
ON THE ASSOCIATE AND CONJUGATE SPACE FOR
THE DIRECT PRODUCT OF BANACH SPACES

BY

NELSON DUNFORD AND ROBERT SCHATTEN«

The direct product Ei®nE2 of two Banach spaces Eu E2 has been defined

before [5](2) as the closure of the normed linear set $In(Ei, E2) (that is, linear

set 3í(£i, £2) of expressions 22Â-ifi®4>i, hi which N is a norm) [5, p. 200,
Definition 1.3] and [6, p. 499, b].

Let N denote a crossnorm whose associate N' is also a crossnorm [5,

p. 208]. Then, the cross-space Ei®nEí determines uniquely a "conjugate

space" (Ei®NE2)' and an "associate space" Ei ®n'E2 . It is shown [5, p. 205]

that Ei ®N'E2 is always included in (Ei®nE2)'. While there are many known

examples of cross-spaces for which the associate space coincides with the con-

jugate space—for example, the cross-space generated by the self-associate

crossnorm constructed for Hubert spaces by F. J. Murray and John von

Neumann [3, p. 128] and [5, pp. 212-214]—it is not without interest to con-

struct a cross-space for which the associate space forms a proper subset of

the conjugate space (§§1-2).

For reflexive Banach spaces Ei, E2 (that is, such that 25/' =Ei), and a

reflexive crossnorm N [6, p. 500], the reflexivity of Ei®^E2 implies

(Ei®nE2)'—Ei ®N'Ei [6, p. 505]. Thus, the finding of the exact conditions

imposed upon reflexive Banach spaces and a reflexive crossnorm for which the

resulting cross-space is reflexive is closely connected with the above-men-

tioned problem.

In §1, we show that for a "natural crossnorm" N, L'®nL' is a proper

subset of (L®NL)'. In §2 we prove that for a "natural crossnorm" N, V®ud'

is a proper subset of (/ ® nI) '• In §3 we show that for any p > 1, lp ® nIi is not

reflexive, provided l/p + l/q = 1 and N denotes the least crossnorm whose as-

sociate is also a crossnorm [5, p. 208]. The last one is reflexive [6, p. 501 ].

1. Let Z,(i) and L$) denote the Banach spaces of all functions integrable

in the sense of Lebesgue on the interval Ogsgl, and on the square 0^s,

t ^ 1 respectively. Similarly, let M(u and M<2> denote the Banach spaces of all

functions Lebesgue measurable and essentially bounded on the interval

OiSs^l and the square 0^s, f gl respectively [l, pp. 10, 12]. We recall that
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for      f(s) G ¿<d,        ||/(5)|| =  f    | f(s) | ds;
J 0

for   f(s, t) e Lm,     ||/(5, 2)|| =  f     f    | f(s, t) | <fc¿2;
«/ o    •'0

for      F(s) E Mw,      \\F(s)\\ = ess. l.u.b. | F(s) | ;
Oásál

for   F(s, t) GMm,   \\F(s, t)\\ = ess. l.u.b. | F(s, t) \
OSs, <Sl

(ess. l.u.b. stands for "essential least upper bound").

For fi(s)GL(i), 0j(<)GI(i) let the expression XXi/»(s)®0<(¿) denote the
function ^,i.Ji(s)cbi(t). The last function naturally belongs to ¿(2). For an

expression S"-i/;(s) ®c/><(2) in 31(1,a), ¿(d) we define

n ( è /m ® ut)) = r rx i ¿ /.w^w
\ .'=1 / J 0     o' 0    I  »=1

dsdt.

Lemma 1.1. N is a crossnorm in 2I(¿(d, ¿(d) [5, p. 205].

Proof. The proof is elementary. In particular, the invariance of the norm

under equivalence can be readily verified, since the equivalence of two expres-

sions Z?-i/i(5)®0i«, TT-iSi(s)®ii(t) implies T.7-i/i(s)<tx(t)=T,?-igAs)íj(t)
for almost every s and almost every 2.

Lemma 1.2. L{i)®nL(d=L (2).

Proof. Obviously, 3Ly(¿(i), ¿(d)C¿(2). Since ¿(2) is complete, the closure

of 2Ijv(¿(i), ¿(d), that is, ¿a)®A¿(i)C¿<2). On the other hand, it is well

known that functions in ¿(2> can always be approximated in norm by a se-

quence of expressions {£&i/t(B,00</>t(B)(2)}, where /*(")(s)G¿(1), <¿*<»>(2)

G¿(d- This completes the proof.

