
ON SOME HERMITIAN FORMS ASSOCIATED WITH
TWO GIVEN CURVES OF THE COMPLEX

PLANE*

BY

GABRIEL SZEGÖ

1. Let us consider the set of polynomials /(z) of degree n satisfying the

condition |/(z) | ¿ 1 on a given closed set E. What can then be said about

|/(z) | on another given closed set £'?

The maximum of |/(z) | on E' for the set of all polynomials defined by

the inequality mentioned is a number mn = m„iE, E') which depends on n

and also on the mutual position of E and E'. It is of course an invariant with

respect to translation and rotation. Obviously w„ = l if E' is a subset of E.

For the sake of simplicity we further assume that E and E' are closed regions

bounded by rectifiable Jordan curves C and C In case C has some points

exterior to C, the exact determination of mn seems to be rather difficult. The

asymptotic calculation for large values of n, however, is possible. Fekete [l ]

has shown the existence of

(1) lim (mn)xln = p.
n—»»

Here the number p can be characterized by means of the conformai and one-

to-one representation of the region exterior to C onto the region exterior to a

circle in the w-plane, z= °° corresponding to w= <*>. The points of C out-

side of C have some correspondents in the w-plane. The greatest distance oí

these from the center of the circle, divided by the radius of the circle, is

equal to p.

2. An analogous problem can be proposed if the maximum value of |/(z) |

on C is replaced by its "mean quadratic value,"

WJ/(z)N4U2;

here C is supposed to have the length 7 A similar definition of the deviation

on C may be used. The corresponding maximum Mn = MniC, C) depends

again on the mutual position of C and C. On introducing the normalized or-

thogonal polynomials \q*(z) ] associated with the curve C [8] it can be easily

shown that

* Presented to the Society, April 10, 1936; received by the editors February 24, 1936.
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(2) Mn2 = max ^ x^x,(¿')_1  I   q?(z)q,(z) \ dz \
u,i—0 " c

provided that the variables x, satisfy the condition X^=oI x>12 = 1 (or =!)•

In other words, A7n2 is the greatest characteristic value of the Hermitian form

on the right side of (2). Here I' denotes the length of C.

3. In the present paper we shall not enter into the details of this general

problem. [The answer which can be expected is, incidentally, the same as in

(1).] Only a special case shall be treated here, in which C is the real interval

— 1, +1 (actually a limiting case of a Jordan curve) and C the unit circle

with the origin as center. We derive then, for the corresponding number M„

the following asymptotic expression :*

(3) Mn =* 2-9'V-3'4«-1'4(21/2 + l)n+3'2.

It can be easily shown, that in this case p = 21,2+1, p having the same mean-

ing as above. Another formulation of this result is: Let X„ be the smallest

characteristic value of the quadratic form

(4) — f  (x0 + xit + x2t2 + • • ■ + xJn)2dt = ¿'-——,
2   J-l ,,Mi" + " +  1

where X)' indicates that the summation is extended only over even values of

p+v. We have then

(5) X„ S* 29/47r3/2«1'2(21'2 - 1)2"+3,

since \n = Mr2.

In a letter on November 19, 1935, Professor Tamarkin proposed the prob-

lem of determining an asymptotic expression for these numbers X„. I dealt

with this question several years ago in connection with some investigations

about the so-called Hankel forms [7]. I found at that time instead of (5),

the less sharp result (18) of Part I. The letter of Professor Tamarkin gave

me the opportunity to attack this problem again and to obtain the more ex-

act formula (5) as well as the subsequent related results.

The reader may be interested in the facts previously known about the

form (4). Hilbert [3] obtained an explicit expression for its determinant

(1!2! • • • «!)"
(6) £>„ = 2"<B+1)-v 1!2!3! • • • (2»+l)!

