    I r/i — 772 |2

and, therefore, of positive torus measure. The sum of these parts obviously

represents a set A in the sense of Theorem A. Hence its complement has the

torus measure zero. Regarded as a cylindrical set in the (771, r¡2, s) space the

latter set is, necessarily, of m-measure zero in that space and, therefore, in ß.

From now on we may without loss of generality confine ourselves to two-

sided surfaces 2, i.e., to the case where Ç contains only analytic substitutions

5. For, let 5 denote the analytic and S the anti-analytic substitutions of Ç.

The S's form a subgroup g of Ç and each 5 can be written in the form S=SS0

where S0 is a fixed S. As

R + SoiR)

is evidently a fundamental region for g, this group is seen to be again a

Fuchsian group of the first kind. If Theorem A holds for ß, it holds also for Ç.

Let now U(qi, r\2) be the function on the torus which equals zero on the set

A of Theorem A and one elsewhere. U is measurable and invariant under Q,

(13) UiSivi),Sin2))= UiVuV2).

It is to be proved that Í7 = 0 except on a torus set of measure zero. We trans-

form our problem once more by introducing harmonic functions. The Poisson

integral

(14) U(z, y) - — f      UiS, y) .    " *   | df |
2irJ|ri_i |f-*|*

represents, for amost all 7 on | -y | = 1, a harmonic function of z in \z\ =1 and,

for every such z, a bounded and measurable function of 7 on 171 = 1. Further-

more, the function

1   /*                    1 — inii ,      ,
(14') Uiz, w) = - I U(z, 7) i-rj d7 |

¿ir J iti-i I y — w \*

is, for \z\ < 1 and \w\ < 1, harmonic in z as well as in w. (14'), combined with

(14), could, of course, be written as one double Poisson integral. In view of
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the invariance of the Poisson differentials, the invariance (13) under Ç of

the "torus values" of U(z, w) implies the invariance of the function itself,

(15) U(S(z),S(w))= U(z,w),

for all S of Ç.

Formulas (14) and (14') show that U(z, w)=0 implies the vanishing of

the torus values U(Ç, y) up to a torus set of measure zero. To prove Theorem

A it therefore suffices to prove

Theorem B. Suppose that U(z, w)^0 is bounded and harmonic in z as

well as in w, |z| <1, \w\ <l, and that U satisfies (15) for all S of Ç. If the

torus values of U vanish on a set of positive torus measure then U vanishes iden-

tically.

We have to specify in what sense the torus values U(Ç, y) may be re-

garded as limit values of U(z, w). If u(z) is a bounded harmonic function of

a single point z, \z\ < 1, we have

(16) l.i.m. u(ri[) = «(f)

on |f| =1.* An analogue for harmonic functions of two points is quite simi-

larly proved,

(16') 1-i.m.  U(rt,Py)= U(ï,y)
r, a-»1

on the torus | f | = | y | = 1.

3. Auxiliary theorems. In the sequel we denote by Kt the interior of the

circle about z = 0 with the NE-radius I. A simple computation of the NE-area

yields the formula

(17) o-(Ki) = T(el+e-l-2).

For the validity of Lemma 1 we assume that z = 0 is interior to some i?.f

Lemma 1. If a set B in \z\ <l is invariant under all S of Ç, and if R is a

fundamental region for Ç, then, for I sufficiently large,

o-(BKi)
- < aa(BR),
o-(Kt)

a being a positive constant depending only on Ç.

This lemma is not quite trivial in the case where R has vertices on \z\ =1

and is used mainly to take care of the slight complications arising from this

* l.i.m. means limit in the mean of order two.

t If it is not, by a suitable linear substitution, we can always move a given interior point of R

into the origin. It may well be mentioned that the origin plays here a mere auxiliary role.
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case in the proof of Theorem B. The proofs of this and of the following lemmas

2 and 3 are given in the next §4.

Lemma 2. Let u(z)^0 be bounded and harmonic in \z\ < 1, and let

u(Siz)) = «(«)

hold for all S of Ç. If the boundary values ofuon \z\ =1 vanish on a set of posi-

tive measure, w(z) vanishes identically.

This is a very simple special case of Theorem B. The principal difficulty

in the proof of that theorem is surmounted by the main

Lemma 3. If U(z, w) satisfies all the hypotheses of Theorem B, the measure

on 171 = 1 of the set where U(0,y)=0 is necessarily positive.