Lemma 1.3. ¿«Z =-M"») for * = 1, 2.

Proof. The proof may be found in [l, p. 65].

Lemma 1.4. (¿(i)®2v¿(i))' = .M'(2).

Proof. This is a consequence of Lemmas 1.2 and 1.3.

Theorem 1. ¿a' ®jv¿(d' is a proper subset of (¿(i)Cg»jv¿(1))'.

Proof. Clearly, Lai ®i\r¿(i/ C(¿(d®ív¿(1))' [5, p. 205]. Due to Lemmas
1.3 and 1.4, the last statement may be expressed as M\d®N'M\dC.M'(2). We

shall prove our theorem by showing that not every function in Mm can be

approximated in norm by a sequence of functions Ei"P»(n'Gs)$>.(n)(¿)} where

Fj(n)(s), f><(n)(2) belong to M<i). We shall show in particular that the func-
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tion K(s, t) defined for O^s, f = l as follows: K(s, f) = l if s^t, otherwise

K(s, f)=0,.cannot be approximated in norm by such a sequence of expres-

sions. Suppose to the contrary, that

lim ess. l.u.b.
n->»       OSs.iSl

. (n)

22Fr'(s)*r(t)-K(s,t) = 0.

Put

,<»> (n).

Kn(s,t) = 22 F<¡   W*¡\'(t)-K(s, t)
i—1

Thus, there exists a set EQ of points (s, t) in the square O^s, fál, and a

sequence {e»} of positive numbers such that :

(a) wEo = 0,

(b) €„-*0,
(c) \Kn(s, t)\ £(nfor(s,t)<£Eo.

Let H(s, t) denote the characteristic function of E0. Its Lebesgue integral over

the square 0 gs, f ̂  1 is 0. Fubini's theorem [7, p. 77] gives

J o   \J a
H(s, t)dt\ds = 0.

Therefore, there exists a linear set S of measure 1 in the interval 0 5= s ^ 1 such

that, for every SqÇElS,

J«/ o
E(so, t)dt = 0.

The last statement implies for each s£S the existence of a linear set T, of

measure 1 in the interval 0 ^f ^ 1 such that s£Sand tÇ_T, implies H(s, f)=0,

consequently (s, t)(£E0, and therefore |.rv„(s, t)\ ^ e„ for « = 1, 2, • • • . This

proves the existence of a linear set S in 0 ^ s á 1 r of measure 1, such that, for

every soG.S,

(1) lim ess. l.u.b.
n->»        OglSl

22Fln)iso)^:\t)-K(s0,t) = 0.

Let 5DÎ denote the closed linear manifold determined by all $¡M(t);

« = 1, 2, 3, • • • ; i = l, 2, ■ • ■ , p„. Clearly, SDÎ is separable, and a subset of

Ma). For a fixed point j0£5,22i-iFiM(so)$i(n)(t) isa function of one varia-

ble t, 0^f iSl, and obviously belongs to 9Jc. Since SD? is closed, K(s0, f)£59î by

virtue of (1). Furthermore, for s0CHS, SiES, and so s^Si,

ess. l.u.b. | K(so, t) - K(su f) | = 1.
Oáígl

Thus, 3D? contains a "continuum number" of elements K(so, t) whose "dis-
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tance" from each other is 1. The last implication contradicts the separability

of SDÎ [2, p. 126]. This completes the proof.

2. Let / denote the space of all sequences of real numbers {x<} for which

Zi-il*«! < °°i an(l m tne space of all bounded sequences of real numbers [l,

pp. 11-12 ]. Let a denote the Banach space of all infinite matrices (o<,,-) for which

SíliSí" 11 a»'.j'l < °° ■ and 6 the Banach space of all bounded matrices (£>,-,/). We

recall that
CO

for   (xi, xt, • • ■) El,     ||(xi, x2, • • • )|| = Z | Xi | ;
<-i

for   («i, at, • • • ) £.m,    ||(en, a2, • • • )|| =   sup    | a,|;
1S«00

CO 00

for (tnj G a, || (ajiy)|| = Z Z I a*.i I ;
<—i y-i

for (bi„)eb, \\(bi.¡)\\ =   sup   \bi,}\.     .