Moreover, it is known j that the greatest characteristic value A„ tends to 7r/2

* In what follows, we write an=bn (an and b„ real or complex, ¿¿0) if \imn^xanbn~l = 1; further-

more, an~bn {an and b„ positive) if two positive constants u and v exist such that u<aj>ñl<v.

t See, for instance, G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, 1934,

p. 226.
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if rc—> oo. It would be extremely interesting to find a simple way of describing

asymptotically the distribution of all characteristic values of this form for

large values of n.

4. If the range ( — 1, +1) is replaced by another segment, similar results

are valid; the asymptotic behavior of the numbers corresponding to X„ de-

pends, of course, on the situation of this segment. For instance, in case of the

form

(7) f    (Xo +   Xit +   X2t2 +   ■   •   ■   +   Xj")2dt =   Ê   -—-
^ o n,*=ap + v + 1

we obtain for the smallest characteristic value

(8) Xn ^ 215'W'2(21'2 - 1)"»+4.

[We have in this case p = (21/2+l)2.] The greatest characteristic value tends

here to tt.

5. For infinite sets, the integrals considered are not convergent. Thus the

introduction of a proper weight factor becomes necessary. The special cases

/<« ne-is(x0 + xi/ + x2t2 + • • • + xj»)2dt = £T(1(m + v + l))x„x,
—00 «I.»—0

and

/» oo n

e-'ixo + xit + x2t2 + ■ • ■ + xj»)2dt = E (M + v)\x>x,
0 V..V—0

illustrate the totally different behavior of the smallest characteristic value

with which we are here concerned. In these cases the corresponding asymp-

totical values are:*

(11)        213'4x3/2e«1/4 exp (- 2(2n)x'2) and 23'V/2e«1/4 exp (- 4»1'2).

6. In Part I we start with the discussion of the form (4) proving that

X„~w1/2(21/2 — l)2n. We give in Part II the proof of the sharper formula (5).

In Part III the analogous treatment of the form (7) follows. Finally, we dis-

cuss the forms (9) and (10), giving the proof of (11). The formulas (5) and

(8) are connected with asymptotic properties of Legendre polynomials; in

cases (9) and (10) we need some asymptotic properties of Hermite and

Laguerre polynomials.

Part I

1. Obviously we have in case of the form (4)

* It is easy to show that the corresponding greatest characteristic values are ^ r(«+è) and (2n) !.



1936] HERMITIAN FORMS 453

hf-,(f(t))2dt
X„ = min

(l/(2ir))S:t\f(e«)\2dp

or what is the same,

.    !             í_Af(e^)Vdp
7rX„ * = max —-.->

¡Umydt
f(z) being an arbitrary polynomial of the nth degree with real coefficients.

Supposing that z lies in the complex plane cut along the segment ( — 1, +1),

we have

dt
2(12) (z + (z2 - i)w»)-*-itf(,))* - -^ fit + (t2 - l)1'2)-2-1^)

where the integral is taken in negative sense along a closed curve enclosing

the segment ( —1, +1) but not the point z. The left-hand member is indeed

regular in the cut plane and vanishes for z=°°. By z+(z2 —1)1/2 we

mean that branch of the function which is °o for z = oo. For this branch

|z+(z2—1)1/2| >1 in the cut plane and =1 on the cut itself.

Thus we get

(13) | z + (z2 - I)"« |-2— | f(z) \2 = -(  (f(t))2dt,
7T0 J —l

b being the shortest distance of z from (—1, +1).

