Capacity of sets and Fourier series
HTML articles powered by AMS MathViewer
- by R. Salem and A. Zygmund
- Trans. Amer. Math. Soc. 59 (1946), 23-41
- DOI: https://doi.org/10.1090/S0002-9947-1946-0015537-9
- PDF | Request permission
References
- Arne Beurling, Ensembles exceptionnels, Acta Math. 72 (1940), 1–13 (French). MR 1370, DOI 10.1007/BF02546325 O. Frostman, Potentiel d’équilibre et capacité des ensembles, Lund, 1935. Ch. J. de la Vallée Poussin, Capacité des ensembles, Paris, 1937. R. Nevanlinna, Eindeutige analytische Funktionen. G. Polya and G. Szegö, Ueber den transfiniten Durchmesser, J. Reine Angew. Math. vol. 165 (1931).
- R. Salem and A. Zygmund, The approximation by partial sums of Fourier series, Trans. Amer. Math. Soc. 59 (1946), 14–22. MR 15538, DOI 10.1090/S0002-9947-1946-0015538-0
- A. Zygmund, Smooth functions, Duke Math. J. 12 (1945), 47–76. MR 12691 —, Trigonometrical series, Warsaw, 1935.
- R. Salem, On a theorem of Zygmund, Duke Math. J. 10 (1943), 23–31. MR 7542
Bibliographic Information
- © Copyright 1946 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 59 (1946), 23-41
- MSC: Primary 42.4X
- DOI: https://doi.org/10.1090/S0002-9947-1946-0015537-9
- MathSciNet review: 0015537