ON 0-REGULAR SURFACE TRANSFORMATIONS*

BY

W. T. PUCKETT, JR.

1. The continuous transformation $T(M) = M'$, where M is a compact metric space, is said to be 0-regular† provided that for each sequence of points $\{x'_n\}$ converging to x' in M', the sets $T^{-1}(x'_n)$ converge 0-regularly‡ to $T^{-1}(x')$. This is equivalent to a continuous transformation sending open sets into open sets, while the inverse sets as a collection are uniformly locally connected (that is, for each $\epsilon > 0$ a $\delta > 0$ exists such that every two points x and y of any inverse set X whose distance apart is less than δ lie in a connected subset of X of diameter less than ϵ). This characterization suggests the projection of a convex euclidean set onto a plane. For example, the orthogonal projection of a solid circle onto a diameter is a 0-regular transformation. It is not 0-regular on the circumference, however, because of the folding about the diameter’s end points. That there exist other types of 0-regular transformations is illustrated by the identification of diametrically opposite points of a 2-sphere to obtain a projective plane. A suggestive property of a 0-regular transformation is that the inverse sets must all contain the same number of components.†

In this paper a study is made of 0-regular transformations defined on 2-dimensional pseudo-manifolds. It is shown that if M is a 2-dimensional pseudo-manifold and $T(M) = M'$ is a monotone 0-regular transformation, then either T is topological, or M' is an arc or a simple closed curve. Moreover, it is shown that T must be topological or M' must be degenerate except in the following cases: (i) The sphere, 2-cell, and circular ring may be mapped onto an arc. (ii) The torus, Klein bottle, circular ring, Möbius band, pinched sphere, and 2-cell with two boundary points identified may be mapped onto a simple closed curve. In each of these cases the possible transformations are characterized. For example, it is shown that the only non-topological monotone 0-regular transformation of a sphere onto a nondegenerate image space is equivalent to an orthogonal projection onto a diameter.

* Presented to the Society, April 8, 1939, under the title The images of 2-dimensional surfaces under 0-regular transformations; received by the editors August 29, 1939.
‡ A convergent sequence of closed sets $\{X_n\}$ is said to converge 0-regularly to X provided that for each $\epsilon > 0$ there exist positive numbers δ and N such that if $n > N$, any pair of points x, y of X_n with $\rho(x, y) < \delta$ lie together in a continuum in X_n of diameter less than ϵ. See G. T. Whyburn, Fundamenta Mathematicae, vol. 25 (1935), pp. 408–426.
In §6 the above results are stated in terms of possible monotone 0-regular retracting transformations on pseudo-manifolds, while in §7 R. L. Moore's* self-compact equicontinuous collections of curves are used in stating the results. In the concluding section the possible images of pseudo-manifolds under general 0-regular transformations are considered.

2. Throughout this section the following notation will be used: Let M denote a 2-dimensional pseudo-manifold, that is, a 2-dimensional manifold or surface (with or without boundary) among q points of which identifications have been performed so as to produce r local separating points† of M. Let B be the boundary (that is, a finite number of simple closed curves) of M, and denote the finite set of local separating points of M by S. Finally, let $T(M) = M'$ be a monotone 0-regular transformation and assume M' is non-degenerate.

2.1. If x is a point of S, then $T^{-1}T(x) = x$.

Proof. Since M is a locally connected continuum and x is a local separating point of M, there exists a connected neighborhood $U(x)$ of x such that $U(x) = L_1 + L_2 + \cdots + L_\lambda$ ($\lambda \geq 2$), where the L_i are mutually separated open sets each having x as a limit point. Assume the assertion is false; then there exists an L_k such that $T^{-1}T(x) \cdot L_k$ contains x. Let $\{x_i\}$ be a sequence of points in $L_n - T^{-1}T(x)$ (n not k) converging to x. Now $\{T^{-1}T(x_i)\}$ converges to $T^{-1}T(x)$. Hence for each sufficiently large i there exists a point y_i of L_k such that $T(y_i) = T(x_i)$ and $\{y_i\}$ converges to x, since $T^{-1}T(x) \cdot L_k$ contains x. But any connected set in $T^{-1}T(x_i)$ containing x_i and y_i must extend outside $U(x)$. Hence $\{T^{-1}T(x_i)\}$ does not converge 0-regularly to $T^{-1}T(x)$ contrary to the hypothesis that T is a 0-regular transformation.

2.11. If x is a point of S, then $T(x)$ is a local separating point, but not a cut point of M'.

Proof. Since $T^{-1}T(x) = x$, $T^{-1}T(x)$ locally separates M. Hence by a known theorem‡ on monotone transformations $T(x)$ locally separates M'. However, $T(x)$ cannot be a cut point of M' since $M - x$ is connected.

† The point x of a continuum M is called a local separating point of M provided there exists a neighborhood $U(x)$ of x in M such that x separates $U(x)$ between some pair of points of the component of (Ux) containing x. See G. T. Whyburn, Local separating points of continua, Monatshefte für Mathematik und Physik, vol. 36 (1929), pp. 305–314.

‡ The theorem and proof given here are valid if M is any locally connected continuum and x is a local separating point of M.

2.2. If x' is any point of M', then $T^{-1}(x')$ is either an arc or a simple closed curve.

Proof. Since T is interior, $T^{-1}(x')$ can contain no open set. Hence either $T^{-1}(x')$ is a single point (that is, a degenerate arc or simple closed curve) or $T^{-1}(x')$ is a 1-dimensional continuum. Moreover, $T^{-1}(x')$ is locally connected.† Therefore, in order to establish the assertion it must be shown that every point x of $X=T^{-1}(x')$ has an order not greater than 2 in X. Suppose x has an order greater than 2 in X; then there exist nondegenerate arcs α_1, α_2, α_3 in X which are disjoint except for $\alpha_1 \cdot \alpha_2 \cdot \alpha_3 = x$, an end point of each α_i. Since, after 2.1, x cannot be a point of S, there exists a neighborhood $U(x)$ of x in M such that $\overline{U(x)}$ is a 2-cell. It may be assumed each α_i is disjoint‡ with $F(U(x))$ except for the other end point. Now $U(x) - \sum \alpha_i$ must contain at least two components L_1, L_2 such that L_1 contains x. (Observe that one cannot say three components here because x may be a point of B.) Moreover, it may be assumed $\alpha_1 \cdot L_1 = x$, since $\overline{U(x)}$ is a 2-cell. There exists a sequence of points $\{y_i\}$ of $L_1 \cdot (M - X)$ converging to x, since X contains no open subset of M. Now if $\{Y_i\} = \{T^{-1}T(y_i)\}$ converges to x, there must exist for all sufficiently large i points z_i of Y_i not contained in L_1, since $\alpha_1 \cdot L_1 = x$. It may be assumed $\{z_i\}$ converges to x. Therefore $\{Y_i\}$ does not converge 0-regularly to X, since any connected subset of Y_i containing y_i and z_i must extend outside $\overline{U(x)}$. Thus the assumption that the order of x is greater than 2 has led to the contradiction that T is not 0-regular.

2.3. If x' is a point of M' such that $T^{-1}(x')$ is nondegenerate and not contained in B, then x' is a local separating point of M'.