Another inequality, less exact in general, can be obtained using some ele-

mentary facts about Legendre polynomials. We have [Polya-Szegö, 5, vol. 2,

p. 95, problem 103]

(14) | (z + (z2 - l)1'2)-2»^))2! ^    max   (/(/))2 ^ \(n + I)2 f  ifit))2dt.
-1S/S+1 J-i

2. The unit circle | z\ = 1 lies entirely interior to the ellipse | z + (z2—1)1/2|

= 1+21/2 having with it only the points ±i in common. Let y be an arc

ir/2 — e^(p^Tr/2 + e of the unit circle containing +* and lying in the upper

half plane; let y' he the complementary arc of the upper half circle. Then we

have on account of (13)

(15) f |/(z) \2d<p ^  f \z+ (z2 - I)'/2 |2"+i¿c6-I    ifit))2dt.
J y J y IT    COS   Í J -I

On setting z = ei* = iei*' we have in the neighborhood of z = i, i.e., for small

values of 0',
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log [z + (z2 - l)1'2] = log [ie**' + i(e2i*' + l)l/2]

Í-K . ,
=-h log [«**' + ei*''2(2 cos 4>')x/2]

t-K ( <t>'2

= y + iog|i + w - — + •••

+2l„(,+4_i+...)(i-^+...)}

irc l d>' <t>'2 )
= - + log (1 + 2"2) + log h + i— - (2"2 + 2) — + • • • J»

iw                                                                        <t>'2
=-h log (1 + 2"2) + 2-1'2îV - 2-1'2-h

whence

I z + (z2 - l)1'21 = exp {SR log (z + (z2 - I)1'2)}

(16') I <t>'2 )
= (21'2 + 1) exp < - 2-1'2-+ ■ ■ • V .

Using a familiar argument [cf. Polya-Szegö, 5, vol. 1, p. 78, problem 201 ] we

obtain

(17) f | z + (z2 - l)1'2 |2"+1a> ~ «-1'2(21'2 + l)2
J y

and on account of (15)

/, |/(z) \2dd>
0(«-1/2(21'2 + l)2").

JL,(f(t)?dt

3. On the other hand we obtain on y' using (14)

l/(z)|2'        '- < i(»+ 1)2X2",

A(/(/))2á/ ~

X being the maximum of |z+(z2 —1)1/2| on y'. ButX<21/2+l, whence

AI/Cs^N
Ili(f(t))2dt

follows.

0(»-1/i(2l" + l)2")

4. For the special polynomial/(/) =/(cos 0) =cos w0

J    (/(/))2d/ =   T   cos2 nd sinddd = I - (4n2 - 1)"
•7—1 «7 o
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holds. Furthermore

f'\f(ei*)\2d<p = fT\h(z+(z2- l)1'2)" + i(z - (z2- I)1'2)»

The contribution of y' to this integral is =0(X"). On the other hand on y

Z+  iz2 -   l)l/2|2n|   1  +  (3  -   (Z2  -   l)1'2)-2»!2^

> —(1 - X-2")2 I   I z + (z2 - l)1'2!2"^.
4 J  y

According to (17) the last expression is >cra_1/2 (21/2+l)2", where c>0

is independent of n. Thus we have shown

(18) X„~w1'2(21'2 - l)2".

Part II

1. In order to prove the more precise statement (5), we introduce the

normalized Legendre polynomials c7„(z) = (« + i)1/2Pn(z), Pn being the ordi-

nary Legendre polynomial of the rath degree. On writing/(z) as a linear com-

bination of Legendre polynomials we obtain

n n

(19) irXn-1 = max 2 R/uX^x,    for    ^ | x, |2 ^ 1,

where

(20) Kp, =   I    q^iz)q,iz)dp, =    i>i*

According as ra is even or odd, Legendre polynomials are even or odd func-

tions, so that KßV =0 if p—v is odd. Furthermore, the term z"-2* in P„(z) has

the sign ( — 1)*; consequently K„, is real and has the sign ( — 1) (*-»>'*—0*»O«-»>/»

if p — v is even. Thus the maximum problem (19) can be separated into the

two independent problems

(21)

max ^wK^,xßx,, X} [ x, \2 iS 1,
c."=0

max  X!(!)^i»V»i X) I x' I2 = 1)

where, in X)(1), M — "—n (mod 2), while, in X^l2\ M—»"■ w — 1 (mod 2), and

xXn-1 is the greater oí the corresponding maximum values.
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2. We now propose to study some asymptotic properties of the integrals

(20) using the asymptotic formula of Heine [2, p. 174]

(Z +  (Z2 -   l)l/2)n+l/2

(22) Pniz) S-—-
(2tt«)1'2(z2 - l)1'4

Here z lies in the complex plane cut along the segment ( — 1, +1). The ratio

of the expressions in (22) tends to 1 uniformly in every closed region having

no points in common with the segment ( — 1, +1).