Proof of Theorem B. The set £ on 171 =1 where 7/(0, 7) = 0 is of positive

measure according to Lemma 3. We now make use of Harnack's inequalities

for a non-negative harmonic function u(z), \z\ <1,

g—(.'.'">u(z) ^ u(z') g e'<-'-'">u(z),

where s(z, z') denotes the NE-distance of the two points. These inequalities

being applied to 77(z, w) ̂  0 yield

(18) e-'<0-'>c7(0, w) ^ U(z, w) ^ e^°-'W(0, w),

which shows that, for a fixed z, the set where the boundary values U(z, 7)

of U(z, w) on \w\ =1 vanish is independent of z; in fact it coincides with E

except for a set of measure zero. Now according to (15) we have, for an arbi-

trary S of Ç,

U(S(0),w) = t7(O,S-l(«0).

On replacing w by S~l(w) and 7 by S_1(y) in (14') and on taking into account

the invariance of the Poisson differential, we infer from (14') that

1   r 1 — ww .     .
î/(0, S-\w)) = - U(0, S-i(y))■-r-1 dy \.

2wJ |7|_i I 7 — w \e

Hence 7/(0, S~1(y)) are the boundary values of 77(0, S~1(w)). Since S(E) is

the set where these boundary values vanish, the equation S(E) = E holds for

all S of Ç apart from a null set on the unit circle. Considering, in the same

way as before, the harmonic function m(z), \z\ <1, whose boundary values

are zero on E and one elsewhere, we infer that u satisfies the hypothesis of

Lemma 2 and, therefore, that m=0, i.e., that E has the measure of the entire

unit circle. It then follows from the definition of E that the boundary values
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of Z7(0, w) vanish almost everywhere. Hence ¿7(0, w)=0 and, according to

(18), Z7(z, w) =0, which is the desired result.

4. Proof of Lemmas 1 and 2. We denote by N(z, /) the number of points

S(z) congruent to z which lie in Ki. We first show that, for I sufficiently large,

N(z, I)
(19) —-^ < a,

a(Kt)

where a>0 depends on Ç only. Niz, I) is the number of points S(z) whose

NE-distance from the origin does not exceed /,

5(0, 5(f)) á I.

Since

i(0,5(f)) = s(S-'(0),z),

Niz, I) is not greater than the number of points 5_1(0) congruent to the origin

with a NE-distance ^l from z, provided that the points S-1(0) are different

for different substitutions 5. This is the case, as the origin is interior to R

and as an interior point of R cannot be a fixed point for any 5 except for the

identity transformation. We furthermore know that

i(5(0),0)>6,        5(0)^0,

holds, where ¿>>0 depends on (^only. Therefore a circle of NE-radius b about

any point congruent to the origin contains no other such point. This implies

that the number of the different points 5(0) with a NE-distance ^ / from z

is less than the number of mutually enclusive circles of NE-radius b which

can be placed within a circle of NE-radius l+b. Hence

N(z, I) <- = -■-a(Ki).
a(K„) <r(Kl)a-(Kb)

Here the first factor tends to 7r-1(l+e~2!> — 2e~b)~l as/—»oo, which proves (19).

We now return to the set B of Lemma 1. By means of the function

[I in Ki,

elsewhere,

we obtain

*« - {;

Mr, I) - E*(5W),
S

and therefore

(20)        f f   N(z, l)dcz = E f Í  *(5(f))d«r. = E f f 4>(z)do,
J  J RB S    J  J RB S    J  J S   1(RB)
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Since B=S(B) for all S of Ç,

22s-'(RB) = 22 bs-i(r) = b22s(r) = b,
s s s

and the right hand side of (20) equals

(20') ffH*)de. = HBK,).

Lemma 1 obviously follows from (19), (20) and (20').

Proof of Lemma 2. In the particular case where the boundary of R lies

within \z\ <1 the lemma is obvious, since then «(z) attains its extrema at

some points of \z\ <l, i.e., at interior points of \z\ <l. If 7? has vertices on

| z | =1 an elementary proof could still be given. We prefer, however, to use

tools which seemed unavoidable in the further course of the proof of Theorem

B. The auxiliary function

(il-t/e)3,        0^t<e,
(21) h.(t) - V '