Proof. Since $X = T^{-1}(x')$ is nondegenerate and not contained in B, it follows from 2.2 and 2.1 that there exists a subarc α of X which is disjoint with $B+S$. Let x be an interior point of α and let α_1, α_2 be arcs such that $\alpha = \alpha_1 + \alpha_2$ while $\alpha_1 \cdot \alpha_2 = x$. There exists a neighborhood $U(x)$ of x which is an open 2-cell and does not contain either of the α_i. Let $x_1x_2x_3 = \beta$ be the subarc of α containing x such that $\beta \cdot F(U(x)) = x_1 + x_2$; then $U(x) - \beta = L_1 + L_2$ is a separation such that $\overline{L_1 \cdot L_2} = \beta$. Now let $\{U_i(x)\}$ be a sequence of connected neighborhoods contained in $U(x)$ and closing down on x. Then for each i, $U_i(x) - X = L_{ii} + L_{ia}$, where $L_{ii} = L_{i} \cdot (U_i(x) - X)$, is a separation, since X contains no open subset of M. Suppose x' is not a local separating point of M';
then for each i, $T(U_i(x)-X) = T(U_i(x)) - x' = 0'$ must be a connected set.* Hence there must exist a point y'_i of $0'$ for each i such that $T^{-1}(y'_i) \cdot L_{ij}$ contains a point y_{ij} for $j=1, 2$. Now $\{y'_i\}$ converges to x' and $\rho(y_{il}, y_{ir})$ converges to zero, since the $U_i(x)$ close down on x. But from the definition of the L_{ij} it follows that any connected set in $T^{-1}(y'_i)$ containing y_{il} and y_{ir} must go outside $U(x)$. Therefore $\{T^{-1}(y'_i)\}$ does not converge 0-regularly to X, contrary to the hypothesis that T is a 0-regular transformation.

2.31. Under the conditions of 2.3, x' locally separates M' into exactly two components.

Proof. Suppose x' locally separates M' into more than two components; then there exists a connected neighborhood $V(x')$ such that $V(x') - x' = L'_i + L'_j + L'_k + \cdots$, where the L'_i are mutually separated connected open sets with x' a point of $F(L'_j)$ for each j. For each j, $T^{-1}(L'_j)$ is a connected set, since connectedness is invariant under the inverse of a monotone transformation. Thus, since T is interior, $T^{-1}(x')$ is on the boundary of at least three mutually separated connected open sets in M. This is impossible since $T^{-1}(x')$ is a nondegenerate arc or simple closed curve.

2.32. If x' is an end point of $T^{-1}(x')$ for some point x' of M', then x belongs to B.

2.33. If x' is not a local separating point of M', then $T^{-1}(x')$ is a single point or is contained in B.

2.4. If x' is a point of M' such that $B \cdot T^{-1}(x')$ contains a nondegenerate continuum K, then $T^{-1}(x')$ is contained in B and x' is an end point of M'.

Proof. If $T^{-1}(x')$ is not contained in B, it follows from 2.31 that x' locally separates M' into exactly two components. Thus there exists a connected neighborhood $V(x')$ of x' such that $V(x') - x' = L'_i + L'_j$, where L'_i and L'_j are mutually separated connected open sets with x' a point of $L'_i \cdot L'_j$. Hence $T^{-1}(L'_i)$ and $T^{-1}(L'_j)$ are disjoint connected open sets in M whose boundaries have $T^{-1}(x')$ in common, consequently have K in common. This is impossible since $T^{-1}(x')$ is locally connected and K is contained in B.

Let x' be a point of M' such that $T^{-1}(x')$ is nondegenerate and contained in B. Now $T^{-1}(x')$ can contain no point of S. Hence for any point x of $T^{-1}(x')$ which is not an end point there exists a neighborhood $U(x)$ such that $\overline{U(x)}$ is a 2-cell. Moreover, $U(x)$ may be taken so small that x is an interior point of an arc lying in $T^{-1}(x')$ with its end points not in $U(x)$.

Thus there exists a neighborhood $V(x')$ such that for each point y'_i of $V(x') - x'$ the set $T^{-1}(y'_i)$ contains an arc Y_i, with its endpoints only in $F(U(x))$, which separates $U(x)$ into exactly two components, since T is monotone 0-regular. In case $\{y'_i\}$ is any sequence of points converging to x', the corresponding Y_i may be so selected that if L_i denotes the component of $U(x) - Y_i$ containing x, then x is a point of $L = \bigcup L_i$ which is contained in $T^{-1}(x')$. Finally, every sufficiently small neighborhood $W(x)$ must have the property that $T^{-1}(x') \cdot W(x)$ is contained in L and for every point y'_i of $T(W(x)) - x'$ the product $L_i \cdot W(x) \cdot T^{-1}(y'_i)$ is empty. Suppose x' is not an end point of M'. Then it is an interior point of an arc $z'_1 x'_2 z'_1$. Now $T^{-1}(z'_1 x'_2)$ ($i = 1, 2$) is locally connected.* Hence there exist arcs $y'_1 x_i$ in $W(x)$ such that $T(y'_1 x_i) = y'_1 x'_i$ is contained in $z'_i x'_i$, where it is assumed y_i is the last point of $y'_1 x_i$ in $T^{-1}(y'_i)$ and x_i is the first point in $T^{-1}(x')$. From the choice of $W(x)$ it follows that y_i is contained in Y_i and x_i in L. Since $\overline{U(x)}$ is a 2-cell it may be assumed Y_1 separates Y_1 and L in $U(x)$ and consequently in $W(x)$. Thus $y'_1 x_i$ contains a point of Y_2 which contradicts the fact that $T(y'_1 x_i)$ is contained in $z'_1 x'_1$.

2.5. If for a point x' of M' the set $T^{-1}(x')$ is not contained in B, then $B \cdot T^{-1}(x')$ can contain only end points of $T^{-1}(x')$.

Proof. Suppose the assertion is not true. Then there exists a point x of $B \cdot T^{-1}(x')$ which is not an end point of $T^{-1}(x')$. Now x is not a point of S, since $T^{-1}(x')$ must be nondegenerate. Thus there exists a neighborhood $U(x)$ such that $\overline{U(x)}$ is a 2-cell. It may be assumed there exist points of $T^{-1}(x')$ which are not in $\overline{U(x)}$. Let x_1, x_2 be points of $T^{-1}(x')$ different from x such that the arc $x_1 x_2 x_1$ is contained in $U(x) \cdot T^{-1}(x')$, and furthermore, let y, z be points of B different from x such that the arc $y z z$ is contained in $B \cdot U(x)$. Then $(x_1 x_2 y) \cdot (y z z) = x$; for suppose the product set contained another point x_3. Then $x_1 x_2 + y z z$ contains a simple closed curve J, since no subcontinuum of $T^{-1}(x')$ can be contained in B because of 2.4. Thus J separates $\overline{U(x)}$ into exactly two components and there is one component C such that $C \cdot [M - U(x)] = 0$, since J is contained in $U(x)$. Let $\{w_i\}$ be a sequence of points in C converging to a point x_0 of $J \cdot T^{-1}(x')$; then $T^{-1}T(w_i)$ is contained in $C = C + J$ for each i. Hence $\{T^{-1}T(w_i)\}$ cannot converge to $T^{-1}T(x_0) = T^{-1}(x')$, since the latter set contains points outside $\overline{U(x)}$. Thus the four arcs $x x, x x x, y x, z x$ are contained in the 2-cell $\overline{U(x)}$ and have by pairs only x in common. Hence there exists a neighborhood $W(x)$ in $U(x)$ which is separated into three components by $x x$, such that x is on the boundary of

each, and only one can have both x_1x and x_2x on its boundary. Let L_i be the component such that L_i contains x_1x but not x_2x, and let $\{w_n\}$ be a sequence of points in L_i converging to x. Then $\{T^{-1}(w_n)\}$ cannot converge 0-regularly to $T^{-1}(x) = T^{-1}(x')$, since they must go outside $W(x)$ to converge to the arc xx.