Let w be a fixed positive integer, n—» oo. We confine ourselves to the values

of u and v characterized by the conditions

(23) n — co ^ ft, v á •*> p — v even.

Denoting again by y, as in Part I, the arc7r/2 — e^(p^.ir/2 + e and using (16),

we have for z = ei* =ie{*',

I qÁz)q>(z)d<t>
J y

C     (Z+   (Z2  -   1)1/2)H-1/2(Z +  (Z2  -   l)l/2)M-l/2

Ot (m + »l'»(r + i)1'2 J ttttttt1    -<**

= exp

(2Mx)1'2(2w)1'21 (z2- l)1'412

iir(u - v)   2"l'2(21'2 + lY+'+x

■ j 'exp ^2-x'2ùt>' - 2-x>2^+ ■ • • ) iß + i)

+ (- 2-x>2i4>' - Tr1'* — + • • • \p + è) W

2-1/201/2 -|-   D^+'+l

^ ( —   l)(»->')/2  ___1_
2tc

■ f exp h-'iHip - v)<p' - 2-1'2(M + v + 1) — H-1-i^'

2-i/2(2i/2 + iv+m-i p <        / <¿'2\
~(_ i)<r-r>/i-:-1-. I   exp ^- 2-1'2(ít + ,• + 1)-}d<p'

2ir J_e       ( 4 ;

2-l/2(2W2 +   ly+H-l    / „  _|_  „ +   n  -1/2

~ (_ l)(r>W _:_:_ <2-1/2 ——_>       ir1'2

2tt l 4        j

^ (_ i)(^-«)/2(27r21/2)-I/2»-'/2(2W2 _|_ iy+-+it

and therefore

(24) K,t ^ (- 1)("-")/221/4tt-1/2»-1/2(21/2 + l)"+"+1.
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Using Schwarz's inequality we obtain for all values of p and v

(25) I am, I iS Kßp K,r .

On the other hand, for the values of p and v satisfying (23) on account of (24),

(25') K^i-lf-^Kl'Kl1:.

3. Now if {e„} denotes a suitable sequence with positive terms —>0,

Zcl) re < VI K   11     II     I < V ir1/2jrI/2 I     II     I

ftty— 0

= {Z^/2| x,|| ^ £a-„

(26) ^ 21'4ir-1'2(21/2 + l)2n+1 X) (1 + ev>-I/2(21'2 + l)2""2"

00

Ä 2l/4ir-1'2(21/2 + l)2^1«-1'2^ (21/2 + I)"44

fc-0

= 2-9/4ir-1/2ra-1/2(21/2 + l)2n+3.

On the other hand we put

iry/2 rrl/2     .. - _,
x, = <re      a„   if v «i »,        ra — o < y < w,

(27) -
x, = 0 if pa«, v < n — co.

Here the positive number cr has to be determined according to the condition

23»»«l*»l 2 = (r!E«-"á'Sn;»=n^» = l. The form in question becomes then

XI   Ky.,0-2 exp [iirip — v)/2]Kßß K,y .
fi.v^n—tä

In view of (25') we obtain for this expression
n

== <r2Z K„K„ = cr2{ £ A%„}2 =    X) ÜT„

^ 21'47r-1/2ra-1/2(21/2 + l)2n+1 ¿  (21'2 + l)2*-2*1.

p=n—w
»*=n

Since the number w is arbitrarily large the asymptotic value of the first

maximum (21) is given by the right-hand member in (26). The second

maximum is obtained by replacing here w by ra — 1 ; the result is of lower order

than the preceding one which therefore furnishes the asymptotic evaluation

of (19).
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Part III

The treatment of the form (7) does not present new difficulties. Using

notations analogous to those employed in Part II, it is sufficient to point

out only the essential differences.

