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Introduction

1. Formulation of problem. G. Polya and N. Wiener [2]0) have recently

made important contributions to the S. Bernstein problem concerning the

relation between the frequency of oscillation of derivatives of high order and the

analytic character of the function. Assuming/(x) of period 27r and denoting the

number of sign changes of/w(x) in the period by A7*, they show that restric-

tions in the rate of growth of Nk when £—> <x>, imply that the high frequency

terms in the Fourier series of f{x) have "small" amplitudes. In particular, if

Nk is bounded, Nh = N for all k, then the high frequency terms are entirely

missing and f{x) reduces to a trigonometric polynomial of degree at most N/2.

Conversely, if f(x) is a trigonometric polynomial of degree K, then Nk = 2K for

all large k. Their results are less precise when Nk is unbounded. While it is

likely that Nk = 0{k) is necessary and sufficient for analyticity of f(x), this

has not yet been proved, and the best they could do was to show that

Nk = o(kin) implies that/(*) is an entire function.

For these and similar questions G. Szegö has devised a new method of

attack, presented in the first paper of this series [4]. This method showed it-

self capable of giving more precise information when Nk is unbounded. In

particular, Szegö could show that Nk<k(log k)~l implies that/(*) is entire.

The present paper is also closely related to the paper of Polya and Wiener,

but proceeds in a different direction. We aim to preserve the essence of the

methods developed by these writers and to apply them to a wider range of

problems. There are several features in the investigation of Polya and Wiener

which suggest possible generalizations, in particular, the class of functions

considered and the operations applied to them.

Let T be an operator which takes functions f(x) of a certain class F into

functions of the same class. Any function u(x) of F such that Tu(x) = \u(x)

will be called a characteristic function of T corresponding to the characteristic

value X and any formal series HfnUn(x) will be called a characteristic series of T

if its terms are characteristic functions.

In this terminology we can describe the investigation of Polya and Wiener

Presented to the Society, November 22, 1941 under the title On the oscillation of differential

transforms. II; received by the editors January 2, 1942.

(x) Numbers in square brackets refer to the references at the end of the paper.
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as follows(2). They are concerned with the differential operator D2 and the

characteristic functions of this operator determined by the periodic boundary

value problem

(1.1) (D2 + n)y = 0,      y(x + 2tt) = y(x).

Any function/(*)GC(°0>(— °°, °°), satisfying the same condition of periodic-

ity/(# 4- 27r) =f(x), can be represented by a characteristic series of the opera-

tor,

CO

(1.2) f(x) = (ßo/2) + X (a» cos nx "I" bn sin »*),

to which the operator D2 can be applied termwise as often as we please. They

observe that for X>0, D2—\ is an oscillation preserving transformation in the

sense that the transform (D2 — X)/(x) has at least as many sign changes in

the period asf(x) has. This observation is used as follows.

Let m be a positive integer and multiply the reth term of the series (1.2)

by the kih power of the factor

(   2mn   ) 2

(1-3) )-mr-\ml + nl)

A function F(x, m, k;f) results which has at least as many sign changes in the

period as/(2*'(*) since

(D2 - m2)2kF{x, m, k; f) = {2m)2hf<-2k){x).

On the other hand, for large values of k the number of sign changes of

F(x, m, k;f) can be shown to be at least 2m provided the mth term is present

in the original expansion (1.2). This is the basis for all their conclusions.

It is obvious from this formulation in what direction we are looking for

extensions. Instead of the operator D2 we shall consider a rather general linear

differential operator L. In the present paper we restrict ourselves to second

order operators satisfying certain conditions, but first or higher order opera-

tors would also be admissible. We define a set of characteristic functions of L

by a suitable boundary value problem for L in the basic interval (a, 6) and

consider the corresponding class of characteristic series, F say, with the re-

striction that L shall apply termwise to the series as often as we please. It

turns out that the operator L— X, X>0, is always oscillation preserving in

(a, ö) with respect to a suitable class of functions which includes F. Even the

"root consuming factor" (1.3) has an obvious analogue in terms of character-

istic values and the general procedure of Polya and Wiener can be followed.

(*) Actually P61ya and Wiener work with the operator D and the corresponding charac-

teristic functions exp {nix). The "root consuming factor" in (1.3) is the square of their factor.

The emphasis and terminology have been changed in order to bring out the generalizations.
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It should be observed, however, that the method is not constrained to the

consideration of characteristic series the terms of which are defined by bound-

ary value problems and consequently orthogonal in the basic interval. The

case of almost periodic functions was mentioned by Polya and Wiener and a

non-orthogonal characteristic series figures also in §2.11 of the present pa-

per (3).

2. Arrangement of material. Chapter I is devoted to a study of oscilla-

tion preserving transformations defined by linear second order differential

operators. The basic definitions are found in §1.1 while 1.2 contains a number

of lemmas of the classical Sturmian type which are needed for the discussion.

In §1.3 the operators L are classified according to their behavior at the end

points of the basic interval and to each of the four types considered we in-

troduce function classes the elements of which satisfy, together with their

L-transforms of order less than k, the corresponding types of boundary con-

ditions. That L—\, X>0, is oscillation preserving with respect to B^ is

proved in §§1.4 to 1.7. Various extensions to functions of L are discussed in

§1.8 and the corresponding boundary value problems are introduced in 1.9.

We call attention to the singular and semi-singular types which appear to be

new, though many of the most useful orthogonal systems considered in analy-

sis appear as solutions of such boundary value problems.

Chapter II brings the proof of the analogue of the Polya-Wiener theorem

on finite characteristic series. Here we place the discussion on a rather elab-

orate postulational basis to make up for our lack of knowledge of the ex-

istence and properties of solutions of the singular and semi-singular boundary

value problems. We consider systems 5 consisting of an operator L, a set of

characteristic functions {un(x)} with corresponding characteristic values

{/*„}, and a basic interval (a, b). We call the system admissible if it satis-

fies conditions Ai to Ag of §2.1. These are conditions which are well known

to hold in the case of classical boundary value problems but which, con-

ceivably, may fail in the case of singular ones. We also consider the class F of

admissible characteristic series X/»M«(X) such that |/n| < 00 for all m.

The convergence theory of such series is discussed in 2.2. The system 5 is

called conservative if the set {un(x), /*„} belongs to an appropriate boundary

(3) There are no general results available relating to oscillation problems for non-orthogonal

characteristic series. Existing evidence, meager as it is, seems to indicate that the situation is

similar to the orthogonal case. In other words, if the frequency of oscillation of Lkf(x) is bounded

or has a finite limit inferior, then the frequency of oscillation of the components of }{x) is simi-

larly limited, the main difference being that we may now still have infinitely many components.

"Characteristic integrals" can also be studied from this point of view by a suitable modification

of the method. A first investigation of this type will be given by J. D. Tamarkin in a later paper

in this series. The author wishes to use this opportunity to express his gratitude to his collabora-

tors on the S. Bernstein problem, Professors G. Polya, A. C. Schaeffer, G. Szegö, and J. D.

Tamarkin, with whom he has had many profitable discussions of various points of his work

during his stay at Stanford University.
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value problem for L in (a, b) and it is shown that the results of Chapter I

apply to conservative systems. In particular, L—\, X>0, and any real poly-

nomial in L with real positive roots are oscillation preserving in (a, b) with

respect to the class F. This is proved in §2.3 where we also discuss the rela-

tion between Fand the classes -B^™' introduced in 1.3.

The main theorem is proved in 2.4. If S is conservative and f(x) £F, then

the assumption that the inferior limit of the number of sign changes of Lkf(x)

in (a, b) is finite and equals N, implies that f(x) is a linear combination of a

finite number of characteristic functions un(x), none of which can have more

than N (in an exceptional case possibly iV-p-l) sign changes in (a, b). This

is the analogue of Theorem I of Polya and Wiener. In §§2.5 and 2.6 we verify

that the classical boundary value problems lead to conservative systems. In §§2.7

to 2.11 we give similar verifications for the systems of Legendre, Jacobi,

Hermite, Weber-Hermite, and Laguerre, which correspond to singular bound-

ary problems, and that of Bessel which is semi-singular. We call attention,

in particular, to the characterization of ordinary polynomials by means of

sign change properties given in Theorems 12, 13, and 14. It is analogous to

the results of Polya and Wiener for trigonometric polynomials quoted above.

Extensions to the case in which Nk is unbounded are indicated briefly in

§3.1 of the Appendix. The author has extended Theorem III of Polya and

Wiener under fairly general assumptions on the system, but the rather lengthy

and complicated analysis is omitted here and the results are stated merely for

the singular systems of §§2.7 to 2.10. It turns out that Nk = o(k112) is again

sufficient in order that the corresponding characteristic series shall converge

in the finite complex plane and hence represent an entire function. The

method of Szegö gives a better result, when it applies, which is to the Le-

gendre and Jacobi cases.

Chapter I. Oscillation preserving transformations

1.1. Preliminary notions and formulas. All functions considered in Chap-

ters I and II are real functions of a real variable, defined in a finite or infinite

interval (a, b) and having certain properties of continuity in (a, b). Here

{a, b) stands for one of the four alternatives {a, b), (a, b], [a, b), and [a, b].

The symbols Cw{a, b), with k = 0, positive integer or co, refer to the usual

continuity classes. Finally we denote the class of all functions real and holo-

morphicin (a, b) by A (a, b).

Let g(x)£C(0)(a, b). We say that g(x) has N changes of sign in (a, b), if

(a, b) breaks up into exactly N-\-\ subintervals in each of which g(x) keeps a con-

stant sign, the signs being opposite in adjacent intervals. The subintervals are in

general not uniquely determined. The statement that the sign of g(x) in

(xi, Xz) is, for instance, positive is taken in the wide sense, that is, g(x) =0

and actually is greater than 0 in some subinterval of (xi, x2). If g(x) is periodic

of period b— a, this definition should be slightly modified. We map the in-
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terval on the circumference of a circle, identifying the end points. Here N

intervals of alternating signs determine N sign changes. It is clear that N

must be even in the periodic case. If there is no finite N with these properties,

we say that g(x) has infinitely many sign changes in (a, 6). The number of

sign changes of g(x) in (a, b), finite or infinite, is denoted by F[g(x)]. The

theorem of Rolle implies

Lemma 1. If g(x) £C(1)(xi, x2) and g(x)—>0 when x—»xi and when x—>x2 but

g(x) ^0 in (xi, x2), then g'(x) has at least one sign change in (xi, x2).

Let L denote the differential operator defined by

(1.1.1) L[y]= pa(x)y + pi(x)Dy + p2{x)D*y,      D = d/dx,

where to start with the coefficients will be subjected to the following two

assumptions which will be held fast throughout the paper:

Ai. pm(x)EA(a, b), m = 0, 1, 2.

A2. po(x)=0, p2(x)>Q for a<x<b.

For much of our work in §§1.2 to 1.7 it would be sufficient to assume

merely pm(x) GC(01(fl, b), but any consideration involving repeated applica-

tion of the operator requires additional restrictions of pm(x), so we may just

as well assume analyticity from the start(4).

The self-adjoint form of L is L* where

(1.1.2) L*[y] m P(x)L[y] = D[P(x)p2(x)Dy] + P(x)p0(x)y,

(1.1.3) P{x) = —— exp / r^-dt\.
p2(x)       \J    p2(t) f

Here P(x)>0 for a<x<b. If p1(x) = 0, we take P(x) = l/p2(x).

