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This paper deals with the group ring of a group of prime power order over

the prime field GF(p), where p is the prime dividing the order of the group.

It is well known that in the case of the group ring of a group over a field

whose characteristic divides the order of the group, the ordinary theory of

group characters is no longer valid: recently, Brauer and Nesbitt(1) have in-

vestigated the properties of the modular representations in this case, but this

general theory yields only little in the special case that we consider here. We

investigate the group ring from the point of view of the structure of its radi-

cal, and in particular, determine a basis for, and the ranks of, the various

powers of the radical in terms of the elements and order of a new series of

characteristic subgroups. These subgroups are defined by a certain minimal

property which combines the commutator and the pth power structure of the

group, and should prove useful in general investigations on the structure of

p-groups.

1. It is well known that the group ring of a group of order g is semi-

simple, provided the characteristic of the underlying field is zero, or a prime

which does not divide g(2). If, however, the underlying field has character-

istic p, and p divides g, then it is readily seen that the group ring has a radical

which is not zero. Let the elements of the group be Gi = 1, G2, • • • , G„. Con-

sider the element o- = Gi-f-G2+ • • ■ +G„ in the group ring. We have a-Gi = a,

and hence, if A =^laiGi is any element in the ring, a-A =A a = (^ai) a; that

is, scalar multiples of a form an ideal (a). However, (<r)-(cr)=0, since

cra = cr- (J^l) =0, ((Xll)==T = 0 modulo p), and hence the group ring contains

a nilpotent ideal different from zero. We have proved(3), therefore,

Theorem 1.1. The group ring of a group over a field whose characteristic di-

vides the order of the group is not semi-simple.

We investigate the structure of the group ring in the extreme case, where
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the order of the group is a power of the characteristic of the underlying field.

In what follows, ® is a p-groüp of order p", and V is the group ring of ® over

the prime field GF{p).  Where necessary, we emphasize the fact that T is the

group ring of ® by writing T =T(®).

We prove first the following

Theorem 1.2. The radical, 91, of the group ring T of a p-group ® of order pa

over the field GF{p) is of rank pa— 1, and has as basis all elements of the form

Gi—1, where G,£@, G> ̂  1- A necessary and sufficient condition that an element

A =^r,ciiGi of r lie in 9c is that y^«i = 0. The semi-simple part of T is of rank

one and is isomorphic to GF{p).

It is known that the only irreducible modular representation of ® is the

l-representation(4) and hence, if 21 is any representation of ®, St may be trans-

formed to the form

(1)

21

(1)

Every representation of ® also gives a representation of T. In particular, if

we take for 21 the regular representation of ®, we obtain a (1:1) representa-

tion of T. Every element of the form (Gi—1), where G,E®, is represented by

matrices

0

(1.3) d - l<->

0

with zeros in the main diagonal. All elements which are represented by mat-

rices of this form with zeros in and above the main diagonal form a nilpotent

ideal, and hence G<—1 belongs to the radical 91 of T. Since there are pa —1 in-

dependent elements G< —1, the rank of 9! is at least pa— 1. Since T is of rank

pa, r/9c is of rank 0 or 1. The element 1 is not in 91, however, since it is not

nilpotent; and hence the rank of V is p°—1, and the rank of T/W is 1. It fol-

lows that r/9c^G77(p). That the elements G< — 1 form a basis for 9c follows,

since there are pa— 1 of them, and they are independent. The remainder of

the theorem is immediate (6).

Corollary 1.4. If G is any element of ©, then G = 1 modulo 91.

The corollary follows from the fact that G — 1 = 0 modulo 9c.

(4) L. E. Dickson, these Transactions, vol. 8 (1907), pp. 389-398. Cf. also Brauer and

Nesbitt, loc. cit.
(5) L. Lombardo-Radici, in a recent paper has given a group-theoretical proof of Theorem

1.2.
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1941] THE GROUP RING OF A p-GROUP 177

2. When 91 is the radical of V, we may form the various powers of 91 (6)

(2.1) ■    9c D 912 0 ■ ■ ■ D 9lL D ML+1 = 0.

91™ consists of sums of products of w elements of 91. If the situation is as in

(2.1) with 91L^0, 9ci+1 = 0, we say that L is the exponent of 91. We define

9c°=r.
Let $\ be the set of all elements 7£xG® such that K\ = l modulo 91x.

