Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the reduction of dynamical systems by means of parametrized invariant relations
HTML articles powered by AMS MathViewer

by E. R. van Kampen and Aurel Wintner
Trans. Amer. Math. Soc. 44 (1938), 168-195
DOI: https://doi.org/10.1090/S0002-9947-1938-1501966-6
References
    F. Engel, Die Liesche Theorie der partiellen Differentialgleichungen erster Ordnung, edited by K. Faber, Leipzig, 1932.
  • E. R. Van Kampen and Aurel Wintner, On the Canonical Transformations of Hamiltonian Systems, Amer. J. Math. 58 (1936), no. 4, 851–863. MR 1507207, DOI 10.2307/2371255
  • E. R. Van Kampen and Aurel Wintner, On a Symmetrical Canonical Reduction of the Problem of Three Bodies, Amer. J. Math. 59 (1937), no. 1, 153–166. MR 1507227, DOI 10.2307/2371569
  • T. Levi-Civita, Sur la recherche des solutions particulières des systèmes différentiels et sur les mouvements stationaires, Prace Matematyczno-Fizyczne, vol. 17 (1906), pp. 1-40. T. Levi-Civita, Sulla introduzione di vincoli olonomi nelle equazioni dinamiche di Hamilton Atti del Reale Istituto Veneto, (8), vol. 18$_{1}$ (1916), pp. 387-395.
  • Aurel Wintner, On the linear conservative dynamical systems, Ann. Mat. Pura Appl. 13 (1934), no. 1, 105–112. MR 1553236, DOI 10.1007/BF02413437
Similar Articles
Bibliographic Information
  • © Copyright 1938 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 44 (1938), 168-195
  • MSC: Primary 34A34; Secondary 34A25, 34C20, 37J15, 70F20, 70F25, 70H05
  • DOI: https://doi.org/10.1090/S0002-9947-1938-1501966-6
  • MathSciNet review: 1501966