Any solution of the differential equation

(1.1.4) (L + ix)y = 0,

li constant, will be referred to as a characteristic function of L corresponding

to the characteristic value p. The reader should note that the terminology differs

from that used in the Introduction according to which — p rather than p

would be called the characteristic value. The present convention is preferable

when one works with second order linear differential equations.

If /(x)eC<2)(a, b), then L[f] has a sense and L[/]<EC(0)(a, b). The dif-

ferential transform L[f] is the first L-transform of/(x). The higher L-trans-

forms are defined by recurrence:

(1.1.5) L*\f] = L\L^[f]],     U [/]=/.

If /(i)GC(!t)(a, 6), then Lk[f] exists and belongs to C(0)(a, b). If convenient

or desirable we drop the brackets or exhibit the variable. Thus Lkf, Lkf{x),

(4) It should be observed in connection with A2 that the theory goes through with only

minor changes if pa{x) has merely a finite upper bound in (a, b).
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Lk\f(x)], Lk\f] all have the same meaning. The reader should observe that

the symbol Lkf(xo), a=Xofib, denotes the value of Lk[f] for x=Xo and not

the result of operating by Lk on the constant/(x0).

Definition. Let F be a subclass of C(2)(a, b) and let X be fixed real. Then

L—\ is said to be an oscillation preserving transformation in (a, b) with re-

spect to F if

(1.1.6) V[(L-\)f(x)] = V[f(x)]

for every f{x) £ F.

It should be observed that there are always functions/(x) ^0, satisfying '

(1.1.6). Thus if p is fixed real and y(x, p) is any solution of (1.1.1), then

(L— X) y(x, p) = —(k+p) y(x, p), so that (1.1.6) is trivially satisfied for every

\7*—p. If V[f(x)]= oo, (1.1.6) is understood to mean merely that the left-

hand side is also infinite.

The basic formula in the discussion of the operator L— X is the factoriza-

tion given by

piW2    (W\   r / 1)
1.1-7 {L-\)f=^^D\ — D i,

Wi   \w2 Lwjf

for which see L. Schlesinger [3, vol. I, p. 52]. Here, Wi is a solution of the

associated differential equation (L— X) y = 0, and W2 is the Wronskian of Wi

and a second linearly independent solution of the same equation. It is per-

mitted to assume that W2 is real positive in (a, b). The crucial point in the

use of formula (1.1.7) lies in the choice of Wi which we refer to as the auxiliary

solution.

1.2. General properties of the auxiliary solution. We proceed to a discus-

sion of the solutions of the associated differential equation (5)

(1.2.1) (L - X)y = 0, X > 0,

in the interval (a, b). Introducing

(1.2.2) K(x) = P(x)p,(x),      G(x, X) = P(x)[\ - po(x)],

we can rewrite the equation in the form

(1.2.3) D [K(x)Dy] -G(x,X)y = 0.

Under the assumption A2, K{x) and G(x, X) for X>0 are positive in (a, b).

Two integrated forms of the equation will be useful in the following. First

we have obviously

(5) The discussion follows the classical Sturmian pattern, but at least some of the required

results do not appear to be available in a convenient form in the literature. The proofs are held

down to a minimum.
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(1.2.4) [K(x)y'(x)]X*= J G(t,X)y(t)dt.

Secondly, multiplying (1.2.3) by y and integrating we get

We conclude from (1.2.5) that if y(x)^0 is a solution of (1.2.1) in (a, b),

then the product y(x) y'{x) can vanish at most once in the interval. Hence

the real solutions of (1.2.1) are of the following four types in (a, b): (1) mono-

tone solutions of constant sign, (2) solutions of constant sign having a maxi-

mum, (3) solutions of constant sign having a minimum, and (4) monotone

solutions having a zero. These types are mutually exclusive and exhaust the

possibilities. The fourth type is of no interest to us in the following and will

be omitted from consideration.

The existence of unbounded solutions is vital in most of our discussion.

We introduce the following notation:

Lemma 2. Let y(x) be the solution of (1.2.1) determined by the initial condi-

tions y(x0) = 1, y'(x0) = s^0, a <x0<b. A necessary and sufficient condition that

y(x) —*°° when x—*b is that R(x, xn \ X)—> °o when x—>Z>. If the latter condition is

satisfied for a particular choice of x0 and X, then it holds for every x0, a <x0<b,

and every X>0. Moreover, if the condition holds, every solution of (1.2.1) such

that y(x)y'(x) is ultimately positive for approach to b becomes infinite when

x—*b. Similarly, if R(x, x0; X)—->» when x—>a, then every solution with

Jy(x)y'(x) ultimately negative for approach to a becomes infinite when x—»a.

It is clear from the structure of R(x, x0; X) that the condition is independ-

ent of x0 and X. We shall prove the lemma for fixed x0 and X and consider only

the case x—>0. The same method applies at the other end point. The lemma is

an immediate consequence of

Lemma 3. Under the assumptions of Lemma 2(6)

(6) The inequality (1.2.7) does not give very precise information regarding the rate of

growth of y(x), but in a certain sense it is the best of its kind. The ratio y(x)/S{x, x0; X) is

bounded in the case of the Legendre operator Z = (l — x2)D2—2xD, a= —1, 6 = 1, for approach

to the singular end points, while y(x) exp [— S(x, xa; X)] is bounded away from zero in the case

of the Hermite operator L = D2—2xD, a= — °o, b= °°. See §§2.7 and 2.9 below.

(1.2.6)

(1.2.7) S(x, xo, X) < y(x) < exp {S(x, x0; X)}
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for Xo=x<b, where

(1.2.8) S(x, xt>; X) = R(x, x0; X) + K(x0)y'(xo)U(x, x0).

Putting xi=x0 and x2 = u in (1.2.4) and noting that y{x) is increasing and

greater than 1 in the interval (x0, b), we get

K(u)y'(u) > K(x0)y'(x0) + Q(u, x0; X).

Dividing by R~(u) and integrating from x0 to x, we obtain the first half of

(1.2.7). But we have obviously also

K(u)y'(u) < K(x0)y'(xo) + Q(u, x0; \)y(u).

Dividing by K(u)y(u), dropping y(u)>l in the first denominator on the

right, and then integrating from x0 to x, we get the second half of the inequal-

ity.

This shows that y{x) becomes infinite when x—>b if and only if S(x, x0; X)

has the same property. But both terms on the right in (1.2.8) are positive

and a simple calculation shows that U(x, x0)—>co when x—>b implies

R(x, x0; X)—but not vice versa. This completes the proof of the lemmas.

These inequalities have a relation to the transformation theory of the

differential equation which is of some interest for the following. If we intro-

duce a new independent variable in (1.2.1) by putting u = U(x, x0) and define

y(x) = Y[u), then the transformed differential equation is simply

d2Y d2R
(1.2.9) -7 = 0,

du2 du2

where under our assumptions d2R/du2>0 in the interval (A, B) which is the

image of (a, b) under the transformation. If, for instance, B= <», then it is

perfectly trivial that every solution of (1.2.9), which is not positive monotone

decreasing in (A, B), becomes infinite with u. This transformation will be

useful in the proof of the next lemma which is a comparison theorem of the

classical Sturmian type.

Lemma 4. Let y(x; x0, s, X) be the solution of iL— X) y = 0, y(x0) = l,

y'(x0) =s = 0. (1) For fixed x, x0, and s, x0<x, y(x; x0, s, X) is an increasing

function of X. (2) For fixed X, the ratio of y(x; xu 0, X) to y{x; x2, 0, X),

a<Xi<x2<b, lies between finite positive bounds depending upon Xi and x2 but

not upon x, a<x<b. (3) For fixed x0 and X, the ratio of y(x; x0, si, X) to

y(x; xo, 52, X), 0 = si<s2, lies between finite positive bounds depending upon s2

but not upon x, x0=x<b.

The first statement follows directly from the formula

K(x)[yii(x)y{(x) - yx(x)yi(x)] = (X - ß) f F(t)yx(t)y,(t)dt
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with obvious notation. The second assertion lies slightly deeper, but follows

from the expression for the Wronskian of two solutions yi(x) and y2(x) of the

equation. Taking yi(x) =y(x; Xi, 0, X), y2(x) = y(x; x2, 0, X), we get

Dividing through by [y2(t)]2K(t) and integrating from Xi to x where x2 <x, we

obtain

so the statement is proved for such values of x if we can show the conver-

gence of the integral when x—This is trivial if the integral obtained by sup-

pressing the factor [y2(0]2 in the denominator is convergent. Hence we can

assume that the function U{x, x0) of formula (1.2.6) tends to infinity when

x—>&. Putting u = U(x, Xi) and transforming the differential equation upon the

form (1.2.9) we get

with obvious notation. But Y2(v) is positive, concave upwards for v>0, and

tends to infinity with v. Hence we can find a linear function <xv-\-ß with a>0

such that Y2(v) >ctv-\-ß for v>vn. This proves the convergence of the integral

and gives a finite upper bound for the ratio in the interval (x2, b) where the

lower bound is unity. In the interval (a, Xi) we simply interchange yi(x) and

y2(x) and apply the same method. The interval (xi, x2) is trivial. This com-

pletes the proof of (2). The same method can be used in proving (3).

1.3. Boundary conditions. We shall make no attempt to determine the

maximal class with respect to which the operator L —X is oscillation preserving

in (a, b). It is likely to be a complicated and none too interesting problem.

We shall instead specialize L in various ways and determine certain associated

classes of functions by means of appropriate boundary conditions. We shall

consider four alternatives which by no means exhaust the field but which at

least cover a large number of cases of well established interest.

Ti. Sturm-Liouville type. pm(x)EA [a, b], m = 0, 1, 2; p2(a)r*0, pt(b)^0.

T2. Periodic type. Assumptions as under Ti, but in addition, K(a) =K(b),

that is, fa {pi(t)/p2(t)} dt = 0.

T3. Singular type. R(x, x0; X)—><=o when x—>a and when x—*b for some x0,

a <x0<b, and X>0.

T4. Semi-singular type. pm(x)(E:A(a, b], m = 0, 1, 2; p2(b)r*Q; and

R(x, b; X)—>=o when x—>a, X>0.

In T3 and T4 the functions R(x, x0; X) and R(x, b; X) are defined by (1.2.6).

Lemma 2 shows that the value of x0 is immaterial and that the condition

holds for all X>0 if it holds for a single one. In T4 the roles of a and b can of

course be interchanged.

K(t)WMf), y2(t)) = K(xjyi(xd = - C < 0.
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With each operator L of type T„ we associate a set of classes B^ {L; (a, b)}

of functions/fx) satisfying appropriate boundary conditions. Here k is a posi-

tive integer or infinity.

Pn. B?\L; [a, b]} CC(2i) [a, b] ;L"f(a) = 0, Lnf(b) = 0, n = 0, 1, • • -,k-l.
B2. Bjp{L; [a, o]} CC(2« [a, b]; Lmf(a) = Lmf{b), m = 0, 1, • • • , A;

DLnf(a) =DLnf(b), n = 0, 1, • • •

B3. (a, j)JCCM(ß, b); [f>/(x)]/y(x; x0, X)^0 wAew x-+a awd

when x-^b for n = 0, 1, • ■ ■ , k — \, for some Xq, a<xa<b, and arbitrarily small

positive X.

