A system of ordinary linear differential equations with two-point boundary conditions
HTML articles powered by AMS MathViewer
- by William T. Reid
- Trans. Amer. Math. Soc. 44 (1938), 508-521
- DOI: https://doi.org/10.1090/S0002-9947-1938-1501979-4
- PDF | Request permission
References
- G. D. Birkhoff and M. R. Hestenes, Natural isoperimetric conditions in the calculus of variations, Duke Math. J. 1 (1935), no. 2, 198–286. MR 1545876, DOI 10.1215/S0012-7094-35-00118-1
- Gilbert Ames Bliss, A boundary value problem for a system of ordinary linear differential equations of the first order, Trans. Amer. Math. Soc. 28 (1926), no. 4, 561–584. MR 1501366, DOI 10.1090/S0002-9947-1926-1501366-0
- Gilbert A. Bliss, Definitely self-adjoint boundary value problems, Trans. Amer. Math. Soc. 44 (1938), no. 3, 413–428. MR 1501974, DOI 10.1090/S0002-9947-1938-1501974-5 Hölder, Die Lichtensteinsche Method für die Entwicklung der zweiten Variation, angewandt auf das Problem von Lagrange, Prace Matematyczno-Fizyczne, vol. 42 (1935), pp. 307-346. Hu, The problem of Bolza and its accessory boundary value problem, Contributions to the Calculus of Variations 1931-1932, The University of Chicago Press, pp. 361-443. Ince, Ordinary Differential Equations, London, 1927.
- Marston Morse, Sufficient Conditions in the Problem of Lagrange with Variable End Conditions, Amer. J. Math. 53 (1931), no. 3, 517–546. MR 1507924, DOI 10.2307/2371163 Morse, The Calculus of Variations in the Large, American Mathematical Society Colloquium Publications, vol. 18, 1934.
- William T. Reid, A Boundary Value Problem Associated with the Calculus of Variations, Amer. J. Math. 54 (1932), no. 4, 769–790. MR 1506937, DOI 10.2307/2371102
- William T. Reid, Analogues of the Jacobi condition for the problem of Mayer in the calculus of variations, Ann. of Math. (2) 35 (1934), no. 4, 836–848. MR 1503199, DOI 10.2307/1968497
- William T. Reid, An Integro-Differential Boundary Value Problem, Amer. J. Math. 60 (1938), no. 2, 257–292. MR 1507311, DOI 10.2307/2371292 Wiggin, A boundary value problem of the calculus of variations, Contributions to the Calculus of Variations 1933-1937, The University of Chicago Press, pp. 245-275.
Bibliographic Information
- © Copyright 1938 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 44 (1938), 508-521
- MSC: Primary 34B05; Secondary 34A30, 34C10, 34L99
- DOI: https://doi.org/10.1090/S0002-9947-1938-1501979-4
- MathSciNet review: 1501979