2.6. If the sequence $\{x'_n\}$ of local separating points of M' converges to a point x' of $M' - T(S)$ and $T^{-1}(x')$ is degenerate, then x' is an end point of M'.

Proof. There exists a neighborhood $U(x)$ of $x = T^{-1}(x')$ such that $U(x)$ is a 2-cell, since x is not a point of S. Moreover, it may be assumed that each $T^{-1}(x'_n)$ is contained in $U(x)$, since $\{T^{-1}(x'_n)\}$ converges to x. Since x'_n is a local separating point of M', $T^{-1}(x'_n)$ locally separates M and, consequently, separates $U(x)$ because it is a 2-cell. But since $T^{-1}(x'_n)$ is contained in $U(x)$ it follows that $T^{-1}(x'_n)$ separates M; that is, $M - T^{-1}(x'_n) = L_n + N_n$ is a separation and it is assumed x is a point of L_n. Now $F(L_n)$ is contained in $T^{-1}(x'_n)$, whence $F[T(L_n)]$ contains at most the single point x'_n. Thus $T(L_n)$ is an open set containing x' whose boundary consists of at most a single point. Thus in order to complete the proof it remains to be shown that $T(L_n)$ is a sequence of sets closing down on x'. It may be assumed that for each $n > k$, $T^{-1}(x'_n)$ is contained in L_k. Moreover, because the transformation is interior, $F(L_n) = F(N_n) = T^{-1}(x'_n)$. Hence x is a point of $L_n + 1$ which is contained in L_n, and consequently x is a point of $L = \bigcap L_n$. But $N = \sum N_n$ is open and $F(N) = x$, since for $n < k$, N_n is contained in N_k, $F(N_n) = T^{-1}(x'_n)$, and $\{T^{-1}(x'_n)\}$ converges to x. Thus if L_n does not close down on x, that is, x is not L, then $M - x = (L - x) + N$ is a separation. But this is impossible, since M is a 2-dimensional pseudo-manifold. Therefore $x = L$, and the proof is complete.

3. We next prove the following theorem.

Theorem. If M is a 2-dimensional pseudo-manifold and $T(M) = M'$ is a monotone 0-regular transformation, then T is topological, or M' is either an arc or a simple closed curve.

Proof. In case M' is degenerate there is nothing to prove. Thus assume M' is nondegenerate and let K be the set of all points of M on which T is one-to-one. Then K is closed, since T is interior. Let $G = M - K$; then by 2.3 and 2.4, $T(G)$ consists of local separating points and end points of M'. Suppose G is not empty, and let x be a point of $F(G)$. If x is not a point of S, then it follows from 2.6 that $T(x)$ is an end point of M'. If x is a point of S, then it follows from 2.11 that $T(x)$ is a local separating point of M'. Hence $T(\overline{G})$ consists of local separating points and end points of M'. Suppose $M - \overline{G}$ is not

empty; then there exist points \(y \) of \((M-S)
abla (M-G) \) and \(z \) of \((M-S)
abla G \), since \(M-G \) and \(G \) are both open and \(S \) is finite. Now \(M-S \) is a region in the locally connected continuum \(M \). Hence there exists an arc \(yz \) in \(M-S \) which must intersect \(F(G) \). Let \(x \) be the first such point from \(y \) to \(z \). Now the arc \(yx \) is contained in \(K \), and consequently \(T(yx) \) is topological. Therefore no point \(x' \) of \(T(yx) \) can be a local separating point of \(M' \), since no point of \(M-S \) locally separates \(M \). But \(T(x) \) is an end point of \(M' \), which is a contradiction. Thus either \(G \) is empty or \(M-G \) is empty. In the first case \(T \) is topological, while in the second \(M' \) consists of end points and local separating points and consequently is a 1-dimensional continuum. But \(T \) is interior and for each point \(x' \) of \(M' \), \(T^{-1}(x') \) is locally connected. Hence it follows from a known theorem\(^*\) that \(M' \) is either an arc or a simple closed curve.

4. It is proposed in this section to show that a monotone 0-regular transformation on a 2-dimensional pseudo-manifold must be topological except in a few specific cases. The notation is that used in §2.

4.1. In order that \(T \) be topological it is sufficient that either (a) \(S \) contains a point which locally separates \(M \) into at least three components, or (b) \(S \) contains more than one point.

Proof. Suppose \(T \) is not topological; then \(M' \) is either an arc or a simple closed curve. Now after 2.11 the image of a point \(x \) of \(S \) cannot be an end point of \(M' \). Hence \(x'=T(x) \) must locally separate \(M' \) into exactly two components; that is, there exists a connected neighborhood \(V(x') \) in \(M' \) such that \(V(x')-x'=L'+N' \), where \(L' \), \(N' \) are open arcs with \(x'=L'
abla N' \).

Suppose \(x \) locally separates \(M \) into more than two components; then there exists a connected neighborhood \(U(x) \) such that \(T(U(x)) \) is contained in \(V(x') \) and \(U(x)-x=M_1+M_2+\ldots+M_k (k\geq3) \), where, for each integer \(i<k \), \(M_i \) is a component and \(x \) is a point of \(M_i \). Thus, since \(T^{-1}(x')=x \), it may be assumed \(L'.T(M_1).T(M_2) \) contains a sequence of points \(\{x_n'\} \) converging to \(x' \). But \(\{T^{-1}(x_n')\} \) does not converge 0-regularly to \(x \), since for each \(n \), \(T^{-1}(x_n') \cdot M_1 \) is not empty and \(T^{-1}(x_n') \cdot M_2 \) is not empty. Thus for (a) \(T \) must be topological. Now under the assumption that \(T \) is not topological it follows that if \(y \), \(z \) are points of \(S \), then \(T(y+z) \) separates \(M' \). Hence \(y+z \) separates \(M', \) which is impossible. Thus for (b), \(T \) is also topological.

The following statement follows immediately from 2.11:

4.11. In order that \(M' \) be an arc it is necessary that \(S \) be empty.

4.2. If \(T \) is not topological, then either \(T^{-1}(x') \) is an arc for every point \(x' \)

of M' or every $T^{-1}(x')$ is a simple closed curve. In neither case can more than two $T^{-1}(x')$ be degenerate.