B4. B?> {L; (o, 6]} -3^ (£;&,<*; (a,ft]} CC™(a, b]; [L"/(x) ]/y(x; b,\)-»0
w/zew x—»a /or arbitrarily small positive X; CiL"/(ö) + C2Z)Z"/(ö) =0, &, C2

fixed greater than or equal to 0, oo/A conditions holding for n = 0, 1, ■ ■ ■ , A — 1.

Here Lnf(a) and DLnf{a) are the values of Lnf(x) and DLnf(x) at x=o.

In B3, y(x; x0, X) =y(x; Xo, 0, X) in the notation of Lemma 4, similarly in B4

where x0 = 6. By virtue of Lemma 4 we should expect that the value of x0 is

immaterial and that small positive values of X are the decisive ones. It is

perfectly obvious that we could consider other classes of functions in connec-

tion with these operators. In particular, more general boundary conditions

could be allowed at one end point in Bi. If a and b are interchanged in B4,

the sign of C2 should also be changed. We merely mention these possibilities.

Our main object in Chapter I will be to study the four listed types in some de-

tail and to prove Theorem 1 and its various extensions.

Theorem 1. // the operator L is of type T„ and X>0, then for every

/(x)GB^ {L; (a, b)}, v=l, 2, 3, 4, wehaveQ) V[(L-\) /(*)] = V\f(x)], that
is, L —X is oscillation preserving in (a, b) with respect to the corresponding class

Bll){L;(a,b)}.

1.4. Discussion of the Sturm-Liouville case. This case is readily recog-

nized and the proof of Theorem 1 is quite simple. We choose Wi=y(x, X) in

(1.1.7) as the solution of the initial value problem (L— X) y = 0, y(b, X) = l,

y'(b, X) =0. Formula (1.2.5) shows that y(x, X) > 1 in (a, b).

The theorem is trivial if V[f(x) ] = 00 . Suppose then that V[f(x) ]=N< 00.

We can then find N+2 points x,- where <z=xi<x2< • • • <Xjv+i<Xjv+2 = ö,

such that/(x,) =0 and/(x) is not identically zero in anyone of the intervals

(xj, Xj+\). Since y(x, X) = 1, Lemma 1 shows that D[f(x)/y{x, X)] has at least

one sign change in each of the iV+1 intervals (x,-, xJ+i). Multiplication by the

positive bounded factor [y(x, X)]2/1F2 does not change this situation and the

derivative of the result by Lemma 1 has at least N sign changes in (a, b).

Hence V[(L —X) /(x)] — N and the theorem is proved.

If the boundary conditions in Bi for k = 1 be modified so that/(a) =0 is

replaced by the condition Cxf(a) — C2f'{a)=Q, Ci = 0, C2>0, while the condi-

(7) V[g] is to be computed according to the definition for periodic functions when v = 2

but according to the main definition in the other cases. See §1.1, second paragraph.
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tion f(b) = 0 is left intact, the proof can still be carried through, but the choice

of y(x, X) has to be modified accordingly. To each/(x) of the class we deter-

mine a corresponding y{x, X) by the condition that it should have the same

logarithmic derivative as f(x) at x=a. Taking y(a, X) = 1 as is permissible,

we still have y(x, X) >1 in (a, b). Then D \f(x)/y(x, X)] will be zero at x=a

instead of in the interior of (a, Xi). It consequently still has iV+l zeros in

(a, b) and does not vanish identically between any consecutive pair of zeros.

Thus (L — X) f(x) has N sign changes at least, and the theorem is proved un-

der the more general assumptions. The restriction imposed on the sign of the

logarithmic derivative of f(x) at x=a is dictated solely by our concern that

the corresponding y(x, X) shall be positive in [a, b]. If this condition is known

to be satisfied, the restriction can be dropped. It is clear that modifying the

boundary conditions at both end points meets with additional difficulties and

this problem will not be considered here. It should be observed, however, that

the case f'(a) = 0, fib) =0, can be handled without difficulty.
1.5. Discussion of the periodic case. The name periodic case is to some

extent a misnomer, but it is a customary designation for the corresponding

type of boundary conditions and the case has close relations to periodicity

in the usual sense. Moreover, it includes as a special instance the case in which

K{x) and G(x, X) are periodic with period (b—a).

Uf(x)eBll){L) [a, b]}, then/f»eC<»[o, b], f(a) =f(b),f'(a) =/'(*), and
Lf(a) =Lf(b). We can then find a function f*(x) £C(1)( — °o, °°) such that

f*(x-\-b — a) =f*(x) and/*(x) =/(x) in [a, b]. The second derivative of/*(x) is

continuous everywhere with the possible exception of x=a (mod (b—a))

where, however, right- and left-hand derivatives exist. Similarly Lf(x) can

be extended periodically as a continuous function and the extension agrees

with Lf(x).
The definition of F[g(x)] given in §1.1 varied slightly according as g(x)

was defined only in [a, b] or could be extended periodically as a continuous

function with period (b — a) outside of this interval. In the latter case the

definition was such that the number of sign changes in the period would be

independent of the choice of the end points. Actually the two definitions are

always in agreement except in the case in which g(a) =g(b) =0 and g(x) has

an odd number, say 2K — 1, sign changes in the interior of the interval. In

this case one definition would give V[g(x))=2K—l and the other 2K, the

zero at x=a being counted as an additional sign change in the definition for

periodic functions.

We now agree that if v = 2 the definition for periodic functions shall be

used in interpeting the I/-symbols in Theorem 1. In other words, the inequal-

ity to be proved is actually

(1.5.1) V[(L-\)f*(x)] = V[f*(x)].

In the subsequent proof V[g] refers to the non-periodic and V[g*] to the
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periodic definition. The reader should note that V [g ] = V [g* ] = V [g ] +1 and

T/[g*] is always an even number.

For the proof we have to distinguish several subcases. Suppose first that

f(a)=f(b)=0 but V[f(x)]=V\f*(x)]=2K. The proof given in §1.4 applies
without any change and gives V~[(L—X)f(x)]=2K which in turn implies

(1.5.1).
Suppose next that f(a) =/(&) = 0 and V [f(x) ] = 2K -1, V [f* (x) ] = 2K. We

choose the same auxiliary solution y(x, X) as in the preceding case. By Lemma

1, £>[f(x)/y(x, X)] has at least 2K sign changes in (a, b). It follows that

V[(L-\)f(x)] = 2K-1. Hence V[(L-\)f*(x)] ^2K and (1.5.1) follows.
Suppose finally that/(a) =f(b) > 0 and V[f(x) ] = V\f(x) ] = 2K. If/'(a) = 0

we determine y(x, X) by the initial conditions y(a, X) = 1, y'(a, X) =f'(a)/f(a).

If/'(a)=/'(6)<0, we take instead y(b, X) = l, y'(b, X) =f'(b)/fib). In either
case y(x, X) ̂  1 in [a, b]. Then

•   d ( f(x) )
[y(x, X)]2-<-^— \ = y(x, \)f(x) - y'(x, X)f(x)

dx \y{x, X))

has at least 2K— 1 sign changes in (a, b) and, in addition, vanishes at x=a

or x = b depending upon the sign of f'(a). It follows that V~[(L—X)f(x)]

= 2K-1 and V[(L-X)f*(x)] = 2K. This completes the proof of Theorem 1

in the periodic case.

The proof is modelled upon that given by Polya and Wiener for the case

L=D2.

1.6. Discussion of the singular case. This case is characterized by the

presence of singular points of the differential equation at x = a and x = b, suffi-

ciently severe to cause the critical function R(x, Xo] X) to become infinite for

X>0. The class {L; (a, b)} consists of all functions/W£C(s!(o, b) such

that/(x)/y(x; x0, X)—>0 when x—>a and when x—>6 for arbitrarily small posi-

tive values of X. Here y(x; Xo, X) is determined by (L— X)y = 0, y(x0) = l,

y'(xo) =0, a<Xo<6. Let us first assess the influence of Xoand X upon the de-

termination of the class B^{L; (a, b)}.

Suppose that x0 and X are fixed and suppose/(x) £C(2)(a, ö),/(x)/y(x;x0, X)

—>0, x—*a, b. Denote the class of all such functions for the moment by

F(1)(X, x0). By Lemma 4 the ratio of y(x; Xi, X) to y(x; x%, X) is bounded away

from zero and infinity in (a, b). It follows that /(x)GF(1)(X, Xi) implies

/(x) GF(1,()>, x2) and vice versa so that F(1)(X, Xo) is independent of x0 and can

be written simply F(1)(X). Lemma 4 also asserts that y(x; x0, X) is an increasing

function of X in Xo fkx <b. But in our case s = 0 so that the argument given in

Lemma 4, part (1), applies also to the interval {a, x0). Hence /(x)GF(1)(Xi)

implies fix) £F(1)(X2) for Xi <X2. In other words F(1)(Xi) CF(1)(X2) when Xi <X2.

Thus the cross section of all classes F(1)(X) with X>0 exists and equals

limx-oF(1)(X) ==F(1)(4-0). We can define in the same manner classes F(*'(X)

consisting of all functions/(x) of Cl2k)(a, b) for which Z"/(x)/y(x; x0, X)—»0,
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x—>a, b, n = 0, 1, • • • , k — 1, as well as their cross section for X>0, Fw( + 0)

= limx.o FM(\).

Since y(x; x0, 0) is well defined, so is the class F(h)(0) and it is clear that

/?(*)(()) C(-f-0)• Ordinarily these sets do not coincide because the sets

F(k) (X) are as a rule not continuous in X. Even if they are continuous for X > 0,

they may very well lose this property for X = 0. Simple examples can be given

for both possibilities.

If po(x)=0, y(x; x0, 0) = l and there is no auxiliary solution (of constant

sign) which becomes infinite at both end points for X = 0. In this case F(k)(0)

reduces simply to the subset of C(2k)(a, b) the elements of which satisfy the

boundary conditions Lnf(x)—>0, x—»a, b, n = 0, 1, ■ • • , k — 1. It is obvious that

this set is a subset of every class /7(*)(X),X>0. If p0(x)^0 and R(x, x0; 0) —> °°,

x—>a, b, then Fw(0) certainly contains elements which do not vanish on the

boundary together with their L-transforms of order at most k— 1.

These results allow us to formulate

Theorem 2. Bgw{l,; (a, b)) sJK*>(+0)DF<*>(0)!

The proof of Theorem 1 in the singular case can be given in a few lines.

We choose W\=y{x; x0, X) and proceed as in the Sturm-Liouville case, the

only difference being that the points Xj now figure as zeros of the continuous

function /(x)/y(x; x0, X) rather than of f(x) which of course supplies the sign

changes in (a, b). Lemma 1 applies as before and gives V[(L—X) f(x)] =N(S).

1.7. Discussion of the semi-singular case. The discussion follows the same

general pattern as in the singular case. The class B^{L; &, C2; (a, b]} is

defined as that subclass of CC2)(a, b] the elements of which satisfy at the

singular end point x = a the condition /(x)/y(x; b, X)—»0 for arbitrarily small

X>0, while at the regular end point x = b we have Ci/(ö) + C2/'(6) = 0 where

G = 0, C2 = 0, G + C2>0 are fixed. The auxiliary solution y(x; b, X) satisfies

the initial conditions y{b) = 1, y'(6) =0.