The orthogonal polynomials belonging to the interval (0, 1) are

"   Pik\- 1)

(28)      qnit) = i2n + 1)1'2P„(2/ - 1) = (2« + l)*/2£ ^^^ (2t)k.
h=o kl

Hence we obtain

(29)        A'1V = (lp + iy'2(2v + l)1'2        Pß(2z - l)P,(2z - l)d<b
/:

= />■>

Since sgn P„w ( — 1) = ( — l)n~* we easily see that K», is real and has the sign

(—1)"-'. The inequality (25) holds again.

In this case, z = ei*,

max | 2z - 1 + [(2z - l)2 - l]1/2| = 3 + 2(2"2)

and this value is attained for z = — 1. Thus the main part of our integrals is

given by the arc -ir — e^<p?¿ir + e. We need therefore, the development of

(30)        log {2z - 1 + [(2z - l)2 - l]1'2} = 2.log jz1'2 + ((z1'2)2 - l)1'2}

if z = e**= — e**' and 0' is small. Since zll2 = iei*'12 this can be readily calcu-

lated from (16) in the form

<t>'2
(30) Mr + 2 log (21'2 + 1) + 2-x'2i<¡>' - 21'2-1-.

16

This yields under the condition

(31) n — co ^ p,   v ;£ n

the asymptotic formula

K,„ fi. (2/x + iyi2i2v + l)1'2 f      P,(2s - l)Py(2z - l)d<p

£* (2M + l)1/2(2x + l)1'2

'+« {2z-l + ((2z-l)2-l)1'2}"+1/2{2z-l + ((2z-l)2-l)1'2}"+1/2f
J w-, (2irp)x'2(2wi>yi2 | ((2a - l)2 - l)1'4 |2

(32) S (- l)"-"(2ir21'2)-1(21/2 + l)2"+2"+2

f      exp ¡2~x'2i(p - v)4>' - 21/2(m + v+1)-\d<t>'

d<p
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(21'2ip + v+l)) -1'2
ö (_ l)c-"(21r21/2)-1(21/2 + l)2"+2'+2^-V       7T1'2

^ (_   l)M-»2-»/47r-l/2w-l/2(21/2 +   1)2m+2H-2.

For the values (31) the asymptotic formula (25') holds again, with ( — 1)<*•-»)/*

replaced by (-1)""'.

Consequently, by means of an argument similar to that used in Part II,

we obtain for

2irX¿"1 = maxXI K^x^x,, /Z\ x>\   = 1|
n oo

2irX„-1 S XI K» = 2-l'4ir-1/2ra-l/2(21/2 + 1)4"+2XI (2l/2 + l)-4*
►=o *-o

= 2-n'4Tr-1'2«-,/2(21/2 + 1)4"+4.

Part IV

1. Introducing the normalized Hermite polynomials q„(t) belonging to the

weight function e~t%, we see that the smallest characteristic value X„ of (9)

is given by

2ir\rr1 = max XI K^vxßx,, XII x> \   = 1>

where

I   qÁz)qÁz(33) ÂV =   I    q^(z)qt(z)d(f,,        z = e{*.

Hermite polynomials can be represented easily in terms of Laguerre poly-

nomials with the parameter values ±J. Using the notation from the book

by Polya-Szegö [5, vol. 2, p. 94, problem 99] we obtain [cf. loe. cit., p. 95,

problem 102]

m i(r(« + i))-1/2(r(w + i))"274r1/2)(*2) if n = 2m,

" t(T(» + f))-V^T^l + l))1/2íli,1/2)(í2)    if n = 2m + 1.

