Foundations of a general theory of birational correspondences
HTML articles powered by AMS MathViewer
- by Oscar Zariski
- Trans. Amer. Math. Soc. 53 (1943), 490-542
- DOI: https://doi.org/10.1090/S0002-9947-1943-0008468-9
- PDF | Request permission
References
- Heinrich Grell, Beziehungen zwischen den Idealen verschiedener Ringe, Math. Ann. 97 (1927), no. 1, 490–523 (German). MR 1512373, DOI 10.1007/BF01447879 W. Krull, Idealtheorie, Ergebnisse der Mathematik und ihrer Grenzgebiete, IV 3. —, Dimensionstheorie in Stellenringen, J. Reine Angew. Math., vol. 179 (1938).
- Saunders Mac Lane and O. F. G. Schilling, Zero-dimensional branches of rank one on algebraic varieties, Ann. of Math. (2) 40 (1939), 507–520. MR 158, DOI 10.2307/1968935 F. K. Schmidt, Über die Erhaltung der Kettensätze der Idealtheorie bei beliebigen endlichen Körpererweiterungen, Math. Zeit. vol. 41 (1936). B. L. van der Waerden, Algebraische Korrespondenzen und rationale Abbildungen, Math. Ann. vol. 110 (1934).
- Oscar Zariski, Some Results in the Arithmetic Theory of Algebraic Varieties, Amer. J. Math. 61 (1939), no. 2, 249–294. MR 1507376, DOI 10.2307/2371499 —, The reduction of the singularities of an algebraic surface, Ann. of Math. vol. 40 (1939).
- Oscar Zariski, Algebraic varieties over ground fields of characteristic zero, Amer. J. Math. 62 (1940), 187–221. MR 611, DOI 10.2307/2371447
- Oscar Zariski, Pencils on an algebraic variety and a new proof of a theorem of Bertini, Trans. Amer. Math. Soc. 50 (1941), 48–70. MR 4241, DOI 10.1090/S0002-9947-1941-0004241-4
- Oscar Zariski, A simplified proof for the resolution of singularities of an algebraic surface, Ann. of Math. (2) 43 (1942), 583–593. MR 6851, DOI 10.2307/1968814
- Oscar Zariski, Normal varieties and birational correspondences, Bull. Amer. Math. Soc. 48 (1942), 402–413. MR 6451, DOI 10.1090/S0002-9904-1942-07685-3
Bibliographic Information
- © Copyright 1943 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 53 (1943), 490-542
- MSC: Primary 14.0X
- DOI: https://doi.org/10.1090/S0002-9947-1943-0008468-9
- MathSciNet review: 0008468