Proof. Let L' be the set of all points x' of M' such that $T^{-1}(x')$ is degenerate. Since T is not topological either x' must be an end point of M' or $x = T^{-1}(x')$ must be a point of S. After 4.11 it follows that S is empty when M' has end points. Thus, since M' is either an arc or simple closed curve and consequently S consists of not more than one point, L' can contain at most two points and $M' - L'$ is connected. Let N'_1 be the set of all points x' of M' such that $T^{-1}(x')$ is an arc, and N'_2 the set of all points such that $T^{-1}(x')$ is a simple closed curve. From 2.2 it follows that $M' - L' = N'_1 + N'_2$. But $N'_1 \cdot N'_2 = N'_1 \cdot N'_2 = 0$ since the 0-regular limit of a sequence of arcs (simple closed curves) is an arc (simple closed curve).* Hence either $N'_1 = 0$ or $N'_2 = 0$, since $M' - L'$ is connected.

4.21. For each point x' of M' let $T^{-1}(x')$ be a simple closed curve, at least one of which is nondegenerate. If J is any simple closed curve of B, then some $T^{-1}(x') = J$.

Proof. From 2.5 it follows that if $B \cdot T^{-1}(x')$ is not empty then $T^{-1}(x')$ is contained in B. Moreover, it follows from 4.2 that every $T^{-1}(x')$, except possibly two, is a nondegenerate simple closed curve. Thus there exists a nondegenerate simple closed curve $T^{-1}(x')$ contained in B such that $J \cdot T^{-1}(x')$ is not empty. But $J \cdot (B - J)$ is contained in S (of course, may be empty), while $S \cdot T^{-1}(x') = 0$ by 2.1. It follows that $T^{-1}(x')$ is contained in J and is therefore J.

The following assertion also comes out of the above proof:

4.22. Under the hypotheses of 4.21, $S \cdot B = 0$.

Let $p_n^m(M)$ denote the first Betti number (mod m) of M, for $m \geq 0$. Also, if N is a closed subset of M, let $p_n^m(N, M)$ denote the first Betti number (mod m) of N relative to M, that is, the number of independent cycles in N relative to homologies (mod m) in M. In another paper† the writer has shown that

(i) If x', y' are any two points of M', then

$$p_n^m \left[T^{-1}(x'), M \right] = p_n^m \left[T^{-1}(y'), M \right].$$

(ii) If x' is any point of M', then

$$p_n^1(M) = p_n^1(M') + p_n^1 \left[T^{-1}(x'), M \right].$$

† *On regular transformations* (offered for publication to Duke Mathematical Journal).
which in the case considered here may be written

\[(2')\quad 0 \leq p_n^1(M) - p_n^1(M') = p_n^1[T^{-1}(x'), M],\]

since all the numbers involved are finite.

The two relations above, along with 2.2, give the following assertions:

4.31. In any case \(0 \leq p_n^1(M) - p_n^1(M') \leq 1\) (\(m \geq 0\)).

4.32. If, for any \(m \geq 0\), \(p_n^1(M) > 2\), then \(T\) is topological.

4.33. If, for some point \(x'\) of \(M', T^{-1}(x')\) is degenerate or an arc, then
\(p_n^1(M) = p_n^1(M') (m \geq 0)\).

4.34. In order that \(M'\) be an arc it is necessary that \(p_n^1(M) \leq 1\) (\(m \geq 0\)).

4.35. In order that \(M'\) be a simple closed curve it is necessary that
\(1 \leq p_n^1(M) \leq 2\) (\(m \geq 0\)).

The assertions 4.1 and 4.11 may be obtained from 4.33, 2.1, and 2.2 as follows: Let \(M\) be a pseudo-manifold with \(S = y_1 + y_2 + \cdots + y_\lambda\); then it may be assumed \(M\) was obtained from a manifold \(L\), which contains no identifications, by identifying \(\mu_i\) points to obtain \(y_i\). Thus it follows from the Euler-Poincaré formula that

\[(3)\quad p_n^1(M) = p_n^1(L) + \sum_{i=1}^{\lambda} (\mu_i - 1) (m \text{ prime}).\]

Therefore, if \(\lambda > 1\) or some \(\mu_i > 2\) it follows that \(p_n^1(M) \geq 2\). Thus it follows from 2.1 and 4.33 that \(p_n^1(M) = p_n^1(M') \geq 2\), since \(S\) is not empty. Hence \(T\) must be topological, since \(M'\) cannot be an arc of a simple closed curve.

By the same reasoning it follows that if \(S\) contains a single point then
\(p_n^1(M') = p_n^1(M) \geq 1\), and therefore \(M'\) cannot be an arc.

A 2-dimensional closed surface \(M\) (that is, \(S = 0, B = 0\)) can possess no 0- or 2-dimensional torsion,* and if \(M\) is orientable (that is, a sphere, or torus, and so on) it can possess no 1-dimensional torsion. However, if \(M\) is not orientable (that is, projective plane, Klein bottle, and so on) its 1-dimensional torsion group is cyclic of order 2.† Hence it follows from a known theorem‡ that if \(M\) is a 2-dimensional closed surface, then

\[(4a)\quad p_1^1(M) = p_1^1(M)\text{ when }M\text{ is orientable, and}
\[(4b)\quad p_1^2(M) = p_1^1(M) + 1\text{ when }M\text{ is non-orientable.}

Therefore it follows† that

\[(5a)\quad p_1^1(M) = p_1^1(M) = 0,\text{ if }M\text{ is a sphere;}\]

† See Topologie I, paragraph 10, pp. 266–269.
(5b) $p_1(M) = 0$, $p_1(M) = 1$, if M is a projective plane;
(5c) $p_1(M) = 1$, $p_1(M) = 2$, if M is a Klein bottle;
(5d) $p_1(M) = p_1(M) = 2$, if M is a torus; and
(5e) $p_1(M) > 2$, if M is any other 2-dimensional closed surface.

Now let M be a 2-dimensional surface with boundary (that is, let $S = 0$, $B = J_1 + J_2 + \cdots + J_\beta$, where the J_i are disjoint simple closed curves); then M may be thought of as a closed 2-dimensional surface L with β open 2-cells cut out. Thus if β is not 0, then*

(6a) M possesses no torsion;
(6b) $p_1(M) = p_1(L) + \beta - 1$ when L is orientable; and
(6c) $p_1(M) = p_1(L) + \beta$ when L is non-orientable.

The relations (3), (5), and (6) are enough to determine the first Betti number (mod 0 or 2) of any 2-dimensional pseudo-manifold with which this paper hereafter is concerned.

4.4. If M' is a nondegenerate arc, then M must be either a sphere, a 2-cell, or a circular ring.

Proof. Since M' is an arc, it follows from 4.11 that $S = 0$, and from 4.34 that $p_1(M) \leq 1$. Hence, besides those surfaces given in the theorem, M may be either a projective plane or a Möbius band, both of which have $p_1(M) = 1$. Suppose M to be one of these and M' to be an arc; then it follows from 4.33 that $T^{-1}(x')$ is a nondegenerate simple closed curve for each point x' of M'. But let y', z' be the end points of M'; then it follows from 2.33 that $T^{-1}(y') + T^{-1}(z')$ is contained in B. This is impossible, since in the first case $B = 0$ while in the second B consists of a single simple closed curve.

4.5. If M' is a nondegenerate simple closed curve, then M is either a torus, a Klein bottle, a circular ring, a Möbius band, a pinched sphere (that is, a sphere with two points identified), or a 2-cell with two boundary points identified.