I 0, e^t,

is concave and possesses a continuous second derivative, ¿^0. We first show

that

(22) lim —— f f ht(u(z))daz = — f       h,(u(t)) | df |
/->« o~iKi)J JKi 2ir J if i—i

and that

(23) lim   I A«(w(f)) | df | '= meas [w(f) = 0].
e-0   J |f|—X lrl=l

The integral average on the left of (22) is, evidently, an average of

(24) - f       A.(«(rf)) | di |
¿irJ |f|_i

over a certain range of r corresponding to the range from 0 to / for the NE-

radius. In this average large values of I, i.e., values of r I near one, are of domi-

nating weight. Since, according to (16), (24) tends to the right-hand side of

(22) as r—>l it follows that (22) must also be true. Finally, (23) follows from

the obvious inequalities

meas
Ifl

s [«(f) = 0] ^   f       A.(«(f)) I df I á meas [«(f) < ej.
i J iri-i iri-i
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For later purposes, we need the analogous relations resulting from (16'). On

setting

(25) M.(l) = —— ff     ff h.(U(z, w))do-zd*w,
<r2(Ki) J J Ki J J Ki

we obtain quite similarly

(26) lim lim Mt(l) = (47T2)"1    meas    [î/(f, 7)] = 0.
«-»o»-»- ui-i-ri-i

Returning to the proof of Lemma 2 we note that the integral average on

the left in (22) is less than

tr(B,Ki)
(27) -j  I sufficiently large,

c(Ki)

where Bt is the set of all z in \z\ < 1 satisfying u(z) <e. The invariance under

Ç of the function u(z) implies that of the point set Bc. By Lemma 1, (27)

and therefore the left-hand average in (22) does not exceed the value

(28) a<r(BtR).

From the hypothesis of the present lemma, viz. that the right-hand side of

(23) is positive, it then follows that (28) remains, for all e>0, above a posi-

tive constant. In particular, the set common to all Bt is not empty. There

exists therefore a point in \z\ ^1 where u = 0, i.e., where w5;0 attains its

minimum, which completes the proof of the lemma.

5. Proof of Lemma 3. We first confine ourselves to the simpler case where

the boundary of the fundamental region R of Ç lies entirely in \z\ <1. Of

all the images S(R) we call R0 the particular one that contains the origin in

its interior or on its boundary,

(29) z = 0ci?0.

Ro and all its images have the same finite NE-diameter D. We enumerate all

these congruent parts of |z| <1 in an arbitrary way, R0, Ri, R2, ■■ ■ , and

we call 5, the substitution of Ç that transforms R, into Ro,

(30) 5,CR„) = Ro-

We now consider all R, lying entirely in the closed circular disc 7T>. They evi-

dently cover the whole of Ki^d- From (25) we then obtain

(31) M¿1 -D)S qil) —— £  ff      f f  h,(U(z, w))dazdaw,
<r2(Ki) „,„ J Jrv J Jr„

where

(31') q(l) =   [cÍKUMKl-d)]-*
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and where integration and summation are carried out so as to satisfy the con-

ditions

(31") zcRvcKh        wcR^cKi

in all possible ways. By (29), (30), and (31"),

5(0, S,iz)) ^ D,

whence, by Harnack's inequality,

Uiz, w) = UiSriz), S,iw)) ^ e-DUiO,S,iw)),

and, as htit) nowhere increases,

(32) h,iUiz, w)) á ht{erDUiO,S,iw))}, zcRr.

Now, the function of w

Í33) ht{e-DUi0, w)\

is a concave function of a harmonic function and, therefore, subharmonic in

\w\ <1. This is most easily proved by verifying the non-negativeness of the

Laplacian.* Hence, (33) nowhere exceeds the function Viw) = V,iw) which

is harmonic in \w\ <l and which possesses, on |w| =1, the same boundary

values. The slight difficulty brought about by the fact that these boundary

values are merely measurable is readily surmounted by considering first

smaller circles and by proceeding then to the limt as r—>1. We note that

= -f       hi{e-°UiO,y)\\dy\,
2ir J i-»-i-i

(34) 7(0)

and that, by (32),

(35) htiUiz,w))^ViS,iw)).

From (31), (31"), and (35) we obtain, with regard to V,^0,

M,il -D)£ qil) —— 22 ff     ff ViS,iw))dczdo-w
a iKi) „,„ J Jr, J JRr

^ gil) -r^— £ ff   i-^— f f ViSriw))do-\do-z.
aiKi)   v  J Jr, \o-iKi)JJKl )

Since ViSyiw)) is harmonic in \w\ <1, we have by Gauss's mean-value theo-

rem,

- f f V(5,(
(Ki)JJKl

, ,iw))dcw = ViS.iO)),
a(Ki

* This is where the existence and continuity of h," is used.
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whence

MS - D) á q(D -£— E °(R,)V(S,(0))

(36) "(JC,)   '

= -^-<riRo)j:nSÁO)),
<r(Ki) f

the summation being extended over all v for which R, c K¡. On setting

(37) 5„CRo) = R! ,

we infer from (29) that

(38) 5,(0) c Rl.