Let us denote by G(l)(Ci, C2; X) the class of functions in C(2)(<z, b] which

satisfy these boundary conditions for a fixed X = 0. Lemma 4 ensures that the

ratio of y(x; b, 0, \)=y(x; b, X) to y(x; b, —s, X) for a fixed positive 5 is

bounded away from zero and infinity in (a, ö](9). Hence we have also

f(x)/y(x; b, —s, X)—>0, x—*a, for any fixed s>0, if /(x)GG(1)(Ci, C2; X).

As in §1.6 we show that G«(Ci, C2; Xi)CG<»(Gf C2; X2) for Xi<X2. We

find that G(1)(G, C2; +0)=limx.o G^(Ci, C2; X) is the cross section of all

classes G7<l)(G, C2; X) for X>0. In a similar manner we define classes

Gw(d, C2;X) and G<»(&, C2; +0)=lim^0 G<-k\Cu C2;X). HereG^^d, C2;X)

is simply that subclass of C{w{a, b] consisting of functions /(x) such that

(8) The same argument applies in case either end point should be regular or the condition

R{x, x«; X)—»oo should fail to hold, provided f(x) be constrained to vanish at the end point in

question. Various intermediary types of operators are covered by this remark.

(9) A change of variable, replacing x by — x, reduces the discussion to the case considered

in Lemma 4.
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/(*), Lf(x), ■ ■ ■ , Lk~lf(x) all belong to G<»(C,, C2; X). We have obviously

Gw(Ci, C2; 0)CG<*>(&, C2; 4-0). We can sum up the result in

Theorem 3. B[k){L; Ci, C2; (a, b]} =G<*>(Ci, C2; +0).

The proof of Theorem 1 in the semi-singular case follows the same lines

as in the preceding cases. Suppose that/(x) (zzB^ [L; &, C2; (a, 6]}. If C2 = 0,

that is, if /(6) =0, we choose y(x; X) = y(x; 0, X) and proceed as in the singular

case. If C2?^0, we sets= Ci/Cz = — f'{b)/f{b) and take y(x, X) =y(x; b, — s,X).

Putting g(x) =/(x)/y(x, X) we see that g(x)—»0 when x—»a and g'(o) =0 since

numerator and denominator of the fraction have the same logarithmic de-

rivatives atx = ö. The proof then proceeds as in the Sturm-Liouville case with

generalized boundary conditions.

1.8. Extensions. The case X = 0 figured briefly in §1.6. It is of some inter-

est to determine function classes for which the operator L itself is oscillation

preserving. We arrive at the following result for the proof of which the reader

will find the necessary material in the preceding sections.

Theorem 4. If the operator L is of type T„, there exists a class Fv with re-

spect to which L is oscillation preserving in (a, b). If v = \ or 2 we have

F,Z)B™\L; [a, b]}, while FtDF™(0) and FtDGm(Cu C2; 0).

In the remainder of the paper we shall have to apply a given operator L

more than once to the functions under consideration. Here is where the classes

Blk,{L; (a, b)} with k>l are required. We note that if /(x) GB™ {L; (a, b)}

and X>0 then (L-X)/(x)GB*-1){L; {a, 6)}. Repeated application of Theo-

rem 1 leads to the following result.

Theorem 5. Let Hk(u) be a polynomial in u of degree k, having real coeffi

cients and real positive zeros. If L is of type T„, then ITfL) is an oscillation

preserving transformation in (a, b) with respect to the corresponding class

B^{L;(a,b)}.

In particular, we can always allow the class B^^L; (a, b)}. Itis obvious

that Bit)DB(Jc+1)'JBi'c) and it can be shown that Bi") is never vacuous(10).

By virtue of Theorem 4 we can also allow the root u = 0 with arbitrary

multiplicity, in cases Ti and T2 without restriction of the class and in cases

T3 and Tt at least for the corresponding classes F^ffi) and GW(C\, C2; 0).

We can also extend in a different direction. We can allow operators of the

form E(L) where E(u) is a suitably restricted entire function, provided we

(10) For v= \ and 2, this follows from Theorems 7, 10, and 11 below. For i> = 3 and 4 the

statement is also obvious whenever the corresponding boundary value problems P3 and P<

of §1.9 have solutions. In more general cases, the following type of argument leads to functions

having the desired properties. Suppose v = 3, a and b finite and at most poles of the coefficients.

Then we can take any function of the form exp [—A{x—a)~i—B{x — b)~2\, A>0, B>0. The

modifications necessary in case a or b or both are infinite are obvious. Heavier singularities can

be handled by stepping up on the exponential scale. The same type of functions will do for v = 4.
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also restrict f{x) to be analytic. The result, being of no importance for the

following, is stated without proof.

Theorem 6. Let E(u) be an entire function of order 1/2 and minimal

type(u), having real coefficients and real positive zeros. Let L be of type T„.

Let Ap{L; (a, b)} be obtained from Bl") {L; (a, b)\ by replacing the requirement

/(x) GC(cc,(a, b) by f(x)(£A(a, b). Then E(L) is an oscillation preserving trans-

formation in (a, b) with respect to the class Ay{L; (a, b)}.

What was said above regarding the root u = 0 applies also, mutatis mu-

tandis, to the case of an entire function.

1.9. The associated boundary value problems. With each operator L of

type T„ there is an associated boundary value problem. We refer to the ques-

tion of determining characteristic functions and characteristic values of the

problem

(1.9.1) (L + n)u = 0,      u(x) G B™{L; (a, b)}.

Thanks to the analyticity assumptions for the coefficients of L any solution

must also have the property u{x)GA,{L; {a, b)}. For the sake of clarity, we

write out in full the four problems.

Pi. (L+p)u = 0,u(a)=0,u(b)=0.

P2. (Z+Ju)M = 0, u(a)=u(b), u'(a)=u'(b).

P3. {L-\-p)u = 0, u(x)/y(x; Xo, X)—»0, x—><z, b, for every X>0.

P4. (L+p)u = 0, u(x)/y(x; b, X)->0, x-^a, &u(b) + C^u'(b) = 0, G = 0,

C2 = 0.

The problems Pi and P2 are classical boundary value problems of the

Sturm-Liouville and periodic types, respectively. It is well known that these

problems have solutions and the reader will find a short summary of the avail-

able information concerning the properties of the solutions, to the extent that

is needed for our purposes, in §§2.5 and 2.6 below.

Boundary value problems of types P3 and P4 do not seem to have been dis-

cussed in the literature though a number of the best known special orthogonal

systems used in analysis can be obtained as solutions of such problems. This

is not the right place to develop a general theory of problems P3 and P4. We

restrict ourselves here to pointing out the existence of the problems and will

call attention to the special instances as they are encountered in Chapter II.

In the case of problems Pi and P2 there is in existence a well developed ex-

pansion theory. Thus, for instance, every function /(x) G-ß^ {L; [a, b]} can

be represented by a uniformly convergent series in terms of characteristic

functions of Pi. The same is true in the case of P2. It is natural to expect that

(u) The statement means that E(u) exp (—1\ u\1/2)—>0 when \u\—»°° for every e>0. It

would be more precise to say that the order is at most 1/2 and if it equals 1/2, then the function

is of minimal type.
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a similar situation holds under fairly general circumstances also in the case of

P3 and P4. A number of special instances are well known.

Chapter II. Finite characteristic series

2.1. Admissible systems. In this chapter we shall start the study of the

relationship between the infinitary behavior of the sequence V[Lkf(x)] and

the analytical nature of /(*). This will be carried out under rather severe re-

strictions on L and onf(x). In part the restrictions are dictated by the nature

of the problem, but they are also due to our lack of knowledge regarding the

boundary problems P3 and P4 defined in §1.9. This makes it necessary for us

to postulate the existence of a solution of the boundary problems involved

with fairly regular properties of characteristic values and functions.

We consider first a system S = S\L, un(x), pn; (a, b)\ consisting of an

operator L, a set of characteristic functions {un(x)} and corresponding char-

acteristic values \pn\, the interval being (a, b). We say that S is admissible

if it satisfies the assumptions Ai to A& below and L is of one of the types T„ de-

fined in §1.3.

Ai. pm(x)EA(a,b),m = 0,l,2.

A2. p0(x)^0, p2(x)>0,for a<x<b.

A3. The functions { [P(x)]ll2un(x)} form a real orthonormal system, com-

plete in L2(a, b).

A4. 0</in^pn+i. The series Hit^n* is convergent for some a>0.

A5. There exist constants ß and 7 and a non-negative function U(x)

GC(,)(a, 6), such that

I UH(x) I  ^ fllU(x), I Un{x) I  = lZU(x).

Ae. For every fixed interval (c, d), a^c<dfkb, Zn(c, d), the number of zeros

of un(x) in (c, d), tends to infinity with n. Zn(a, b) is finite and a never decreasing

function ofn(n).

A number of admissible systems occurring in classical analysis will be ex-

hibited in §§2.5 to 2.11 below.

We also consider a set F=F{L, un{x), pn; (a, b)} of characteristic series

00

(2.1.1) £/»«»(*)•

This set will be called admissible if S is admissible and

Ci. /„ is a real for all n,

C2. EfL^I/.l <«>, »-0..1, 2, • • •,
This condition is obviously equivalent to the convergence of

(12) we have Zn(a, b) = F[m„(jc)] except possibly in the periodic case when we may have

Z„(a, 6) + l = !/[«„(*)].
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* °° 2

Z (ßnfn)
n=l

for every integral value of m. In other words, the series

00

(2.1.2) Z (- ixn) -/««■(*)
n=l

represents a function/m(x) such that

[PW]"J/»W Gii(a, b)

for jm = 0, 1, 2, • • • . It is clear that fm(x) is obtained from/(x) =/0(x) by term-

wise operation with L in the series (2.1.1). A characteristic series is admissible

if its coefficients satisfy Ci and C2 and S is admissible. Such a series defines an

admissible function.

2.2. Convergence in F. An admissible series converges not merely in

weighted mean square but also in the local sense.

Lemma 5. If /(x) £F, then the series

oo oo s% b

Z/««»(*).     Z/»*»'(*),    /»=[ P(t)un(t)f(t)dt,
n=-l n=l " a

converge absolutely and uniformly in every fixed interval (a\, b\), a<a\<b\<b,

their sums being f(x) and /'(x), respectively. If the function U(x) of A6 can be

taken equal to a constant, the convergence is uniform in [a, b].

The convergence properties follow from assumptions A6 and C2. The first

series being convergent in (ai, 6i) both uniformly and in weighted mean

square, we conclude that the uniform limit is equivalent to /(x) and can be

taken as the definition of/(x) for all x. The sum of the uniformly convergent

derived series is then obviously/'(x).