Proof. Since M' is a simple closed curve it follows from 4.35 that $1 \leq p_1(M) \leq 2$ for $m = 0$ or 2. Thus the torus and Klein bottle are the only closed surfaces which can possibly transform into a simple closed curve. However, if $S = 0$ and M has boundary, it is possible, besides the circular ring and Möbius band, that M may be either a 2-cell with two holes, a Möbius band with a hole, a torus with a hole, or a Klein bottle with a hole. In each of these cases $p_1(M) = 2$ and $\beta \geq 1$. Suppose M is one of these; then from 4.33 it follows that $T^{-1}(x')$ is a nondegenerate simple closed curve for each point x' of M'. Hence after 4.21 it follows that there exists a $T^{-1}(x')$ contained in B. Thus this x' is an end point of M' because of 2.4. This is impossible under

* See Topologie I, paragraph 11, pp. 269–270.
the assumption that M' is a simple closed curve. If S is not empty, then it follows from 2.1 and 4.33 that $\rho_{m}(M) = \rho_{m}(M') = 1$, for $m = 0$ or 2. Hence the only possibilities here are the pinched sphere and 2-cell with two points identified. It remains to show that in the case of the 2-cell the two points which are identified must be on the boundary. Let x_1, x_2 be the two points of a 2-cell, at least one of which is not on the boundary, which are identified to give the point $x = S$. Then there exists a neighborhood $U(x)$ such that $U(x) - x$ has two components, one of which, say C, is such that \overline{C} is a 2-cell. Let $\{y_i\}$, contained in C, converge to x. Then for sufficiently large i, $T^{-1}(y_i)$ is contained in C and is disjoint with $F(C)$. Now each of these $T^{-1}(y_i)$ must locally separate M and consequently locally separate \overline{C}. Thus each must be a nondegenerate simple closed curve. Therefore, $T^{-1}(x')$ is a simple closed curve for each x' of M' after 4.2, and consequently some $T^{-1}(x')$ which is nondegenerate is contained in B. But this x' would be an end point of M' by 2.4, which is impossible since by assumption M' is a simple closed curve.

5. In 4.4 and 4.5 it is shown that only a few of the 2-dimensional pseudo-manifolds can possibly be transformed into a nondegenerate arc or simple closed curve by a monotone 0-regular transformation. In this section it is shown that each of these transformations is possible. Moreover, the transformations are completely characterized.

A transformation $T(M) = M'$ is said to be topologically equivalent* or simply equivalent to a transformation $W(N) = N'$ provided one can write $T(M) = h WH(M) = M'$, where $H(M) = N$, $h(N') = M'$ are homeomorphisms.

5.1. If M is a 2-cell and M' is a nondegenerate arc, then $T(M) = M'$ is equivalent to one of the transformations $W(N) = N'$, where N' is the interval $0 \leq \xi' \leq 1$ and either (a) N is the square

$$0 \leq \xi \leq 1, \quad 0 \leq \eta \leq 1$$

with $\xi' = \xi$, (b) N is the triangle

$$0 \leq \xi \leq 1, \quad 0 \leq \eta \leq \xi$$

with $\xi' = \xi$, (c) N is the triangle

$$0 \leq \xi \leq 1/2, \quad 0 \leq \eta \leq \xi; \quad 1/2 \leq \xi \leq 1, \quad 0 \leq \eta \leq 1 - \xi$$

with $\xi' = \xi$, or (d) N is the solid circle

$$0 \leq \xi^2 + \eta^2 \leq 1$$

with $\xi' = (\xi^2 + \eta^2)^{1/2}$.

Proof. Suppose, after 4.2, that the inverse of every point of \(M' = x', x' \) is an arc. Then there are three possibilities: (i) neither of the continua \(X_i = T^{-1}(x_i) \) \((i = 0 \text{ or } 1)\) is degenerate, (ii) one, say \(X_0 = x_0 \), is degenerate, and (iii) both \(X_0 = x_0 \) and \(X_1 = x_1 \) are degenerate. It will be shown that the transformations arising from these possibilities are equivalent to (a), (b), and (c) respectively.

Since in (i) \(X_0 \) and \(X_1 \) are nondegenerate arcs, it follows from 2.33 that they lie in \(B \). Hence \(B = \alpha_0 + X_0 + \alpha_1 + X_1 \), where each \(\alpha_i \) is an arc disjoint with \(X_0 \) and \(X_1 \) except for one end point in each. Now if \(x' \) is an interior point of \(M' \), the arc \(X = T^{-1}(x') \) must separate \(X_0 \) and \(X_1 \) in \(M \). Moreover, after 2.5, \(B \) can contain only end points of \(X \). Hence \(\phi = [X] \), where \(X = T^{-1}(x') \) for some \(x' \) of \(M' \), is an equicontinuous (since it is \(0 \)-regular) collection\(^*\) of arcs satisfying a theorem of R. L. Moore.\(^\dagger\) Thus there exists a self-compact\(^*\) collection \(G = [g] \) of mutually disjoint arcs such that \(\sum g = M \) and for each \(X \) of \(\phi \) and \(g \) of \(G \) the product \(X \cdot g \) is a single point. Let \(h(N') = M' \) be a topological transformation, and for \(N \) of (a) in the theorem let \(H_0(M) = N \) be a topological transformation such that \(H_0(X_i) = W^{-1}h^{-1}(x_i) \) \((i = 0, \text{ or } 1)\). Now \(\phi_0 = [H_0(X)] \) and \(G_0 = [H_0(g)] \) are self-compact collections of arcs filling up \(N \). Let \(\phi_t = [X_t] \) and \(G_t = [g_t] \) be countable subcollections of \(\phi_0 \) and \(G_0 \) respectively such that

\[
\sum_{t=1}^{\infty} X_t = N = \sum_{t=1}^{\infty} g_t.
\]

These subcollections may be used in order to set up a sequence \(H_s(N) = N \) of topological transformations, each of which is the identity on \(\xi = 0, 0 \leq n \leq 1 \), whose limit is the homeomorphism \(H_\infty(N) = N \) with the property \(H_\infty H_0(X) = W^{-1}h^{-1}(x') \) for every point \(x' \) of \(M' \). Now define \(H = H_\infty H_0; \) then \(T(M) = H(W(M)) \).