$x is a subgroup of ©, since if ÜTx, K\ = 1 modulo 91\ then K\K\ = 1 modulo

91x. Moreover, $x is a self-conjugate subgroup of ®, for if G is any element

of © then G~^K\G = \ modulo 91\ since 91x is an ideal of T. Indeed, it is clear

that $x is a characteristic subgroup of ®, since any automorphism of ® leaves

91 and its powers unaltered. Since 91091" for X<p, we have Äx^Äj» X<p.

By Corollary 1.4 Äj = ®, and by (2.1) $L+i = l. We have proved, therefore,

Theorem 2.2. The sets B\, X = 1, 2, • • • , consisting of group elements which

may be written in the form 1-\-n\, wxG91\ form a decreasing series of character-

istic subgroups of ®:

We shall refer to these subgroups as the ^-series of the group ®(7). We

write $x(®) for $x when necessary to stress the fact that £x is a member of

the ^-series of a particular group ®.

Theorem 2.3. The ^-series of any group © has the following properties

(1) (Äx.Ä^CÄm^W,
(2) xre^ipi/^e^i.

As a consequence of (1) awd (2), we Aaoe

(3) $x/$2x is abelian of type (p, p, • ■ ■ , p).

Proof. To prove (1) we must show that if ifxG^V, K£ £$m> then

K^K^KxKi GSx+m- Now if #xG$x, ^ G$m, we may write

,„ „ Tlx = 1 + «x, % G 91x,
(2.4) - 1 + <. < G 91",

and we have

(6) Cf. Dickson, Algebren und, ihre Zahlentheorie, chap. 6.

(7) In a paper which appeared after the present paper had been written, H. Zassenhaus has

described [Ein Verfahren, jeder endlichen p-Gruppe einen Lie-Ring mit Charakteristik p zuzuorden,

Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, vol. 13

(1939), pp. 200-206), for a given p-group, a series which he calls "the dimensional groups modulo

p." This series appears to be identical with our S-series. It is interesting that these groups should

arise both from the ring, and from the Lie-algebra associated with a £-group over a modular

field.

(8) For this notation, see P. Hall, A contribution to the theory of groups of prime power orders,

Proceedings of the London Mathematical Society, vol. 36 (1933-1934), pp. 29-95, especially §2.
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K^K^K^K, = 1 + KxlKl-\KiKl - K£Kx)

= l + Kr*K:-*{(i + »0(1 + K) - (i + <)(i + «x))

= 1 + K^K^in^nl — n^nx) = 1 + «x+u

where «x+(.G9fix+'', which proves that (K\, K^) = l modulo 9fcx+". Again, if

■KiGSi, then i£;=14-«», where WiGSft*; and since 1 and rii permute, and we

are in a field of characteristic p, we have

K* = (1 + *if = 1 + ftf,

which shows that 2£f=l modulo Wip, and proves (2). Statement (3) follows

readily from (1) and (2).

Theorem 2.4, (1), shows that the ^-series is a central series of ®, as defined

by Hall(9).

By 2.4, (3), $x/$x+i is elementary abelian. Let $x/Äx+i be of order pd* (it

may happen that d\ = Q if $x = $x+i), and let Fx,i, • • • , Fx,<ix be a complete set

of representatives in ® of a minimal basis for Jtx/^x+i (again if Äx = ^?x+i we

set F\,i = l). Then any element GG® may be written

(2.5) G = F*VW • • • fft* • • • Fx> • ■ ■ ̂ • • •

where 0 = xx,i<p, and the Xx,,- are uniquely determined modulo p.

If Fx,;524 1, then 7A,i is not in Jtx+i, and hence (Fx,,—1) is in and not

in $x+i- Suppose K\ is any element of $x- Using (2.5) we may write

Kx m F%f ■ ■ ■ F^ modulo Stx+1) 0 = xx,< < p,

where the xx,< are uniquely determined. Using the identity

(2.6) (AB - 1) = (A - 1)(7J - 1) + (A - 1) + (B - 1)

we readily obtain

(2.7) Kx - 1 ■ E %.t<ft.i - 1) modulo 9cx+1

(since x\,i<p, we may suppose xx,; in the underlying field). Conversely, if

■KxGSx, and we have a relation of the form

Kx - 1 ■ E JMCm - 1) modulo 9^+» yx,< G GF(p),
i

this implies that

Xx = FxV • • • FxVxX modulo Jtx+i, 0 = yx,; < p.

