The theory of Boolean-like rings
HTML articles powered by AMS MathViewer
- by Alfred L. Foster
- Trans. Amer. Math. Soc. 59 (1946), 166-187
- DOI: https://doi.org/10.1090/S0002-9947-1946-0015045-5
- PDF | Request permission
References
- Alfred L. Foster, The idempotent elements of a commutative ring form a Boolean algebra; ring-duality and transformation theory, Duke Math. J. 12 (1945), 143–152. MR 12264
- Alfred L. Foster and B. A. Bernstein, Symmetric approach to commutative rings, with duality theorem: Boolean duality as special case, Duke Math. J. 11 (1944), 603–616. MR 10545
- M. H. Stone, Postulates for Boolean Algebras and Generalized Boolean Algebras, Amer. J. Math. 57 (1935), no. 4, 703–732. MR 1507106, DOI 10.2307/2371008
- Alfred L. Foster and B. A. Bernstein, A dual-symmetric definition of field, Amer. J. Math. 67 (1945), 329–349. MR 12275, DOI 10.2307/2371949 B. L. van der Waerden, Moderne Algebra, Springer.
Bibliographic Information
- © Copyright 1946 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 59 (1946), 166-187
- MSC: Primary 09.1X
- DOI: https://doi.org/10.1090/S0002-9947-1946-0015045-5
- MathSciNet review: 0015045