In possibility (ii) \(X_0 = x_0 \) is a single point and \(X_1 \) is a nondegenerate arc. Just as above \(X_1 \) must be contained in \(B \). Moreover, \(x_0 \) is contained in \(B \), for suppose it were not. Then there exists a neighborhood \(U(x_0) \) disjoint with \(B \) and a point \(x' \) interior to \(x'_0 \) such that \(T^{-1}(x') \) is contained in \(U(x_0) \) and separates \(X_1 \) and \(x_0 \) in \(M \). This is impossible, since in the case considered \(T^{-1}(x') \) is an arc. Now let \(\{y_i\} \) be a sequence of points converging to \(x'_0 \). Then on \(M_i = T^{-1}(x'_i y_i) \), and generally on \(M_i = T^{-1}(y_{i-1} y_i) \) the transformation behaves as in (1). Hence just as for (1) there exists for each \(i \) a self-compact collection \(G^i = [g^i] \) of mutually disjoint arcs such that \(\sum g^i = M_i \) and for each \(X = T^{-1}(x') \) of \(M_i, g^i \cdot X \) is a single point. Now it may be assumed that

* Foundations of Point Set Theory, pp. 396–397.
\dagger Foundations of Point Set Theory, Theorem 1, p. 397.
for each i, $y_i'_{i+1}$ precedes y_i' in $x_0 x_1'$. For any point y_1 of $T^{-1}(y'_1)$ let g_1 be the arc of G_1 which has y_1 for an end point, and let g_2 be the arc of G_2 which has y_1 for an end point. Then the other end point of g_2 is a point of $T^{-1}(y'_2)$. Step by step for each i let g_i be the arc of G_i having y_{i-1} of $T^{-1}(y'_i)$ for one end point and denote the other, which must be in $T^{-1}(y'_i)$, by y_i. Define

$$g = \sum_{i=1}^{\infty} g_i;$$

then g is an arc. Thus as y_1 ranges over $T^{-1}(y'_1)$ it generates a self-compact collection $G = [g]$ of arcs such that $\sum g = M$ and each g intersects any $X = T^{-1}(x')$ of M in a single point. As for the previous case, this collection along with $\phi = [X]$ may be used in connection with an arbitrary homeomorphism $h(N') = M'$, where N is given by (b), to obtain a topological transformation $T(M) = hWH(M)$.

By the argument used above it follows that in possibility (iii) both the points $x_0 = X_0$ and $x_1 = X_1$ lie in B. Moreover, if x' is an interior point of $M' = x_0 x_1'$, then T behaves on $M_1 = T^{-1}(x_0 x_1')$ as in (ii). Hence if $h(N') = M'$ is an arbitrary homeomorphism, where N and W are given by (c), it follows from (b) that there exist homeomorphisms $H_i(M_i) = W^{-1} h_1^{-1}(x'_i x')$ such that $T(M_i) = hWH_i(M_i)$. Moreover, the $H_i(M_i)$ may be so defined that $H_0 T^{-1}(x') = H_1 T^{-1}(x')$. Define $H(x) = H_i(x)$ for x a point of M_i; then $T(M) = hWH(M)$. Thus all three possibilities for $T^{-1}(x')$ an arc are characterized.

If for each x' of M', $T^{-1}(x')$ is a simple closed curve, then it follows from 4.21 and 2.33 that the inverse of one end point of $M' = x_0 x_1'$, say $T^{-1}(x_1')$, is the whole of B while the inverse of the other end point $T^{-1}(x_0') = x_0$ is a single point in the interior of M. Since no point separates M, it therefore follows that the collection $\phi = [T^{-1}(x')]$ for all points x' of M' satisfies a theorem of KerékJártó.* Hence the collection ϕ is homeomorphic with a collection of concentric circles filling a circle. Thus for N and W of (d) there exists a topological transformation $H(M) = N$ such that $WHT^{-1}(x')$ is a point of N' for every point x' of M' and conversely. Thus for each point a' of N' define $h(a') = x'$, where $WHT^{-1}(x') = a'$. Then $h(N') = M'$ is topological and such that $T(M) = hWH(M)$.

5.2. If M is a sphere and M' is a nondegenerate arc, then $T(M) = M'$ is equivalent to $W(N) = N'$, where N is the sphere $\xi^2 + \eta^2 + \zeta^2 = 1$, N is the interval $-1 \leq \xi' \leq 1$, and W is the transformation $\xi' = \xi$.

Proof. Since no arc separates the sphere, it follows from 4.2 and 2.33

that the inverse of every point \(x' \) of \(M' = x'_0 x'_1 \) is a nondegenerate simple closed curve except for the end points \(x'_0, x'_1 \), which must have degenerate inverses. Let \(y' \) be any interior point of \(M' \), \(M'_i = x'_i y'_i, M_i = T^{-1}(M_i' \setminus N'_i) \) the interval \([0, (-1)^i]\), and \(N_i = W^{-1}(N'_i) \) for \(i = 0 \) and \(1 \). Then it follows from 5.1 (d) that there exist homeomorphisms \(h_i(N'_i) = M'_i \) and \(H_i(M_i) = N_i \) such that \(T(M_i) = h_i W H_i(M_i) \). It may be assumed \(h_0(0) = h_i(0) \) and \(H_i T^{-1}(y') = H_i T^{-1}(y') \). Define \(H(x) = H_i(x) \) for \(x \) a point of \(M_i \) and \(h(N') = M' \) accordingly. Then \(T(M) \equiv h W H(M) \).

5.3. If \(M \) is a circular ring and \(M' \) is a nondegenerate arc, then \(T(M) = M' \) is equivalent to \(W(N) = N' \) where \(N \) is the ring \(1 \leq r^2 + \eta^2 \leq 2, N' \) is the interval \(0 \leq \xi' \leq 1, \) and \(W \) is the transformation \(\xi' = (\xi^2 + \eta^2)^{1/2} - 1 \).

Proof. Since \(\rho^i(M) \) and \(\rho^j(M') \) are not equal, it follows from 4.33 that the inverse of every point \(x' \) of \(M' \) is a nondegenerate simple closed curve. Let \(B = J_0 + J_1 \), where \(J_i \) is a simple closed curve. Then it follows from 4.21 and 2.33 that \(J_i = T^{-1}(x'_i) \), where \(M' = x'_0 x'_1 \). Let \(H_0(M) = N \) be topological and suppose \(N^* \) to be the solid circle \(0 \leq \xi^2 + \eta^2 \leq 1 \). Let this be filled with the family of concentric circles \(G = [g] \). Then the families \(G \) and \(\phi = [H_i T^{-1}(x')] \) for all \(x' \) of \(M' \) satisfy KerékJártói's condition \(\dagger \) that there exists a homeomorphism \(H_1(N + N^*) = N + N^* \) such that \([H_1(g)] \) and \([H_i H_0 T^{-1}(x')] \) together form a family of concentric circles filling \(N + N^* \). Moreover, it may be assumed that for the circle \(X_0 \) (that is, for \(\xi^2 + \eta^2 = 1 \)) \(H_1(X_0) = X_0 \). Define \(H = H_1 H_0 \); then for each \(x' \) of \(M' \), \(W H T^{-1}(x') = a' \), a point of \(N' \), and conversely. Now for each point \(a' \) of \(N' \) define \(h(a') = x' \), where \(W H T^{-1}(x') = a' \); then \(h(N') = M' \) is topological and \(T(M) = h W H(M) \).