From these facts we obtain

(9) Hall, loc. cit., §2.4.
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Theorem 2.8. A minimal generating set {F\A, • • • , F\,dx} for $x modulo

A?x+i may be taken as any maximal set of elements Fx,; of Six for which (Fx,; — 1)

are linearly independent modulo 91x+1.

3. We are now in a position to determine a basis for 91x modulo 91x+1 in

terms of the elements Fx,, defined above. For fixed w consider all products of

the form

(3.1) II (Fx,< - 1)«X4, 0 ^ ox.< < p,
t,X

with Si,x(Xax,i) =w, the summation extending over the same X and i as in

the product. We insist that in such a product those factors which are present

shall be in the natural order of increasing i and X, as in (2.5). Let us call the

various distinct products (3.1)

„-(«>) --(«0 „T(W>
Ni   , N-t   , ■ ■ ■ , 7V,„ .

We define w to be the "weight" of these products. Letting w=l, 2, 3, • • ■ ,

we obtain exactly pa— 1 such products which are formally distinct, since

di+d2+ ■ ■ ■ =a. However, any element of the form G — 1, where G£®,

may be expressed as a linear combination of the N\\ since by (2.5)

G — 1 = ( n^i'*) — 1 an(i by using the identity (2.6) a sufficient number of

times we get the result. Hence, using Theorem 1.2, we see that the products

are independent, and form a basis for 91.

We prove now the following:

Theorem 3.2. The elements N[i}, with i=w,form a basis for 91™.

Proof. Certainly the N-j? lie in 91™, and are independent. We have to show

that every w„G9iw can be expressed as a linear combination of these elements.

Suppose the theorem false. Let w be the largest power of 9c for which the

theorem does not hold (such a largest power exists since the theorem is true

for w = L + l), and let «„,£91"' be an element which cannot be expressed lin-

early in terms of the N®. Then there is no relation of the form

cxA^x   modulo 9c
x

where the C\ are in the underlying field, since otherwise nw—^c\Nx \ which

is in 9lu,+1, could be expressed by with j^w + 1, by our choice of w, and

we would obtain a contradiction.

Now by the definition of 91"', nw may be written, modulo 91"+1, in the form

(3.3) Um = Z II (Fi,Pi ~ 1) (w factors).
i

There must be at least one product YLi(Fi,Pi— 1) which, modulo 91"'+1, is lin-

early independent of the A7lx+1).
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More generally, consider all products

(3.4) tt = II (F«,u ~ 1) With £ ffi = w.
i i

A product x is here taken as "higher" than a product x' if the number of

factors with a, = w is greater in x than in tt' ; if they have the same number of

such factors, then x is "higher" than x' if x has the greater number of factors

with <Ti = w — 1, etc. We select a highest product x (cf. (3.4)) which is linearly

independent of the N{w) modulo 9ctt+1.

We show now that if x is chosen thus, and if we interchange two consecu-

tive factors in ir, then the new product thus obtained (which is as "high" as

7r), again is linearly independent of the Nx'K

Let (A — 1) and (73 — 1) be the two factors in x to be interchanged, A being

in     and B in      Set tt =7Ti(73 — 1) • (A — l)7r2. Using the identity

(3.5) (B - 1)-(A - 1) = (A - l) (B - 1) -f (AB - 1)• (C - 1) + (C - 1)

where C= (B, A), we obtain

x = ri(A - 1) • (B - 1) 4- iri(AB - 1)-(C - l)x2 4- n(C - l)x2.

Using (2.4), (1) we see that the second term on the right is in 9cw+1, and the

factor (C— 1) is in 9fcp+cr, whence, using (2.5) and (2.7), we get a formula of the

form

t = Tn(A - l)(B - l)x2 -f Z a^i(FP+,.li - l)x2 modulo 9?»+1,       a, G GF(p).

All terms of the form wi(Fp+ata — l)?r2 are "higher" than tt, however, and can

therefore be expressed by the N^, modulo 9cu'+1, and since x is independent

of the N[w), so is wx(A -l)(B- 1)tt2.

We may therefore take the factors in tt in any order we please, and still

have a product which is independent of the N[WK Order the factors in x as

in (3.1):
«■ = IT (Fi,, - iy<.>,    Z (#*.») = w.

Suppose an exponent p\> were greater than p — 1. We replace (Fi,, — l)p by

(7^ — 1), and since 7^„E$t>, we use (2.7) to express (Fiir — l)p in the form

(F<,, - 1)» a Z ^(FiPlf. - 1) modulo Wip+1.