Consequently JUT^ = 0 if /* — e is odd. For p—v even, 7T^„ is real and positive.

According to the asymptotic formula of Laguerre polynomials due to

Perron [cf. 4, p. 77, (48)]

(35) qn(z) & vVtt1'2)-^—\       exp [z2/2 - Í2Í»1'1],

where r¡ = I if w is even, r¡ = i if n is odd. Here z is supposed to have a positive

imaginary part. The essential part of K^, is given again by an arc y of the
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type of Part IL* Let w be a fixed positive number; for large values of n and for

(36) n — co«1'2 ^ n, v S n,        p — v even,

we have

I qÁ¿)qÁz)d<t>

(37)

S. (47re)-1(—J       (— J f exp [- iz(2py'2 + iz(2v)xl2]dd>.

Putting z = zV*' we obtain

(M-'Q ' / <exP {i1 + **' - -y-) W2

+ (l- i<t>' -^A(2vyi2\d4>'

S (47T6)-1 ( — j      exp [(2M)1/2 + (2«-)1/2]

(37') • J 'exp [- K(2m)1/2 + i»1")*"]«**'

2¿i4«e)-xl— J    exp[(2M)1/2+ (2v)1'2]{K(2m)1/2 + (»i'*)}-»**-1'*

S 2-7'4x-1'2e-1M-3/4 exp [(2M)1/2 + (2»)1'2]

because jtt1/2—v1/2 remains bounded.  Hence, for the values of jtt, v defined by

(36)

(38) K„ £¿ 2-3/47T-1'2e-1«-3/4 exp [(2p)1'2 + (2x)1/2].

Hence we get as in Part II

2tX„-1 Sá £ K„ Si 2-3'47r-1'2e-1w-3/4]C exp[2(2^)1'2]

1 /•B
SÉ 2-3/4x-1/2e-1«-3/4— I    exp[2(2*)1/2].ix

2 -7 i

/» nl/2
a;exp[2(21/2)a:]da:^2-9/41r-1/2e-1«-1/4exp[2(2«)1/2].

i

Thus the first statement (11) is established.

2. Dealing with the form (10) we use Laguerre polynomials <?„(/) =Ln(t).

* Near the real axis, i.e., in the neighborhood of the pointsz= ± 1, the formula (35) cannot be

used. Here the fact has to be regarded that | ?n(*-Hy)|, x and y real, is monotonically increasing if | y|

increases. This is a consequence of the reality of the zeros of q„(z).
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Here K„, is always real and positive. Excluding the case in which z is real and

non-negative, we have [Perron, 4, loc. cit. ]

qn(z) at (2ir1'2)~1(- z)-1'V/2ra-1'4exp[2(-zra)1'2j

The essential part of K„r is given now by the contribution of a neighborhood

of z = — 1 (cf. the footnote on p. 460).

Restricting p and v as in (36) but without the condition regarding p.—v

we obtain

qß(z)q„(z)dp
r-é

S (41re)-V-l/4»'-1/4 f      exp [2(- zp)1'2 + 2(- zp)1'2^.
d T-c

Writing z= — e*' we get

(45re)-1»-1'2 f     exp Wi*(\ + i— - — ) + 2^'2(l - i— - — H dc6'

^(41re)-1ra-1'2exp[2M1'2+2^'2]  f exp [- (p1'2 + v1'2)^2/^]^'

(„1/2 _1_  „1/2-v -1/2

S (47re)-1ra-1/2 exp [2M1/2 + 2V1'2] \ ■-— V       it1'2

Si 2-3'2ir-1/2e-1ra-3/4 exp [2p1'2 + 2v112],

therefore

n /»n

2irXr1S XI^v^2-3/27r-1'2e-1»-3/4 I exp[4x1'2]dx^2-1'27r-1'2e-1»-1/4expira1'2].
r-0 J 1
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