5.4. If \(M \) is a circular ring and \(M' \) is a nondegenerate simple closed curve, then \(T(M) = M' \) is equivalent to the transformation \(\xi' = \cos \theta, \eta = \sin \theta \) on the circular ring \(N' \):

\[
\xi = r \cos \theta, \quad \eta = r \sin \theta \quad (0 \leq \theta \leq 2\pi, 1 \leq r \leq 2).
\]

Proof. Since \(S = 0 \) and \(M' \) has no end points, \(T^{-1}(x') \) is nondegenerate for each \(x' \) of \(M' \) and is not contained in \(B = J_0 + J_1 \). Thus, after 4.21, each \(T^{-1}(x') \) is a nondegenerate arc, and \(B \cdot T^{-1}(x') \) consists of the end points of \(T^{-1}(x') \) because of 2.32 and 2.5. Moreover, the end points of \(T^{-1}(x') \) must lie one in \(J_0 \) and one in \(J_1 \), for if both were contained in \(J_i \), \(T^{-1}(x') \) would separate \(M \) and consequently \(x' \) would separate \(M' \). Let \(y'_0 \) and \(y'_1 \) be any two points of \(M' \); then \(M' = a_0' + a_1' \), where \(a_0' \) is an arc and \(a_0' \cdot a_1' = y'_0 + y'_1 \). Define \(M_i = T^{-1}(a_i') \). Let \(W(N) = N' \) designate the transformation of the theorem and let \(a_i', a_1' \) be any two points of \(N' \). Express \(N' \) as the sum of

\(\dagger\) Topologie I, p. 246.
two arcs, \(N' = \beta_1' + \beta_2' \) where \(\beta_1' \cdot \beta_2' = a_1' + a_2' \). Define \(N'_i = W^{-1}(\beta'_i) \); then after 5.1 (a) there exist homeomorphisms \(h_i(\beta'_i) = \alpha'_i \) and \(H_i(M_i') = N_i \) such that \(T(M_i) = h_i W H_i(M_i) \). Moreover, the homeomorphisms may be so defined that \(h_1(a'_1) = h_2(a'_1) \) and \(H_i T^{-1}(y'_i) = H_i T^{-1}(y'_i) \). Let \(H(x) = H_i(x) \) on \(M_i \), and \(h(a') = h_i(a') \) on \(\beta_i \); then \(T(M) = h W H(M) \).

5.5. If \(M \) is a Möbius band and \(M' \) is a nondegenerate simple closed curve, then \(T(M) = M' \) is equivalent to the transformation \(W: \xi' = \cos \theta, \eta' = \sin \theta, \zeta' = 0 \), on the Möbius band \(N' \):

\[
\begin{align*}
\xi &= (2 + r \cos \theta/2) \cos \theta, & \eta &= (2 + r \cos \theta/2) \sin \theta, & \zeta &= r \sin \theta/2 \\
& (0 \leq \theta < 2\pi, -1 \leq r \leq 1).
\end{align*}
\]

Proof. Just as in 5.4 it follows that the inverse of each point \(x' \) of \(M' \) must be a nondegenerate arc with its end points only in \(B \). Again just as in 5.4, 5.1 (a) may be used to define the homeomorphisms \(h \) and \(H \) such that \(T(M) = h W H(M) \), where \(W(N) = N' \) is the analytical transformation of the theorem.

5.6. If \(M \) is a 2-cell with two boundary points identified and \(M' \) is a nondegenerate simple closed curve, then \(T(M) = M' \) is equivalent to the transformation \(W(N) = N' \): \(\xi' = \cos \theta, \eta' = \sin \theta \), where \(N \) is defined by

\[
\begin{align*}
\xi &= r \cos \theta, & \eta &= r \sin \theta, & 0 \leq \theta \leq 2\pi, 1 \leq r \leq (1/2)(3 - \cos \theta).
\end{align*}
\]

Proof. Here \(S = y_1 \) is a single point. Thus it follows from an argument similar to that used in 5.4 that except for \(T^{-1}(y_1) \) the inverse of every point \(x' \) of \(M' \) is a nondegenerate arc with its end points in \(B \) and separated in \(B \) by \(y_1 \). Express \(M' \) as the sum of two nondegenerate arcs, that is, as \(M' = \alpha_1' + \alpha_2' \), where \(\alpha_1' \cdot \alpha_2' = y_1' + y_2' \). Then 5.1 (b) may be applied here as 5.1 (a) was in 5.4 to give homeomorphisms such that \(T(M) = h W H(M) \).

5.7. If \(M \) is a pinched sphere and \(M' \) is a nondegenerate simple closed curve, then \(T(M) = M' \) is equivalent to the transformation \(W(N) = N' \): \(\xi' = \cos \theta, \eta' = \sin \theta \), \(\zeta' = 0 \), where \(N \) is defined by

\[
\begin{align*}
\xi &= (2 + \sin^2 (\theta/2) \cos \phi) \cos \theta, & \eta &= (2 + \sin^2 (\theta/2) \cos \phi) \sin \theta, \\
\zeta &= \sin^2 (\theta/2) \sin \phi & (0 \leq \theta, \phi \leq 2\pi).
\end{align*}
\]

Proof. Here again \(S = y_1 \) is a single point, Just as in 5.2 it follows that the inverse of every point of \(M' \), except \(T(y_1) \), is a nondegenerate simple closed curve. Express \(M' \) as the sum of two nondegenerate arcs one common end point of which is \(T(y_1) \). Then 5.1 (d) may be used to define homeomorphisms such that \(T(M) = h W H(M) \).
5.8. If \(M \) is a torus and \(M' \) is a nondegenerate simple closed curve, then \(T(M) = M' \) is equivalent to the transformation \(W(N) = N' \): \(\xi' = \cos \theta, \eta' = \sin \theta, \zeta' = 0 \), where \(N \) is defined by

\[
\xi = (2 + \cos \phi) \cos \theta, \quad \eta = (2 + \cos \phi) \sin \theta, \quad \zeta = \sin \phi \quad (0 \leq \theta, \phi \leq 2\pi).
\]

Proof. Since \(p_2^k(M) > p_2^k(M') \) it follows from 4.32 and 4.2 that the inverse of every point of \(M' \) is a nondegenerate simple closed curve. Let \(M' = \alpha_1' + \alpha_2' \), where \(\alpha_1' \) and \(\alpha_2' \) are nondegenerate arcs with common end points (that is, \(\alpha_1' \cdot \alpha_2' = y_1' + y_2' \)). Now \(M_i = T^{-1}(\alpha_i') \) is a 2-dimensional manifold with \(B = T^{-1}(y_1') + T^{-1}(y_2') \). Moreover, \(T(M_i) = \alpha_i' \), an arc. Thus \(M_i \) must be a circular ring, since this is the only 2-dimensional surface with \(B \) consisting of two simple closed curves, which maps into an arc by a monotone 0-regular transformation. Express \(N' = \beta_1' + \beta_2' \), where \(\beta_1' \) and \(\beta_2' \) are nondegenerate arcs with end points only in common. Define \(N_i = W^{-1}(\beta_i') \). Then 5.3 gives homeomorphisms \(h_i(\beta_i') = \alpha_i', \ H_i(M_i) = N_i \) such that \(T(M_i) = h_iWH_i(M_i) \). Moreover, the \(h_i \) may be so chosen that \(h_i(\beta_i' \cdot \beta_2') = h_2(\beta_1' \cdot \beta_2') \) and the \(H_i \) so chosen that \(H_i(M_1 \cdot M_2) = H_2(M_1 \cdot M_2) \). As several times before define \(H(x) = H_i(x) \) for \(x \) a point of \(M_i \) and \(h(a') = h_i(a') \) for \(a' \) a point of \(\beta_i' \); then \(T(M) = hWH(M) \).

Observation. Let \(Z_1 \) and \(Z_2 \) be simple closed curves on \(M \) which, when oriented, may be considered as generators of the Betti group \(B_2(M) \). For each pair of positive integers \(k_1, k_2 \) there exists a monotone 0-regular transformation of \(M \) into a nondegenerate simple closed curve such that for each \(x' \) of \(M' \) the simple closed curve \(T^{-1}(x') \) can be so oriented as to carry a cycle which is homologous to \(k_1Z_1 + k_2Z_2 \). In case \(k_i = 0 \), however, one must choose \(k_i = 1 \).