On making this substitution for (Fit, — l)p in w we get tt expressed as a sum

of terms all "higher" than tt, which is impossible, since x is independent of the

and these "higher" terms are not. However, if all the ßi,, are less than p,

then x itself is an Axw). In any case we get a contradiction, and Theorem 3.2

is therefore proven.

As immediate corollaries we have:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1941] THE GROUP RING OF A p-GROUP 181

Theorem 3.6. The elements for fixed wform a basis of Ww modulo 9fc"'+1.

The number lw of these elements is equal to the rank of 9[cw/9flw+1.

Theorem 3.7. The rank lw of 9rc",/9c"'+1 is equal to the coefficient of xw in the

expansion of

(1 + x + x2 + ■ ■ ■ + **-*)V(l + x2 + x* + ■ ■ ■ + «Mt-U)* • • -

•(1 + x* + x2X + ■ ■ ■ + *M*>-**)^ • • ■

and the exponent L of W is equal to ^2\Kd\(p — 1).

To prove Theorem 3.7 we need only notice that the coefficient of xw is the

number of ways of selecting the formally distinct products (3.1).

The set of numbers (L;h, • • • , II) has been called the "genus" of the radi-

cal by Hazlett(10). They determine, to a certain extent, the structure of 9t.

We have obtained an explicit expression for the genus of the radical of the

group ring of a p-group in terms of the orders of the ^-series of the group.

4. In this section we establish certain properties of the ^-series which are

necessary to identify this series abstractly. We proceed at once to prove:

Theorem 4.1. If $ is a self-conjugate subgroup of ®, and ^»CS^®), then

the St-series of ®/§ starts with $tij§, • • • , £.</$. that is,

«x(@/$)     Äx(®)/$, X= i.

Let ®/§ = ®'. Then we have a homomorphic mapping ®—»®'. Let T' be

the group ring of ©' over the field GF(p). The homomorphism above can be

extended to a homomorphism of T upon I" in a natural manner as follows.

Let {Gß} be a complete set of representatives in ® of ®/§, and let Hy,

v = l,2, • ■ ■ , be the elements of Every element 7GT may be written there-

fore

7 = Z c^^H, C„,» E GF(p).

In the mapping ®—»®', every element GßHv-^GßS~). A mapping of V upon V

can be defined thus:

(4.2) 7 = £ Cß,vGßH, -> 7' = £ ( Z

It is readily verified that the mapping as given by (4.2) is a homomorphism.

Consider those elements of V which map into 0 in T': if y is such an element,

by (4.2) we must have y^.yCu., = 0 and hence we may write

_ 7 = Z cß,vGß(Hv — 1);

(10) O. Hazlett, On the classification and invariantive characterization of nilpotent algebras,

American Journal of Mathematics, vol. 6 (1905), pp. 109-138. Cf. also G. Pickert, Mathema-

tische Annalen, vol. 116 (1938), pp. 217-280.
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and since $Cgj(©), we see that •y£9ti(r). Hence if y and y%, in T, map into

the same element in V, then

y = yi modulo Sft^r).

It is clear that 9c(T) maps upon a subset of 91(1""), and hence 9c(r)'' maps upon

a subset of 9c(r')p. Conversely, if v'=Y,c,(Gv$-l), Cp in GF(p), is an ele-

ment of r', the element v ='£c,(G„ — 1) of T is mapped upon v'. It follows

that if v'9 is an element of 9l(r")p, we may find an element v„ of 9c(r)" with

this image If £p is any other element of V with this image, then v„^v„

modulo 91*, according to the remark above. If p = i, then vp = v„ = 0 modulo

9c(r)p. Hence, for p^i, the elements of 9c(r)p and only these elements are

mapped upon elements of 9c(T')p. This implies that is mapped upon

ä,(©') and hence ä,(®)/$:üä,(®') for p=i.

5. Consider any central series of ®

(5.1) ® = v5i3g22 v5s3 • • •

such that

(1) (St, ®)cgi+1,

(2) F?G%{, if F«eg<.
The ^-series is such a one, with the stronger property (2.4), (1).

Among all the series (5.1) there is a minimal series

(5.2) ® = Wi 2 «Des 2 2Jc3 2 • • ■

which is defined by

90?,- = {(^i_u@),2Rw,)},

(i/p) being the least integer ^i/p, and SJix0 the set of all pth powers of ele-

ments of 9Jcx- It is easily verified that for any series (5.1), and in par-

ticular

(5.3) S,-2 9Jci.