Lemma 6. If f(x)(EF, so does L[/(x)] and

oo

(2.2.1) L[f(X)] =  - H»nfnUn{x).
n=l

For the proof we observe that the second derived series of /(x) also con-

verges absolutely and uniformly in (ai, b\) and hence has the sum/"(x). This

follows from the identity

* k

Ps(x) Z/««»"(*) =   ~ HUUn{x)

—  Z Mn/n«re(x) — p0(x) Z/"«"(*)•
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Hence L [f(x) ] exists and

00 00

L[f(x)] = 2 fnL[un(x)] = — ̂ = fi(x)
n=l n=l

is an element of F.

It follows that all functions Lm[f(x)]=fm(x) exist and belong to F when-

ever/^) does. Thus we can apply the operation L as often as we please term-

wise to an admissible characteristic series and the result will stay in F. Such

a series can also be differentiated termwise arbitrarily often, but it is not a

priori obvious that the result is always in F, though this appears to be true

in simple cases.

The class F could evidently be characterized by descriptive properties.

Its elements are real in (a, b) and [P(x) ]1/2/(x) GL2(ö, 6). F is invariant under

the operation L. It is a linear vector space with real multipliers and contains

the basis \un(x)}. However, for our purposes it is simpler and more natural

to start from the characteristic series.

2.3. Conservative systems. We need a couple of additional assumptions

linking the classes A,\L\ (a, b)\ of Theorem 6 with the systems 5 and F.

They read as follows.

D„. If L is of type T„, then un(x)GAv{L; (a, b)\ for all n.

E3. If v = 3> there exists a finite positive C(xo, X) such that U{x) fk

C(x0, X)y(x; x0, X) for a<x<b, X>0.

E4. If v = A there exists a finite positive C(X) such that U{x) fk C(X) y(x; b, X)

for a <x<b, X>0.
It is worth while stating explicitly what D„ amounts to in the various

cases. Since un(x) is a characteristic function of L, the denumerable infinity

of boundary conditions entering into the definition of AV\L; (a, b)} reduces

to a single pair. We get:

Di. un(a) =0, un(b) =0.

D2. un{a)=un{b),Un(a)=Un(b).

D3. w„(x)/y(x; x0, X)—*0, x—>a, b,for all X>0.

D4. un(x)/y(x; b, X)—>0, x—>a,for all X>0, and C\Un{}))-\-C%ul (b) =0.

In other words^, D„ asserts the existence of a solution of the corresponding

boundary value problem P„ of §1.9 and that this solution is given by

{m„(x), p„\. If v = l or 2, the function £7(x) of A6 can be taken equal to a

constant. This explains the absence of any conditions Ei and E2. In the two re-

maining cases we need an inequality between U(x) and the auxiliary solution

which is supplied by E3 and E4.

Definition. An admissible system S is called conservative if it satisfies the

conditions D„ and E„ corresponding to its type T„.

Thus a conservative system satisfies conditions Ai to A6, one of the condi-

tions T„, v= 1, 2, 3 or 4, and the corresponding conditions D„ and E„.
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Theorem 7. If S = S{L, un(x), p„; (a, b) \ of type T„ is conservative and

F=F\L, un(x), Hn', (a, b)} is the corresponding admissible set of functions, then

FCBl'^L; {a,b)).Ifv=\ or 2, F=Bi").

Suppose first that v= 1 and /(x)£F. We can then find a constant Ui such

that |m„(x)| = Ui, a=xfkb, for all «(13). Formula (1.2.4) with X= — jxn shows

that |«B'(x)| f=finUi for a suitably chosen constant c72. Thus we can take

U(x) = L7=max (Ui, Z72), 0 = 0, 7 = 1 in A6. By Lemma 5 the characteristic

series of fix) converges uniformly in [a, b]. Since every partial sum of the

series vanishes for x=a and x = b by Di, we have/(a) =f(b) =0. Further the

first derived series converges uniformly in [a, b] so that/'(x) is also continu-

ous in [a, b]. By Lemma 6, L*/(x) £F for all k. This means that/(x) has de-

rivatives of all orders continuous in [a, b] and Lkf(a)=Lhf{b)=0 for all k.

Hence/(*)EB{"'{i; [a,b]\.
suppose, conversely, that fix) GB[a) {L; [a, b]\. This means that

/(*)eC<W) [a, b] and Lkf(a) =Lkf(b) = 0 for all k. Since L kf(x)GCm [a, b] and

vanishes at the end points, we have

CO

Lkf(x) = Hfn.kUn(x),

uniformly convergent in [a, b]. But here we can use the classical identity of

Lagrange (for the notation, see formulas (1.1.2) and (1.2.2)):

gL*[h] - hL*[g] = D{K{gh' - hg')).

If g and h belong to B^ {L; [a, b]} , integration from a to b gives

f g(t)L*[h(t)]dt = f h(t)L*[g(t)]dt
"a ,       » a

or

f g(t)P(t)L[h(t)]dt = f h(t)P(t)L[g(t)]dt
Ja Ja

and by iteration

r6 g(t)p(t)Lk [HD ]dt= f h(t)P(t)Lk[g(t) ]dt
Ja Ja

for every integer k^O. Putting in particular g(x) =uH(x), h{x) =/(x) we get

fn,k = (—ßn)kfn- Since fn,k is real and 22f*# converges for every k, we see that

the coefficients/„ satisfy conditions Ci and C2. Hence f(x) GFand the theorem

is proved for v = 1.

The same type of argument applies if v = 2, where of course periodicity

plays the same role as vanishing on the boundary did when v=\.

(13) This follows from property (3) of §2.5.
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Suppose now that v = 3 and that f(x)GF. In order to prove that

f(x)GB(3'°) {L; (a, b)} it is enough to show that /(x)/y(x; x0, X)—>0, x—*a, b,

for every X>0; the i-transforms of /(x) will then automatically satisfy the

same conditions. But using A6 and E3 we have

/(*) " w„(x)
2-i Jn

y(x; x0, X)       i      y(x; x0, X)

A un{x)
2-1 Jn
n+i    y(x; xo, X)

C(x0, X) 2 I /» I **«•
n+l

By C2 we can choose N so large that the last member is less than any preas-

signed e, and by D3 the finite series in the first member tends to zero when

x—>a. This completes the proof.

Suppose finally v = 4 and /(x) £F. Since y(x; b, X) is bounded in [a + 5, b],

5>0, for fixed X, assumption E4 shows that U(x) is bounded in [0+8, b].

Hence by Lemma 5 the series for/(x) and/'(x) are uniformly convergent in

[a4- 5, b]. The partial sums satisfy the boundary condition CiS„(b) -\-C2Sn (6)

= 0 for all n. Hence we have also Cif(b) + C2f'(b) =0 and the same boundary

condition is satisfied by Lkf(x) for all k. The proof that /(x)/y(x; b, X)—>0

when x—»a for every X>0 goes through as when v = 3.

We cannot assert that r7=5^") when v = 3 or 4. The following example

disproves such a conjecture. We take for L the Hermite-Weber operator

D2 — x2, a= — =0, b= 00 ; {«„(i) j is the set obtained by orthogonalizing and

normalizing the Hermite polynomials and /x„ = 2w+l. It is shown in §2.9 that

this system is conservative and of type T3. If /(x) = 1 then Lkf(x) is an even

polynomial of degree 2k. Referring to formula (2.9.3) which gives the asymp-

totic behavior of y(x; 0, X) for large x, we see that /(x) = 1 belongs to

Bg^'ji; (— 00, °°)}, but it does not satisfy the boundary conditions (2.9.7)

for k = 0; so it cannot belong to F.

Similarly S{D2 — x2, «2n(x), 4w+l; (0, <»)} is a conservative system of

type T4, the regular boundary condition being u'(0)=0. Again/(x) = 1 be-

longs to \ D2 — x2 \ 0,1; [0, <x>)} but not to the corresponding class F for

which the singular boundary condition is still given by (2.9.7).

Combining Theorems 5 and 7 we get

Theorem 8. Let S = S{L, un(x), /*„; (a, 6)} be a conservative system and let F

be the corresponding set of admissible functions. Let H{u) be a polynomial in u

with real coefficients and real positive zeros. Then II (L) is an oscillation preserv-

ing transformation in (a, b) with respect to F.

2.4. The main theorem. We shall now prove

Theorem 9. Let S = S{L, un(x), /x„; (a, b) \ be a conservative system and let

F=F{L, u„(x), Hn\ (a, b)} be the corresponding set of admissible functions. Let

/(x)£F and suppose that
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(2.4.1) lim inf V[Lkf(x)] = N < «.
»-»00

Then there exists an integer M=M(N) such that fn = 0 for n>M, that is

M

(2.4.2) /(*) - Z/-«-(*)•
n-1

If all characteristic values are simple,

(2.4.3) V[uM(x)] fl N,

otherwise it is at most N4-1. Conversely, if f(x) is given by (2.4.2), then

(2.4.4) V[L«f{x)\ = V[uM(x)]

for all large k.

For the proof we employ the device of Polya and Wiener [2] in suitable

modification. To the given function f(x) GF with Fourier coefficients /„ we

form the auxiliary function

(2.4.5) *(*. k,m;f) = Zj, W\i /»*»(*>
n=l U/im + M») /

where k^O, m — \ are arbitrary integers. We have $(x, 0, m \ f)=f{x). The

multipliers are positive numbers less than or equal to 1 and equal to 1 only

when fjLn=nm. Since every characteristic value is at most double, this means

for at most two values of n. It follows that the coefficients of <I> also satisfy

conditions O and C2 so that $GF. We can consequently apply the operator

(L —Mm) termwise as often as we please to the series (2.4.5). We find in particu-

lar that

(2.4.6) (L - txm)2kHx, k, m; f) = (-4/0*£*/(*)•

But Atm>0 and by Theorem 8 (L— pm)2k is an oscillation preserving transfor-

mation with respect to the class Fin (a, b). Hence

(2.4.7) Nk = V[Lkf(x)] = V[Hx, k, m; /)]

for every k and m.

So far m was arbitrary. We suppose now that/m^O. In order to take

care of the slightly more complicated case in which there are double char-

acteristic values, let us suppose nm~i = fim and that also /m_ij^0. We then

write 4> = ^i4-52-|-5'3. Here Si is the finite sum from n = \ to n = m — 2,

Si=fm-\um-\(x)-T-fmum{x), while .S3 is the remainder. The trivial modifica-

tion necessary if pm is simple is obvious. We shall estimate Si and S3. The

idea of the proof is to show that for sufficiently large values of k, | S1 + S3I

is dominated by | S2\ at the maxima of the latter, provided that we restrict
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ourselves to a fixed interior interval (a\, öi), and that consequently the oscilla-

tory properties of $ in this interval are essentially the same as those of S2.

The latter, however, are regulated by assumption A6 which ensures that the

number of sign changes of S2 in (au bi) tends to infinity with m. This will

lead to a contradiction for suitable values of m.

We consider now an arbitrary interior interval (at, 61), a<ai<bi<b. Let

b = max U{x) for öi i= x fs b\. Let

4/lmMr.
ö = max-

(Pm + Mr.) 2

for nr*m — 1 and m (n?*m, if pm is simple). We have 5<1. By assumption A5

00 00

I Si + S31 ̂ 8k2Z' I /»*»(*) I < 5*E I /» I Mn- U(x) g 5"b £ I /„ I pi = «*r
1 1

for di^x^öi. Here the prime after the summation sign indicates that

nj*m — 1 and m.

Let us write Zm(a\, b\)—jm. Assumption A6 asserts that jm—*<» with m.