5.9. While the Klein bottle can be mapped onto a nondegenerate simple closed curve by a monotone 0-regular transformation, \(T(M) = M' \), there is not a convenient analytical description as in the previous cases. However, the possible transformations can be characterized after a fashion. In the first place \(T^{-1}(x') \), for every point \(x' \) of \(M' \), must be a nondegenerate simple closed curve, since \(p_2^k(M) > p_2^k(M') \). Let \(Z_1, Z_2 \) be simple closed curves on \(M \) which, when oriented, may be considered as generators of the Betti group \(B_2(M) \). Since \(M \) is a Klein bottle, it may be assumed that \(2kZ_2 \sim 0 \) for all integers \(k \). There exist integers \(k_1 \) and \(k_2 \) such that

\[
T^{-1}(x') \sim k_1Z_1 + k_2Z_2,
\]

after \(T^{-1}(x') \) is oriented. However \(k_1 \) must be zero, for if it were not, then \(p_2^k[T^{-1}(x'), M] = 1 \). Consequently
\[p_1 (M') = p_1 (M) - p_1 \left[T^{-1}(x'), M \right] = 0, \]

contrary to the fact that \(M' \) is a nondegenerate simple closed curve. Thus for every \(x' \) of \(M' \), \(T^{-1}(x') \sim k_2 Z_2 \), when oriented. Moreover, \(k_2 \) must be odd, since \(p_1 \left[T^{-1}(x'), M \right] \) cannot be zero.

In order to demonstrate such a mapping suppose \(M \) to arise from the oriented square \(ABCD \) by identifying the oriented sides, \(AB \) with \(DC \) and \(BC \) with \(DA \).\(^*\) Let \(T(M) = M' \) be such that the collection \([T^{-1}(x')] \) in \(ABCD \) is a collection of straight lines parallel to \(BC \).

6. The continuous transformation \(T(M) = N \), a subset of \(M \), is said to be retracting\(^†\) provided that for each point \(x \) of \(N \), \(T(x) = x \). The following statements are immediate consequences of the results in the preceding sections:

6.1. In order that there exist a monotone 0-regular retracting transformation of the 2-dimensional pseudo-manifold \(M \) onto a nondegenerate arc, it is necessary and sufficient that \(M \) be a 2-cell, a circular ring, or a sphere.

6.2. In order that there exist a monotone 0-regular retracting transformation of the 2-dimensional pseudo-manifold \(M \) onto a nondegenerate simple closed curve, it is necessary and sufficient that \(M \) be a circular ring, a Möbius band, a torus, a Klein bottle, a 2-cell with two boundary points identified, or a pinched sphere.

6.3. There exist no monotone 0-regular retracting transformations of 2-dimensional pseudo-manifolds onto nondegenerate sets except those given by 6.1 and 6.2.

7. A collection \(G \) of continua is said to be equicontinuous\(^‡\) with respect to a given set \(M \) if for every collection \(H \) of open sets covering \(M \) there exists a finite collection \(H' \) of open sets covering \(M \) such that if \(x_1 \) and \(x_2 \) are two points of \(M \) lying in some one set of \(H' \) and belonging to a continuum \(X \) of \(G \), then there exists an arc \(x_1 x_2 \) lying both in \(X \) and in some set of the collection \(H \). The collection \(G \) is said to be self-compact\(^‡\) if every infinite sequence of continua of the collection \(G \) contains an infinite subsequence which converges to some set of the collection \(G \).

Let \(M \) be any compact space and \(T(M) = M' \) be a monotone 0-regular transformation. Then, obviously, the collection \(G = [T^{-1}(x')] \) for all points \(x' \) of \(M' \) is an equicontinuous self-compact collection of mutually disjoint continua filling \(M \). Moreover, it is easily seen that an equicontinuous self-compact collection \(G = [X] \) of mutually disjoint continua filling \(M \) gives rise

\(^*\) See Alexandroff-Hopf, p. 207.
\(^†\) See Borsuk, Fundamenta Mathematicae, vol. 18 (1932), p. 204.
\(^‡\) Foundations of Point Set Theory, pp. 396–397.
to a monotone 0-regular transformation. Thus the following assertions are immediate consequences of the results of §§4 and 5:

7.1. Let M be a 2-dimensional pseudo-manifold and $G = [X]$ be an equicontinuous self-compact collection of mutually disjoint continua filling M. If G contains more than one element, then each X is an arc or each X is a simple closed curve.

7.2. In order that a 2-dimensional pseudo-manifold M may be decomposed into an equicontinuous self-compact collection of mutually disjoint arcs, at least one of which is nondegenerate, it is necessary and sufficient that M be a 2-cell, a 2-cell with two boundary points identified, a circular ring, or a Möbius band.

7.3. In order that a 2-dimensional pseudo-manifold M may be decomposed into an equicontinuous self-compact collection of mutually disjoint simple closed curves, at least one of which is nondegenerate, it is necessary and sufficient that M be a 2-cell, a circular ring, a sphere, a pinched sphere, a torus, or a Klein bottle.

8. A. D. Wallace* has shown that if $T(M) = T_2T_1(M)$ is the usual monotone-light factoring of any 0-regular transformation, then T_1 is a monotone 0-regular transformation and T_2 is a local homeomorphism.† Moreover, he has shown that when the image is nondegenerate any 0-regular transformation on an arc or on a simple closed curve is a homeomorphism or a local homeomorphism respectively. Thus the following assertions are consequences of the results of §§3, 4, and 5:

8.1. If M is a 2-dimensional pseudo-manifold and $T(M) = M'$ is a 0-regular transformation, then M' is a 2-dimensional pseudo-manifold, an arc, or a simple closed curve.

8.2. Let M be a 2-dimensional pseudo-manifold and $T(M) = M'$ a 0-regular transformation. If M' is a nondegenerate arc, then T is monotone and, consequently, is equivalent to one of the transformations in 5.1, 5.2, or 5.3.

Since a local homeomorphism on a simple closed curve is equivalent to the transformation $W': \xi' = \cos k\theta, \eta' = \sin k\theta (k \text{ an integer})$ on the circle $\xi = \cos \theta, \eta = \sin \theta (0 \leq \theta \leq 2\pi)$,‡ the following assertion is immediate:

* On 0-regular transformations, loc. cit.
† The transformation $T(M) = M'$ is said to be a local homeomorphism if for each point x of M there exists a neighborhood $U(x)$ on which T is topological. See S. Eilenberg, Fundamenta Mathematicae, vol. 24 (1935), p. 35.
8.3. Let M be a 2-dimensional pseudo-manifold and $T(M) = M'$ a 0-regular transformation. If M' is a nondegenerate simple closed curve, then T is equivalent to the transformation WW', where W' is given above and W is one of the transformations in 5.4, 5.5, 5.6, 5.7, 5.8, or 5.9.

The following assertion results from 6.3, 8.2, and 8.3:

8.4. If M is a 2-dimensional pseudo-manifold and $T(M) = N$ is a 0-regular retracting transformation, then T must be monotone.