Some Einstein spaces with conformally separable fundamental tensors
HTML articles powered by AMS MathViewer
- by Yung-Chow Wong
- Trans. Amer. Math. Soc. 53 (1943), 157-194
- DOI: https://doi.org/10.1090/S0002-9947-1943-0008186-7
- PDF | Request permission
References
- E. Bompiani, Spazi Riemanniani luoghi di totalmente geodetiche, Rend. Circ. Mat. Palermo vol. 48 (1924) pp. 121-134.
- H. W. Brinkmann, Riemann spaces conformal to Einstein spaces, Math. Ann. 91 (1924), no. 3-4, 269–278. MR 1512193, DOI 10.1007/BF01556083
- H. W. Brinkmann, Einstein spaces which are mapped conformally on each other, Math. Ann. 94 (1925), no. 1, 119–145. MR 1512246, DOI 10.1007/BF01208647 A. Delgleize, Sur les equations de Weingarten et les espaces pseudosphériques, Bulletin de la Societé royale des Sciences de Liège vol. 4 (1935) pp. 158-161. L. P. Eisenhart, Riemannian geometry, 1926, Princeton. A. Fialkow, Einstein spaces in a space of constant curvature, Proc. Nat. Acad. Sci. U.S.A. vol. 24 (1938) pp. 30-34.
- Aaron Fialkow, Totally geodesic Einstein spaces, Bull. Amer. Math. Soc. 45 (1939), no. 6, 423–428. MR 1563998, DOI 10.1090/S0002-9904-1939-06999-1
- Aaron Fialkow, Correction to “Totally geodesic Einstein spaces.”, Bull. Amer. Math. Soc. 48 (1942), 167–168. MR 5704, DOI 10.1090/S0002-9904-1942-07634-8
- Aaron Fialkow, Conformal geodesics, Trans. Amer. Math. Soc. 45 (1939), no. 3, 443–473. MR 1501998, DOI 10.1090/S0002-9947-1939-1501998-9
- F. A. Ficken, The Riemannian and affine differential geometry of product-spaces, Ann. of Math. (2) 40 (1939), 892–913. MR 531, DOI 10.2307/1968900
- Edward Kasner, An algebraic solution of the Einstein equations, Trans. Amer. Math. Soc. 27 (1925), no. 1, 101–105. MR 1501301, DOI 10.1090/S0002-9947-1925-1501301-4 —, Separable quadratic differential forms and Einstein solutions, Proc. Nat. Acad. Sci. U.S.A. vol. 11 (1925) pp. 95-96. F. Kottler, Über die physikalischen Grundlagen der Einsteinsch Gravitationstheorie, Annalen der Physik (4) vol. 56 (1918) pp. 401-462. J. A. Schouten, and D. J. Struik, On some properties of general manifolds relating to Einstein’s theory of gravitation, Amer. J. Math. vol. 43 (1921) pp. 217-221.
- Kentaro Yano, Conformally separable quadratic differential forms, Proc. Imp. Acad. Tokyo 16 (1940), 83–86. MR 1642
- Kentaro Yano, Concircular geometry. I. Concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195–200. MR 3113 —, Concircular geometry, II. Integrability conditions of ${\rho _{\mu \nu }} = \phi {g_{\mu \nu }}$, loc. cit. pp. 354-360.
- Yung-Chow Wong, Family of totally umbilical hypersurfaces in an Einstein space, Ann. of Math. (2) 44 (1943), 271–297. MR 8187, DOI 10.2307/1968765
Bibliographic Information
- © Copyright 1943 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 53 (1943), 157-194
- MSC: Primary 53.0X
- DOI: https://doi.org/10.1090/S0002-9947-1943-0008186-7
- MathSciNet review: 0008186