Since /im is a double characteristic value, Ss(x) =/m_iMm_i(x) +/mMm(x) is a real

solution of the differential equation (L-{-pm) y = 0. Consequently it has at

least7« —1 and at most Jm+l zeros in (ai, bi) by the classical oscillation theo-

rems. Let the actual number be im. We can suppose without essential restric-

tion of the generality that the zeros of S2(x) are interior to the interval (ai, 61)

and that £2(01) >0. Then sgn ^(öi) = (— 1)Let the zeros occur at the

points xa, ai<xi<x2< ■ ■ • <xim<b\. Let £a be the uniquely determined

point between xa and xa+i where S2 (x) =0. If S2 (x) =0 at a point in (ai, Xi),

we denote this point by £0; otherwise we set £o = ai- Similarly £,-m is either the

point where S2 (x) =0 in (xjm, b\) or 61 itself. We note that the points £0 and

%im are uniquely determined. Now let

a = min ] S2(£a) \, a = 0, 1, • • • , im.

We then choose k so large that

5kT < a,

which is obviously possible. But this means that for such values of k and m

sgn k, m;f) = (- 1)°, a = 0, 1, • ■ • , im.

Hence 4>(x, k, m;f) has at least im sign changes in (öi, b{) and a fortiori in

(a, b). Since (L—pm)2k is an oscillation preserving transformation, formulas

(2.4.6) and (2.4.7) show that Lkf(x) also has at least im sign changes in (a, b)

for all sufficiently large k. Hence im^Nk for all large k. But (2.4.1) asserts

that Nh = N for infinitely many values of k. This implies im = N.

This is a contradiction, however, for large m since im tends to infinity

with m. Since im ^jm— 1, this gives a contradiction for jm> N-\r 1. We are thus
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led to the conclusion that the characteristic series of f(x). cannot contain any

term um{x) having more than N-\-l zeros in (ai, 61). But here {a.\, b\) is a per-

fectly arbitrary interior interval. It follows that the series of/(x) contains no

term um{x) with Zm(a, b) >N-\-\. If there are no multiple characteristic val-

ues, we can replace N+1 by N since then jm=im. In the case of double char-

acteristic values, however, it would seem possible for the finite sum to end

with two terms corresponding to the same characteristic value, either term

having iV+l zeros while their sum has only N zeros. Whether or not this

exceptional case can ever arise must be left an open question.

This argument proves formula (2.4.3) except in the periodic case. Here

N — 2K is an even integer. Further Zn(a, b) — V[un(x) ] fkZ„(a, b) + l and

F[m„(x)] is even. If there are no double characteristic values then the in-

equality Zm(h, b)fkN = 2K implies V[um(x) ] = 2K and formula (2.4.3) is

proved. If however, pm=Pm-i, then the previous proof shows that S2(x) can-

not have more than 2K sign changes in {a, b) and hence F[.S2(x)] f!2K. Now

Um-i(x), Um(x), and S2(x) are solutions of the same differential equation

(L+/i)w = 0 for p = pm=pm-i- Hence the three quantities F[km_i(x)],

F[m.w(x)] and F[S2(x)] can differ by at most one unit and, being even in-

tegers, they must consequently be equal. This shows that V[um(x) ] fs 2K and

formula (2.4.3) is proved.

Suppose, conversely, that f(x) is a finite sum of characteristic functions

given by (2.4.2). We choose m = M and form 4?(x, k, M;f). For (ai, 61) we

take an interval containing all zeros of Um(x) or S2(x) as the case may be.

Proceeding as above, we see that 3>(x, k, M; f) has at least as many sign

changes in (ai, bi) as the last term or group of terms has for large values of k.

Combining with (2.4.7) we see that (2.4.4) holds. The argument is evidently

also valid in the periodic case. It is often possible to exclude the sign of in-

equality both in (2.4.3) and in (2.4.4). This completes the proof of Theorem 9.

Polya and Wiener proved that if f(x) is periodic and V[D2kf(x) ] is bounded

with respect to k, then the Fourier series of/(x) cannot contain any high fre-

quency terms. Theorem 9 shows that this result has analogues for general

orthogonal series defined by boundary value problems relating to linear sec-

ond order differential equations, the operator D2 being replaced by L.

In §§2.5 to 2.11 below we shall give special instances of the theory.

2.5. Sturm-Liouville operators. We have the following simple results(14):

Theorem 10. Let pm(x)GA [a,b], p0(x) ^0, pi{x) >0, a fix = b. Let {u„(x)}

and {fim}, n = 0, 1, 2, • • • , be the sets of characteristic functions and correspond-

ing characteristic values of the boundary value problem

(L + n)u = 0,      u{a) = 0,      u(b) = 0.

(") We state the assumptions in Theorems 10 and 11 explicitly since the3* are so simple.

Formulations in terms of the previous postulates are given below.
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Then S\L, un{x), pn; (a, b) \ is a conservative system. If f{x) G-Bi"' {L; [a, b]},

that is, iff(x)ECm [a, b] and Lnf{a) = 0, Lnf(b) = Ofor n = 0, 1, 2, • • • , and

liminf V[Lkf(x)] = N,
i-»oa

then
n

f(x) = £/„«„(*).
n-0

We are assuming the validity of Ai, A2, Ti, and Di and have first to show

that they imply A3 to A6. Now this is the classical Sturm-Liouville system

except for the restrictive assumptions of analytical coefficients which are un-

necessary in the boundary value problem but desirable for our special needs.

Referring to the literature for proofs (see for instance E. L. Ince [l, §§10.61,

10.7, and 11.4]), we list the following properties of the solutions. We put

2 2

Pn = 03 pn.

Then:

(1) The characteristic values are real, positive, and simple.

(2) pn = n+l + 0(l/n).

(3) un(x) =An[P2(x) p2(x)]_1/4{sin (p„z) 4- 0(1/«)}, where A „ is a normal-

izing factor, independent of x and bounded with respect to w(16).

(4) V[un(x)]=n.

(5) {[P(x)]ll2un(x)} is complete in L2{a, b).

These properties show that conditions A3 to Ai are amply satisfied. Thus

5 is a conservative system and Theorem 9 holds for the corresponding

set F of admissible series. It was shown in Theorem 7, however, that

F=B[") {L; [a, b]}. Finally, M(N) = N by virtue of property (4). This com-

pletes the proof of Theorem 10.

The same result is valid for more general boundary conditions, for ex-

ample, u(a) = 0, &u(b) + Czu'(b)=0, G^0, C2>0 and, for u'(a) = 0, u'(b)=0.

2.6. Periodic operators. Here we also have simple results.

Theorem 11. Let pm(x)EA[a, b], m = 0, 1, 2; p2(a)^0, p2(6)^0,

K(a) = K(b). Let {un(x)} and {p„} be the sets of characteristic functions and

corresponding characteristic values of the boundary value problem

(L + ixju = 0,      u(a) = u(b),      u'(a) = u'(b).

Then S{L, u„(x), p„; (a, b)} is a conservative system. If f(x) G-B^"' {L; [a, b]},

that is, if /(*)GC'">[o, 6] and Lnf(a)=L"f(b), DL"f(a) =DL"f(b), n = 0, 1,

(16) An-^U/iirw)}1'2 when
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2, • • • , and if
lim inf V[Lkf(x)\ = 2K,

t,—100

then
IK

f{x)  — fnU„(x).
n=0

Here we assume Ai, A2, T2, and D2, and want to conclude that A3 to A6

hold. In the present section V[g] is to be determined according to the defini-

tion for periodic functions. The available information concerning the solutions

of the boundary value problem is quite precise in the case of equations with

periodic coefficients and only slightly less so in the general case. We refer to

E. L. Ince [l, §§10.8, 10.81, and 11.4], where the reader will find further

references to the literature. In the notation of the preceding section we obtain:

(1) The characteristic values are real, non-negative but need not be simple.

(2) p„=[(» + l)/2]+0(l).
(3) \un{x)\ =U,a£x£b,n = 0, 1, 2, • • • .
(4) V[uo(x)] = 0, F[M2m-i(x)] = V[u2m(x)] = 2m.

(5) { [P(x) ]1,2un(x)} is complete in L2(a, b).

If K{x) and G(x, X) are even periodic functions of period (b—a), the re-

mainder term in (2) can be replaced by 0(1/«) and (3) can be replaced

by formulas of type (3), in §2.5 with sine replaced by cosine when n is

even(16). The properties as listed are, however, more than sufficient to

prove that A3 to A6 are satisfied so that 5 is a conservative system. Since

F = Bi"){L; [a, b]} by Theorem 7, and M{N)=2K by (4), Theorem 11 is

proved.

The simplest of all operators satisfying the conditions of Theorem 11 is

L=D2. In this case the theorem reduces to Theorem I of Polya and Wiener.

A less trivial instance is given by the operator of Mathieu

L = D2 — (A + B cos 2x)

to which corresponds expansions in terms of the functions of the elliptic cyl-

inder.

The remaining sections of the chapter will be devoted to special instances

of singular and semi-singular operators.

2.7. The Legendre operator. We consider the case

(2.7.1)        L[y] = (1 - x2)D2y - 2xDy,      a = - 1,      b = + 1.

The end points of the interval are singular and we find that R(x, 0; X)

= — (X/2) log (1 — x2)—> =o when x—*+ 1. It follows that the problem is of type

T3. The corresponding singular boundary value problem
- \

(16) It is not difficult to show that similar formulas hold also in the general case considered

in §2.6. We have merely to replace p„z by p„2-f-cr>„ where <£„ is a suitable phase angle, determi-

nable with an error which is 0(1 /n). Property (3) is an immediate consequence of such formulas.
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(2.7.2) D[(l - x2)Du] + ixu = 0,   w(x)/log (1 - x2)     0, x^+1

has as its characteristic functions the Legendre polynomials Pn(x) with cor-

responding characteristic values «(«+l), « = 0, 1, 2, • • • (17). We take

un(x) = (w-r-(l/2))1/2P„(x). We shall prove that the system S\L, w„(x), /u„;

( — 1, 1)} is conservative. We know to start with that Ai, A2, T3, and D3 are

satisfied. It is well known that A3 holds and so does obviously A4, except for

that fact that the least pn is zero. This is immaterial, however(18). We have

|P»(x)| £1, |-P»(x)| ^w(«+l)/2, so that A6and E3 are satisfied. Further the

« zeros of Pn(x) are all located in ( — 1, 1) and the maximal distance between

consecutive zeros is 0(1/«) so that A6 is valid. Thus the system is actually

conservative and Theorem 9 holds for the corresponding class F.

We have now to determine what functions are represented in [ — 1, l] by

expansion of the form

CO CO

/ . anLn (x),       2~2 n'n I a* I < 00
n-0 1

for all m, a„ being real. It is obvious that the series as well as all derived

series converge uniformly in [ —1, l] so that f(x) GC(00) [— 1, l]. Conversely,

if /(x) G Cm [ — 1, 1 ] so do all its L-transforms. From this we conclude readily

that /(x) G F. Hence we have shown that

(2.7.3) F{D(l-x2)D, (n+(l/2)y*Pn(x), »(»+l); (-1, 1)}=C<»>[-1, l].