We call the series (5.2) the 9Jc-series of ®. Where necessary we write

9J?x = 9J?x(®) to stress the fact that we are discussing the äJJ-series of the par-

ticular group ®. It is obvious that we have the following:

Theorem 5.4. If § is a self-conjugate subgroup of ®, then the subgroup

9Jcx(®) maps on the subgroup 9Jcx(®/§) in the homomorphism of ® upon ®/§.

We proceed to prove:

Theorem 5.5(u). The St-series and miseries of ® are identical.

(u) I am indebted to Professor R. Brauer for the definition of the 9J?-series and for the sub-

sequent proof of Theorem 5.5.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1941] THE GROUP RING OF A £-GROUP 183

Proof. Suppose that we know already 93?* =    for i=\, 2, so that

we have

,   N ®-ili-*i2lj-*i2--' 23»«- ft,
(5.6)

2£<+i2 9Jc(+i2

We apply (4.1) and (5.4) with § = 93c,+i and write ©' = ®/9Jc,+i- We then have

©' = aBi(050 = fti(@') 2 • • • 2 a»,(@')

= ft«(®') 2 ftn.i(®o 2 an(+i(@o = {i}.

If we can prove ft,+i(®') = {l}, it will follow that $,+i(®) = 9Jci+i(®)> and

this will finish our proof. If we replace ®' by ©, we see that it is sufficient to

treat the following case, namely, that in (5.6) Wlt+i = {l}, in which we have

to show that also Stt+i = {1} •

Let nL be an element of 9ci. As in Theorem 3.2, and because 9c£+1 = 0,

»i is a linear combination of productsYLi(Fi,H — 1), with L factors. As before,

consider more generally all products

(5.7) * = n>.,.r4-i)

with ^li<ri = L, and <ri = < (any order of factors admitted).

Lemma 5.8. Every product it of the type (5.7) may be expressed linearly by

the products

MiL) = II       - 1).*", v - 1, 2, • - • , dt; i - 1, 2, • • • , t,

where 0^ßi,v<p, and ?A.dßi.w~L. the factors being in the natural order as in

(2.5).

To prove this lemma we use a method similar to that used in Theorem

3.2. A modification is necessary because we postulated only the property

(5.1), (l)for the 9Jc -series, rather than the stronger (971», 93?/) <=9J?i+j.

Suppose the lemma false and let t be the "highest" product which cannot

be expressed linearly in terms of the A7|L). As before(12), we show that the

same property is enjoyed by the product obtained by interchanging two con-

secutive factors (.4 — 1) and (73 — 1) of w. Let 7r=7ri(73 — \)(A — l)ir2 and sup-

pose -4£SP, 73E$„, p, <T — t. Now (.4 — 1) may be replaced by an expression

(5 (4 ~ 1) - E 6xi." ̂(FiA, - 1) • • • (Fw, ~ 1) modulo flr+»,

c^.^eGFip),

and since 9ti+1 = 0, and ?rG9cz', we may replace (A —1) by this sum in the ex-

pression for ?r above, and obtain

(12) Compare the proof of Theorem 3.2.
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* = £ cXl...Xp7n(73 - l)(Fi,x, - 1) • • • (Fi,Xp - 1)tt2.

As before, we use the identity (3.5) to interchange successively (73 — 1) and

(Fi,Xl — 1), • • • , (Fi,Xp—1). When, in one of the terms of it, (73 — 1)(Fi.x; — 1)

is replaced by (Fi,x4— 1) (73 — 1), we get, in the expression for w, two additional

terms 7\ and TV In the first, the two interchanged factors (73 — l)(Fi,Xi — 1)

are replaced by (Fi,Xi73 —1)((73, Fi,x<) —1) and in the second by ((73, Fi,x>.) — 1).

The first term 7\ vanishes since it is in 9IL+1 = 0. The other term F2 is trans-

formed as follows: (73, 7\,x.) lies in ($„, ®) = (9JL, ©) C9JL+1- If <r = /, then

((73, T^i.x;) — 1) =0, since 9Jc(+i=l; if cr<t, we have = $D1<,+i- We replace,

using (2.7), ((73, Fi,Xi) — 1) by a linear combination, modulo W+2 of terms

(Tvi-i,,, — 1). Hence this term F2 becomes a sum of terms "higher" than tt and

of a term in WL+l. The latter vanishes, the first terms can be expressed by the

MiL). This shows that F2 can also be disregarded. Finally, 7Ti(73 —1)(.4 — l)7r2

will be replaced by

C*i-..>,(Fi.X, - 1) • • • (FllXp - 1)(73 - l))x2 = ttM - 1)(73 - 1)tt2.

