On generalized convex functions
HTML articles powered by AMS MathViewer
- by E. F. Beckenbach and R. H. Bing
- Trans. Amer. Math. Soc. 58 (1945), 220-230
- DOI: https://doi.org/10.1090/S0002-9947-1945-0013169-9
- PDF | Request permission
References
- E. F. Beckenbach, Generalized convex functions, Bull. Amer. Math. Soc. 43 (1937), no. 6, 363–371. MR 1563543, DOI 10.1090/S0002-9904-1937-06549-9
- Henry Blumberg, On convex functions, Trans. Amer. Math. Soc. 20 (1919), no. 1, 40–44. MR 1501114, DOI 10.1090/S0002-9947-1919-1501114-0 W. C. Graustein, Introduction to higher geometry, New York, 1930.
- Georg Hamel, Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung: $f(x+y)=f(x)+f(y)$, Math. Ann. 60 (1905), no. 3, 459–462 (German). MR 1511317, DOI 10.1007/BF01457624 G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge, England, 1934.
- J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math. 30 (1906), no. 1, 175–193 (French). MR 1555027, DOI 10.1007/BF02418571
- Forest Ray Moulton, A simple non-Desarguesian plane geometry, Trans. Amer. Math. Soc. 3 (1902), no. 2, 192–195. MR 1500595, DOI 10.1090/S0002-9947-1902-1500595-3 W. Sierpiński, Sur les fonctions convexes mesurables, Fund. Math. vol. 1 (1920) pp. 125-129.
Bibliographic Information
- © Copyright 1945 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 58 (1945), 220-230
- MSC: Primary 27.0X
- DOI: https://doi.org/10.1090/S0002-9947-1945-0013169-9
- MathSciNet review: 0013169