This fact gives the following formulation of Theorem 9 for the Legendre

operator:

Theorem 12. If L = (1 -x2)U>2-2xZ), /(x) GC<00) [-1, l], and lim inf^M

V[Lkf(x) ] = N, then f(x) is a polynomial of degree N. Conversely, every real

polynomial of exact degree N has the property V[Lkf(x) ] = N for all large k.

In order to prove the converse, we merely express the given polynomial

in terms of Legendre polynomials. The expression will involve the term Pn{x)

with a coefficient different from zero. By (2.4.4) V[Lkf(x) ] — N for all large k.

Since Lhf{x) is also a polynomial of degree N, we must have F[L*/(x)] =N

for all large k.

Theorem 12 has also been proved by Szegö [4, Theorem C] by a different

method.

(") The proof of this statement goes as follows. The only solution u{x) satisfying the bound-

ary condition at x = l is a multiple of F(a-\-\, —a, 1, (1 —x)/2) where a(a + l) =fi. This solution

becomes logarithmically infinite at x= — 1 unless a is an integer when it reduces to Pn{x).

(18) The fact that nt> = 0 means merely that the case N = 0 is not covered by Theorem 9.

But if N = 0<1 we can still conclude that/(x) =a+bx and since Lk(a+bx) = ( — 2)kbx, we must

have 6 = 0. Hence Theorem 12 is also valid for N=0. A similar argument takes care of the other

cases encountered below in which the least characteristic value is zero.
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2.8. Jacobi operators. Analogous results can be proved for the Jacobi op-

erator

(2.8.1) L = (1 - z2)Z>2 + [ß - a - (a + ß + 2)x]D

for the interval ( — 1, 1). Here the end points are again singular. A simple

calculation shows that R(x, 0; X)—»°o when x—>1 if and only if a — 0, and

when x—* — 1 if and only if ß = 0. Thus the problem is of type T3 if and only

if a 2:0, ß — 0. We shall suppose a > 0, ß > 0, since the limiting case a = 0, ß = 0,

reduces to Legendre's operator(19). The corresponding singular boundary

value problem can then be formulated as follows:

(2.8.2) (L + p)u = 0,   u(x){l - x)a{\ + xY-^0,   x-> ± t\

since the calculation shows that (1— x)"(l-\-x)ß y(x; 0, X) is bounded away

from zero and infinity in ( — 1, 1). The solutions are given by the Jacobi

polynomials uH(x) =AnP^'^(x), ßri = n(n~\-a-\-ß-\-'Y), where An is a normaliz-

ing factor. The reader will find in the treatise by Szegö [5, §§3.1, 7.32, and

8.9], the necessary information regarding Jacobi polynomials required to

show that S{L, un(x), pn; ( — 1, 1)} is a conservative system. We show as in

§2.7 that the corresponding set F of admissible functions is identical with

C<"»[-1,1].
It follows that Theorem 12 remains valid if we replace the Legendre opera-

tor by the general Jacobi operator (2.8.1) provided a = 0, ß = 0. Professor

Szegö has kindly informed me that the theorem actually remains true for

a> — 1, |6> — 1 and that this can be proved both by his method used in [4]

and by a suitable modification of mine. We note, in particular, the case

a=ß= —1/2 which leads to the polynomials of Tchebycheff. By his method

Szegö is also able to prove that if a and ß are arbitrary real numbers, then the

assumptions f(x) GC(a>) [ — 1, l] and lim infk^x V[Lkf(x) ]= N imply that f(x)

is a polynomial of degree at most N-\-M{a, ß) where M(a, ß) is an integer

depending only upon a and ß. Detailed proofs will be presented in a later note

in this series.

2.9. The Hermite and Hermite-Weber operators. We consider next the

two operators

(2.9.1) U = D2-2xD,      L2 = D2-x\

which we refer to as the Hermite and Hermite-Weber operators respectively.

The interval (a, b) will be (— °°, oo). Since

(2.9.2) e*2/2Z.2(e-*2'2y) = (£, - l)y,

the two operators can be treated simultaneously. The Hermite-Weber case

(19) The cases a = 0, ß>0 and «>0, ß = 0 can also be handled by the same method. One of

the powers occurring in (2.8.2) should then be replaced by a logarithm.



490 EINAR HILLE [November

is easier to handle directly, but the final result is more striking if expressed

in terms of the Hermite operator.

We concentrate the attention on Z,2. The point at infinity is singular and

R(x, 0; X)—*» when \x\ —for X>0. The problem, therefore, is of type T3.

The function y(x, 0;X) is a constant multiple of D„(21/2x)+Z>„( — 21/2x) where

Dn is the parabolic cylinder function of Whittaker and tt— — (l+X)/2. For

large values of | x

Watson [6, §16.52

we have consequently (cf. E. T. Whittaker and G. N.

)

(2.9.3) y(x, 0; X) = B(\) \ x\^-»i* exp [ x2/2]{l 4- o(l)}.

The singular boundary value problem

(2.9.4) (D2 4- ix - x2)u = 0, u(x) I x|(1-X)'2 exp [- x2/2] -> 0, | x\ -> »,

has for solutions the Weber-Hermite functions(20)

un{x) = [7r1'22"«!]-1'2(- l)»c*,/*Z)"(«-*,)i      Mn = 2« 4- 1.

It is well known that this system is complete in L2( — oo , «>). Condition A5 is

fulfilled since(21)

(2.9.5) I un(x) I = Bi,       I «„'(*) I ̂  B2w1/2.

All zeros of un(x), zeros of the wth Hermite polynomials, are real and located

in the interval (— pj2, pj2). They are densest towards the center of the interval,

but the minimum distance between consecutive zeros is of the same order as

the average distance. It follows that the conditions A3 to A6 and E3 are satis-

fied. Hence S is a conservative system and Theorem 9 applies to the corre-

sponding set F.

The determination of the class F is much more laborious than in the Le-

gendre case. We know that

00 00

f(x) = X) fnUn(x), JLnm\fn \  < 00
. »M"0 , 71=1

for all m. The series is uniformly convergent in the infinite interval by

virtue of (2.9.5) and the terms tend to zero as |*|—»«>. It follows that

f(x) (ECo0> [— °°,   °° ] where the subscript 0 indicates that f(x)—>0 when

(20) For the proof it is enough to observe that the only solution which satisfies the boundary

condition when x—>» is a multiple of Dy(2ll2x), v = (p — \)/2, and that this solution, as is seen

from its asymptotic representation, does not satisfy the boundary condition for x—>— oo unless

n is a positive odd integer.

(21) Better estimates are available: For the first inequality see Szegö [5, Theorem 8.91.3].

The second inequality follows from the first combined with formula (2.9.6) below. For the

properties of Hermite polynomials used in this discussion see also §§5.5, 5.7, 6.31, and 6.32 of

Szegö'streatise. ••>.' '•: < •>'• ■ ■
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|#|—»». It is obvious that all L-transforms also belong to Co°'[— », co ].

But much more can be asserted.

To this end we note that/(x)EF implies x /(x) and /'(x) EF. This is a

consequence of the relations

xu ( x) "1
(2.9.6) '} = -2-^{n^u^{x) ± (» + l)1/2«„+1(x)},

un{x)j

which in their turn follow from the recurrence formulas for Hermite poly-

nomials plus the relation HI (x) = In Hn-i(x). Hence

XflX\\   =   -2~W2Z [(» + l)1/2/,+l ± «1/2/n-l]«„(x),

and these series are clearly elements of F. By induction we show that

xm/(4)(x) £F for every k and m. But this implies xmf(k)(x) GCq0) [— °°, oo ] for

all k and m.

Conversely, suppose that xmfw(x) GCq0) [— oo, oo ] for all k and m. This

implies that xmLhf{x) has the same property and consequently Lkf(x)

£Z,2( — oo, oo) for every k. But if g(x) is a function satisfying the same condi-

tions as/(x), an application of Lagrange's identity combined with the bound-

ary conditions gives

/CO /% oo

g{x)L«f(x)dx = j f(x)L"g(x)dx,
-00 " —CO

and in particular

/oo oo

un(x)Lkf(x)dx = I   f(x)Lkun(x)dx = (- 1)*(2« + l)*/„.
-00 » -00

We conclude that the coefficients /„ must satisfy conditions Ci and C2 and

that/(x) EF. Consequently we have proved:

Theclass F{Z)2—x2, m„(x), 2«4-l; (— oo, co)} isthat subset of Cm [— oo, oo ]

the elements of which satisfy the boundary conditions

(2.9.7) lim  xmfw{x) = 0, k, «,= 0, 1, 2, • • • .
|x[—»00

From this we get without difficulty(22):

The class F{D2—2xD, AHHn(x), In; (— oo, oo)] is that subset of

C(0O)(— oo, oo), the elements of which satisfy the boundary conditions

(2.9.8) lim  xm exp [- x2/2]/<*>(x) = 0,  k, m = 0,1, 2, • • • .
|x|-»«

We can consequently formulate Theorem 9 as follows for the case of the

Hermite operator.

(B) A„ is a normalization factor.
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Theorem 13. Let L=D2—2x D. Let /(i)6Cn(- » , ») awci satisfy the

boundary conditions (2.9.8). // lim infi<00 T/[L*/(x) ] = N, then f(x) is a poly-

nomial of degree N. Conversely, every real polynomial of exact degree N has the

property V [L kf(x) ] = N for all large values of k.

2.10. The Laguerre operator. Our last example of a singular operator is

that of Laguerre

(2.10.1) L = xD2 4- (1 — X)D,

the interval being (0, »). The equation

(X - \)y m xy" + (1 - *)/ - \y = 0

has singular points at 0 and °o. A simple computation shows that R(x, 1; X)

—» oo at both points, so the problem is of type T3. The origin is a regular singu-

lar point with indicial equation p2 = 0.. Hence there is a solution which becomes

infinite as log (1/x) while the other solution is regular at x = 0. The point at

infinity is irregular-singular. Assuming x and X positive, we have one solution

tending to zero as x~x and another tending to infinity as x*~1ex when x—»=0.

It follows that

(x ,.x)= M(X)log(l/x){l+o(l)}, *-*0,

'      ' Ib(X)xx-V{1 + 0(1)}, X^oo.

The singular boundary value problem

(2.10.2) (L + p)u = 0,      lim-= 0,      lim u(x)x1-%e~x = 0
1—0 log (1/x) x^°°

(for every X>0) determines the Laguerre polynomials Ln(x) corresponding

to the characteristic values p„ = n, n = 0, 1, 2, • ■ • (23).

The system {e~xl2L„(x)} is complete in L2(0, =0). It was proved by Szegö

that

Since

Ln(x) I < 1, x > 0.

n—l

(2.10.3) Li(x) = - 2ZL,(x),

(23) To prove that no other solutions exist is fairly complicated. We shall merely outline an

argument which the interested reader will be able to complete. There exist two formal but

asymptotic solutions of the form x>"$i{\/x) and exx~l~'",^i(\/x), of which only the first one satis-

fies the boundary condition at infinity. The series are easily computed. If ti — n the first series

terminates and reduces to a multiple of Ln{x). For other values of m it may be summed by Borel's

method which leads to the result u(x) =xl'+lf^F{— p, —p, I, —t)e~x'dt. The behavior of the in-

tegral for small positive x is determined by that of the hypergeometric function for large /.