Since tt could not be expressed linearly by the 717x,  this new product

7Ti(^4 — l) (73 — 1)tt2 cannot be expressed by them either.

We may therefore pick it in the form

* = II (F,-.r - I)"-,       E ißt,, = L.

If all ßiit<p, then tt is itself an il7xL>, which is a contradiction. Suppose

p\> = p. Then we write (F,-,„-1)" = (F4P„-1): Fi,,G^i = 9D?!-, and hence

FtG5D7,>. If 301;p = l, and F£,= l, which would lead to tt = 0. Uip^t,
then 9/c<p = Äip, and we replace (F,-,„ —l)p by a combination of the (F<p,„ — 1),

which gives rise to terms all "higher" than tt. This again is a contradiction,

and the lemma is proven.

The proof of Theorem 5.5 now follows at once. There is an

since <>Rl9£0, and hence L=^Jißi,,^Tli{p —l)a\-, where v=l, 2, • • • , di\

i = l, 2, • • • , t. However, L=^,j{p — \)dj, where 7 = 1, 2, • • • , e if

$„+1 = 1. Comparing we see t = e, and hence $*+i = $e+i = 1, which proves

9Jci+i = $<+i as required.

Corollary 5.10. (2Ki, SR*)CS»<+*.

6. We conclude with a discussion of the ^-series of two special types of

p-groups, namely, groups all of whose elements except the identity are of

order p, and abelian groups. Lombardo-Radici(13) has investigated the struc-

ture of the radical of the group ring of an abelian group by elementary meth-

ods, and we shall show that the application of the more powerful ideas of the

present paper leads to identical results.

(l3) L. Lombardo-Radici, Rendiconti del Seminario Matematico della Universitä di Roma,

(4), vol. 2 (1938), p. 312.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1941] THE GROUP RING OF A p-GROUP 185

Consider first a group © which contains no element of order greater than p.

Clearly conditions (2.4), (2) and (5.1), (2), become trivially satisfied, and the

^-series of © is defined by the relation (5.2), (1), which becomes

(6.1) fti-9,     $tt = (Jti-i, ®).

These relations, however, imply that the S-series is the "lower central series"

of ®(w). That is, ftx = 5Dfo = &, where ® = $0$0 • • • DfOl is the !ower
central series of ®.

Theorem 6.2. The Si-series of a group which contains no elements whose

order is greater than p is identical with the lower central series of the group. The

"length" of the Si-series of such a group is equal to the class of the group.

Now let 31 be an abelian group of type (p*», p"2, • • ■, P**), where

Missis • • ■ ̂ P<i- In this case conditions (2.4), (1) and (5.1), (1), become

trivially satisfied, and the ^-series of 31 is defined by the relation (5.2), (2),

which becomes

(6.3) ft, = 31,     Sti = (ft?**,)}.

Let 3l(X) be the subgroup of the pxth powers of elements of 31. It is readily

verified that

(6.4) Spx = 3I(X) C ftpX+i = • ■ • = $px+i = 31<x+1),      X = 0, 1, 2, • • • , mi.

In particular, since 31(m1_1)9* 1, 3l(fll> = l, we have

Theorem 6.5. The Si-series of an abelian group of type p"!, • • • , p"d),

Mi^ • • • ^Pd, has length p"1-1.

From Theorem 3.7, we deduce that for the group ring of an abelian group

the rank of S?"/^"4"1 is equal to the coefficient of xw in the expansion of

(1 4- * 4- • • • + *<*-»)*«(l 4-    4- ■ ■ • 4- ^(f-1')8' • • •

(1 4- x* + ■ ■ ■ 4-

where p5x is the order of 3Fx)/3l<x+1). By remarking that 6\ is equal to the num-

ber of the integers p„ which exceed X, it is readily verified that the above prod-

uct is equal to

(1 4- x 4- • • ■ 4- x™-l)(l 4- x 4- • • • 4- x""»-1) • • • (1 4- x 4- • • • 4- x""-1),

which is the form in which Lombardo-Radici obtained his result.
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(») Cf. Hall, loc. cit., §2.
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