For two different R, the corresponding R¡ are obviously different. Further-

more, it follows from (30) and (37) that the NE-distance of R¡ from R0 is

the same as that of R, from R0. According to (31") the NE-distance of Rr

from Ro is less than 7 Hence all regions R! considered here must He within the

circle Ki+2D. Thus (36) can be written as

(38) M.(l -D)3 -^~- Z ff V(S,(0))d<r.,
ff(Kl) y        J    J  B„

where

(38') S„(0)cR! cKi+2D.

By (38') on applying Harnack's inequality to F^O we have

V(Sr(0)) ^eDV(z),        zcR!,

which being combined with (38) yields

q(DM,(l - D) S -^J- e^ff ,V(z)d<r,
<r(A|) „   J J R,

: ÍÍ
J  J Kh

and, according to (17),

lxmMt(l) á e&DV(0).
/—»oo

On taking account of (26) and (34) we infer from this inequality that

(39)        (47T2)-1   meas    [L7(f, 7) = O] ¿ (27r)-1e6Dmeas [V(0, 7) = 0],
iri-hl-J ItI-J

which proves Lemma 3 in the case where R has no vertices on \z\ =1.
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In the general case by cutting off the vertices lying on \z\ = 1 we can al-

ways divide Ro into two parts,

(40) Ro = Ro* + Ro**,

such that

(41) c(Ro**) < 5

and that R* has a finite NE-diameter, say D=D(b). We may always sup-

pose Ro* to contain the origin. The set

B = E S(R0**)
s

is invariant under Ç. The set i?0* and all sets R* congruent to it cover the

complement of B in \z\ < 1. We note that all R* have the same NE-diameter

D. Consider all

R*cKi.

Every point of K¡-D belongs either to one of these R* or to B. For, if it be-

longs to any R? at all, this set must be contained in Kt since its diameter

equals D. Hence

Xw)cE R* + BKi-s,        R?cKi.

Since ht iS 1 we obtain from (25)

I c(Ki_D) J        a2(Ki) ZJJr*JJb*

the summation being confined to all

R*cK,,        R*cK,.

Here the second term satisfies the same inequalities as before. The first term

is less than

a2a2(BRo) = a2a2(R0**) < a2ô2,

by Lemma 1 and (41). On proceeding as before to the limit as/—>oo, e—>0,

we obtain inequality (39) with the additional term a2h2 in the right-hand side.

A suitable choice of 5 evidently leads to the general proof of Lemma 3. Theo-

rem B, and therefore the proposed theorem on surfaces 2 of the first kind, is

herewith completely proved.

6. Surfaces of the second kind. For a group Ç of the second kind, the

fundamental region has on its boundary one or several arcs of the unit circle.

We shall consider only the case where R has no zero angle vertices on \z\ =1,
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i.e., where the surface 2 has no cusps. These arcs and their images under Ç

are known to lie everywhere dense on \z\ = 1. We shall prove that this set co

has the measure of the whole of \z\ = 1. Let a he one of the complete arcs of

\z\ =1 belonging to the boundary of R. There will be two images of R ad-

jacent to R along the two sides of a which end at the two end points of a,

respectively. In particular, there are two arcs of the set co immediately ad-

jacent on both sides of a. This shows that the end points of any arc a are

interior points of the set « introduced above. Since co is invariant under Ç,

the Poisson integral m(z) whose boundary values on \z\ =1 are zero on co and

one elsewhere must also be invariant under Ç,

«(S(z)) = m(z)

for all S of Ç. All we have to prove is that u = 0. Indeed, m(z) has, in the sense

of ordinary convergence, the boundary value zero on every closed arc a. On

account of its invariance, u takes all its values in R. Since a harmonic func-

tion always attains its extrema on the boundary, w(z) must attain them on

the (closed) part of \z\ =1 belonging to the boundary of R, whence u = 0.

If 7? has vertices on | z | = 1 an elementary proof could still be given as

well as for Lemma 2, for instance by applying Green's formula

r r r    du
I   I   grad2 « dxdy =   I   u — ds

to a region obtained by diminishing R suitably (cutting off the vertices on

| z | = 1 in a suitable way).

Massachusetts Institute of Technology,

Cambridge, Mass.


