On the direct product of Banach spaces
HTML articles powered by AMS MathViewer
- by Robert Schatten
- Trans. Amer. Math. Soc. 53 (1943), 195-217
- DOI: https://doi.org/10.1090/S0002-9947-1943-0007568-7
- PDF | Request permission
References
- S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
- D. G. Bourgin, Closure of products of functions, Bull. Amer. Math. Soc. 46 (1940), 807–815 and correction, 970. MR 2676, DOI 10.1090/S0002-9904-1940-07307-0
- James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. MR 1501880, DOI 10.1090/S0002-9947-1936-1501880-4
- Mahlon M. Day, Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 313–317. MR 3446, DOI 10.1090/S0002-9904-1941-07451-3 F. L. Hitchcock, The expression of a tensor or polyadic as a sum of products, Journal of Mathematics and Physics vol. 6 (1937) pp. 164-189. —, Multiple invariants and generalized rank of a $p$-way matrix or tensor, ibid. vol. 7 (1927) pp. 40-79. D. Milman, On some criteria for the regularity of spaces of type $({\text {B}})$. C. R. (Doklady) Acad. Sci. URSS. vol. 20 (1938) pp. 243-246.
- F. J. Murray, On complementary manifolds and projections in spaces $L_p$ and $l_p$, Trans. Amer. Math. Soc. 41 (1937), no. 1, 138–152. MR 1501894, DOI 10.1090/S0002-9947-1937-1501894-5
- Francis J. Murray, Bilinear transformations in Hilbert space, Trans. Amer. Math. Soc. 45 (1939), no. 3, 474–507. MR 1501999, DOI 10.1090/S0002-9947-1939-1501999-0
- F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, DOI 10.2307/1968693
- J. von Neumann, On infinite direct products, Compositio Math. 6 (1939), 1–77. MR 1557013
- J. Von Neumann, On a certain topology for rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 111–115. MR 1503274, DOI 10.2307/1968692 R. Oldenburger Composition and rank of $n$-way matrices and multilinear forms, ibid vol. 35 (1934) pp. 622-657.
- Rufus Oldenburger, Non-singular multilinear forms and certain $p$-way matrix factorizations, Trans. Amer. Math. Soc. 39 (1936), no. 3, 422–455. MR 1501856, DOI 10.1090/S0002-9947-1936-1501856-7
- B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), no. 2, 249–253. MR 1546121, DOI 10.1215/S0012-7094-39-00522-3 H. Weyl, The theory of groups and quantum-mechanics, translated from German by H. P. Robertson, New York, 1931.
Bibliographic Information
- © Copyright 1943 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 53 (1943), 195-217
- MSC: Primary 46.0X
- DOI: https://doi.org/10.1090/S0002-9947-1943-0007568-7
- MathSciNet review: 0007568