If ft is not zero or a positive integer, F(— n, —ß, 1, —t)=A(ji)t1' log i[l+o(l)], A{p)r*0, for

large /, and u(x) becomes logarithmically infinite when x—>0. Thus the Laguerre polynomials

are the only solutions of the boundary value problem.—For the properties of Ln(x) used in

this section, see Szegö [5, §§5.1, 5.7, 6.31, and 7.21 ].
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we get
e~xli1 LI (x) I < n, x> 0.

These inequalities show that A6 and E3 are satisfied if we take U(x) =exl2.

For later use we note the recurrence formula

(2.10.4) (« + l)Ln+1(x) + (x - 2n - l)Ln(x) + nL^x) = 0.

The zeros of Ln(x) are all real positive and the wth zero equals

Cm,n(ni + l)2(n + l)-1 where l/4^Cm,„ = 4. It follows that A6 also holds and S

is consequently a conservative system.

It remains to determine the class F. If f(x) £F then

00 00

(2.10.5) ■/(*) =  2ZfnLn(x), 2Znm\fn \  < »

for all m. Multiplying on both sides in (2.10.5) by e~xl2 we obtain a series

which is uniformly convergent in [0, °°J and the terms of which tend to zero

when x—*«>. It follows that e~xl2f(x) is continuous in [0, oo ] and tends to

zero when x—> °° . We show next that x f(x) and f'(x) must belong to F when-

ever/^) does. Multiplying both sides of (2.10.5) by x, reducing with the aid

of (2.10.4) and rearranging, we obtain the series

00

*/(*) = Z [(2» + D/n - »/«_! - (n + l)fn+1]Ln(x)
n—0

which clearly belongs to F. Similarly we obtain the series

/(*) =- z( Z f)u*)

from (2.10.5) with the aid of (2.10.3). This is also an element of F. It follows

that any function of the form xmf(k) (x) £ F and

(2.10.6) lim xme-xl2f<»(x) = 0, k, m ~ 0, I, 2, ■ • • .
X—* 00

At the origin we find of course that f(h)(x) tends to a finite limit for every k.

Conversely, if f(x) £C(0O) [0, a>) and satisfies the boundary conditions

(2.10.6), then e~xl2Lkf(x) £L2(0, =°) for every k. Using Lagrange's identity

we verify that

e-x'2Ln(x)Lkf(x)dx = (- n)%

and from this we conclude that/fx) £ F.

FÄe class F{xD2-\-(\ — x) D, L„(x), n; (0, =o)} equals the subset of

C(00) [0, oo) the elements of which satisfy conditions (2.10.6).

Theorem 14. LetL=x D2+(l-x) D. Letf(x)EC^[0, °o) and satisfy the
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boundary conditions (2.10.6). If lim inf^«, V[Lkf(x)] =N, then f{x) is a poly-

nomial of degree N. Conversely, if f(x) is a real polynomial of exact degree N,

then V[Lkf(x) ] = Nfor all large values ofk(2i).

Theorems 12, 13, and 14 give three distinct unique characterizations of

real ordinary polynomials in terms of their behavior with respect to certain

second order differential operators. This is analogous to the unique character-

ization of trigonometric polynomials by means of the operator Z>2 given by

Polya and Wiener.

2.11. Bessel operators. Our last examples will deal with semi-singular

operator problems related to the theory of Bessel functions. In this theory we

find essentially three different types of expansions, conventionally referred to

as the Bessel-Fourier, the Neumann, and the Schlömilch series. Only the first

type falls directly under our theory, but the third type is also accessible to

the methods of Polya and Wiener.

We start with the operator

(2.11.1) L = D2 + D/x - m2/x2

where m^O is fixed. We take the interval (0, 1) of which one end point is

singular and the other regular. It is easily seen that R(x, 1; X)—>» when x—>0

so the problem is of type T4. We have y(x; 1, X)-~B(X) log (1/x) or B(X)x~m

at x = 0 according as m — 0 or is greater than 0. The corresponding boundary

value problem for m >0 is

(2.11.2) (L + n)u = 0,      lim xmu(x) = 0,      G«(l) + C2«'(l) = 0,

where C\—0, C2=0, Ci+C2>0. If m = 0 the factor xm should be replaced by

[log (1/x)]-1. The problem has as its solution the set Jm(ßnx), where pn runs

through the positive roots of the equation

(2.11.3) Ci/i/„(» + C2Im(p) = 0.

If m — 0, Ct = 0, we have to add /x0 = 0 with u0(x) = 1 (25).

Using any standard text on Bessel functions, the reader will have no diffi-

culties in proving that the corresponding system 51 is conservative. We note

in particular that Z„(0, 1) = V[jm(pnx) ]=«so that M(N) = N in Theorem 9.

We shall not state the corresponding form of the theorem, but we shall de-

termine the class F.

If/(x)GFCBi"'{L; G, C2; (0, l]} then we must have

(2.11.4) Ci£«/(1) + CJ)L'f(l) = 0, n = 0, 1, 2, ■ • • ,

(24) Similar results hold for the general Laguerre operator L=xD2+(l+a— x)D, a> —1.

(26) The only solution which satisfies the boundary condition at x = 0 is a multiple of

Jm(px). The values of n are determined by the second condition. The root n = 0 figures if and

only if C2/Ci= —m. Owing to our sign restrictions, this case occurs only if m=0, Ci = 0.
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with our usual notation. At the singular end point we can write/(x) = xmg(x).

A simple computation shows that if g(x) is defined in [ — 1, +l] by the con-

vention g(—x) =g(x) then g(i)6C(X)[-l,

Suppose, conversely, that f(x) = xmg{x) where g( — x) = g(x), g(x)

GC(00) [ — 1, +1 ], and (2.11.4) is satisfied, The computation shows that Lf{x)

satisfies the same conditions. We can then apply the identity of Lagrange and

find that

Jxun(x)Lkf(x)dx = I   xf(x)Lhun(x)dx = (— pn)kfn,
o Jo

since all intermediary integrated expressions vanish at both end points of

(0, 1). It follows that the coefficients/„ satisfy the conditions Ci and C2 of

§2.1and/(*)EF.
Thus, the class F{L, AnJm(pnx), pn; (0, 1)} consists of all functions of

the form f(x) =xmg(x), satisfying (2.11.4), such that g(—x)=g(x) and g(x)

ec<->[-i, +1].
The Neumann series

(2.11.5) Za„/n(x)
n=0

does not give rise to any interesting oscillation problems for the simple reason

that in any fixed interval (0, 6) the function Jn(x) is ultimately non-oscilla-

tory since the least positive zero of Jn{x) exceeds n.

We get more interesting results for the Schlömilch series

00

(2.11.6) (/o/2) 4- Z fJo(nx)

the terms of which are characteristic functions of the operator (2.11.1) with

m = 0 corresponding to the characteristic values «2. The corresponding sys-

tem S is not admissible in the technical sense of §2.1, since the functions

{Jo(nx)} do not form an orthogonal system. But the methods employed in

the present paper nevertheless apply and lead to a result which we state with-

out proof (26).

(2

Theorem 15. Let F be the class of functions defined by the formula

g(x sin t)dt,       g{u) = (/o/2) + Z /« cos nu>
a n=l

where g(u) is any real even function of period 2tt belonging to CiX)( — », =0). Let

Nk(R) be the number of sign changes of {D2 + (l/x) D}hf(x) in the interval

(26) See E. T. Whittaker and G. N. Watson [6, §17.82], for the relation between the series

(2.11.6) and (2.11.7).
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(0, R). If
lim inf lim sup Nk(R)/R = C < *>,

t—* oo R—i0°

then g(u) is a trigonometric polynomial of degree at most Cir.

Appendix

3.1. Characteristic series representing entire functions. Polya and Wiener

[2, Theorem III], proved for periodic functions/(x) that the assumption

V[D2kf(x) ] = o(k112) implies that/(x) is an entire function. This result also ad-

mits of far reaching generalizations but cannot be true for arbitrary conserva-

tive systems. It is obviously necessary that the functions un(x) themselves are

entire. It is also necessary to have some definite information concerning the

convergency properties of the series 2~lfnUn{z) for complex values. In this di-

rection it is enough to know that a condition of the form

lim sup I /„ I exp (rp^2) = to
n-+oo

for some finite t, prevents the convergence of the series in the whole finite

plane, while on the other hand the finiteness of the limit superior for every r

implies that the series does converge in the whole plane. The matter is com-

plicated by the fact that an entire function may have a characteristic series

which is not convergent outside of the real interval [a, b) or even anywhere(27).

In addition it is desirable to have more precise information concerning the

characteristic values and the degree of regularity of the oscillations of the

characteristic functions in fixed interior intervals. It is not worth while stat-

ing here in precise form the assumptions under which we have succeeded in

extending Theorem III of Polya and Wiener. It is enough to mention that

the results apply to the operators of Legendre, Jacobi, Hermite and Laguerre.

We state without proof:

Theorem 16. The condition V[Lkf(x)]=o(k112) is sufficient in order that

f(x) =2~ln.ofn.Un{x) shall define an entire function, the series being convergent in

the finite complex plane, provided S = S{L, un{x), jxn; (a, b)} is one of the five

systems considered in §§2.7 to 2.10.

For the case of the Legendre operator, this theorem has also been proved

by Szegö ([4], special case of his Theorem D) and with a much less restrictive

condition on the rate of growth of Nk. His method would also apply to the

Jacobi case, at least for a> — 1, ß> — 1, with a similar improvement of

the rate of growth condition. His method, however, does not apply to the

Hermite, Hermite-Weber, and Laguerre operators.

(") This happens, for instance, in the case of expansions in terms of Hermite and Laguerre

polynomials, but not in the Jacobi and Legendre cases.
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3.2. Upper limits for the frequency of oscillation. It has been conjectured

(by Polya, at least for the operator D) that o(k) is the correct order in theo-

rems of the type of our Theorem 16 and that this order cannot be raised to

0(k). The latter part of the conjecture has been proved by Polya and Szegö

[4, §7]. It is very easy to verify that 0{k) is not admissible in the case of two

rather wide classes of second order operators.

Suppose first that (a, b) is a finite or semi-infinite interval and that the

coefficients pm{x) of L are polynomials. Take/(x) = l/(x — c), where c is real

and outside of [a, b]. A simple computation shows that the Z^-transform of

j{x) is a rational function whose denominator is (x — c)2k+l while the numera-

tor is a polynomial of degree at most Ak, where A is a constant depending

only upon the degree of the polynomials pm(x). It is clear that for this func-

tion V[Lkf(x)]fsAk and /(x) is not entire. If (a, b) = (— oo, oo), we take

f(x) = l/(x24-c2) instead.

If (a, 6) = ( —7T, 7r) and the coefficients pm(x) are trigonometric polyno-

mials, we have similar results. We take/(x) = 1/(2—sin x) instead. Here

Lkf(x) is the quotient of two trigonometric polynomials, the degree of the

numerator being at most Ak. Hence V[Lkf(x)] f=2Ak and/(x) is not entire.

Finally it should be observed that all the available evidence so far sup-

ports the conjecture that V[Lkf(x)] =0{k) is a necessary and sufficient con-

dition in order that an admissible characteristic series shall define an analytic

function.
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