Obviously I is equivalent to a [l, p. 180]. Similarly, fj is equivalent

to m. For (xi(*\ x2(*\ • • • ) G I, (yic*\ yiw, • • • ) G h the expression

Zï-ifo^« Xiw, • ■ ■ )®(yi(t>, y2(*\ • • ■) will mean the infinite matrix

(a,-,,-) of rank not greater than n, where »<,/""¿5-i*<{*>y/<*>. Clearly, two ex-

pressions Z2-i(*i(i>, *»<«, • • • )®(yt<*\ y*<*>, ■ • ■ ), Zr.i(xi<*>, x2<*\ • • • )
®(yi(*\ $iw, • • • ) are equivalent [5, p. 196] if and only if Z*-i5C»(t>yi(*)

«fi,-i*<<wí/{*). for i,j = l, 2, • • •   [5, p. 202, Theorem 2.1]. Let

-T / A . w    ik) (k)    m \     A A
N[ Z (*i . *2 . • • • ) ® (yi >y* -•■•)  =LL

\ *-i /    »-i j~i
CO CO

»-i y-i

Lemma 2.1. 7Y ¿5 a crossnorm in 3l(Z, 2") [5, p. 205].

Proof. The proof is elementary. In particular, the previous remark shows

that the norm is invariant under equivalence.

Lemma 2.2. l®ifl = a.

Proof. Clearly, every matrix with a finite number of rows in a, and every

infinite matrix (a,-,,)Go is the limit of the sequence of finite rowed square

matrices (a<,,)ílí;2;!;;;ñ; » = 1, 2, • • • . Thus, ü(ZI®nI. On the other hand,
every element of 2l(Z, 2") belongs to a. Since a is complete, 1®nIC.ü. This com-

pletes the proof.

Lemma 2.3. (l®Nl)' = a' = b.

Proof. The proof is analogous to the case I' = m [l, p. 97].

Is** y i
k-l
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434 NELSON DUNFORD AND ROBERT SCHATTEN [May

22î-i(
For  (ai(*\ o¿iw, • ■ ■ )Em,   (/3i(*\ ß2w, • • • )£m,  let the expression

«i (*) a2 (*) )®ißilk\ ß2w, ■ ■ • ) in 21 im, m) denote the infinite

bounded matrix (i,-,;) of rank not greater than « where bi,j=22t-iOHwßi(-k).

Lemma 2.4. (l®Nl)'^T®N4' = m®N>m.

Proof. This is a consequence of [l, p. 97] and [5, p. 205].

Theorem 2. l'®Nd' is a proper subset of (1®nI)'.

Proof. It is sufficient to show that m®N>m is a proper subset of f) (Lemmas

2.3, 2.4), or that not every bounded matrix can be approximated by a se-

quence of matrices of finite rank. We shall show that the bounded infinite

matrix (of,;), where (5f,;) = l if, and only if, i=j, otherwise 5f,; = 0, cannot

be approximated by a sequence of bounded matrices of finite rank, that is,

does not belong to m®N>m. To see that, we notice first that every bounded

matrix (bi,¡) represents a linear transformation T from I into m. Let

ih, h, ■ • • )&. Put T(h, h, ■ ■ ■ ) = (mi, mi, ■ ■ ■ ) where mi=22?-ibi.jli- We
prove

(IB if

By definition

r||| = sup | &,-.,-]

T\\\aa SUP \\T(h,l2,

denotes the bound of T).

The last number may be written as

sup        sup
Idi.Zs. - ■ 01-1    i i-1

sup        sup
i       Idl.îj.-••)!=!

22 h.ih
¿-i

For a fixed i, 227-i^i.^i denotes a linear functional on / [l, p. 97]; the bound

of this linear functional is

sup
|CW«,...)|-i

22 hji
3-1

= sup
j

bi.A

Substituting the last number in the previous equation, we get

||  r|||   = SUp  SUp  I if.; I   = SUp   | if,;|,
i 1 t,j

or the norm of the bounded matrix (if,;) is equal to the bound of the linear

transformation T it represents.

It is easy to see that if the matrix is of finite rank, the corresponding linear

transformation T is finite-dimensional. The linear transformation T¡ corre-

sponding to the matrix (5,-,,) is obviously not completely continuous, there-

fore it can not be considered a limit of linear transformations whose ranges
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are finite-dimensional [l, p. 96]. Therefore, (5,-,,) is not a limit of bounded

matrices of finite rank. This completes the proof.

3. Theorem 3. Let N denote the least crossnorm whose associate is also a

crossnorm [5, p. 208]. If p>l, l/p + l/g = l and lp denotes the Banach space of

all sequences of real numbers {x,-} for which Z<" i|x»l p< °° [l, p. 12], then

lp®Nlq is not reflexive.

Proof. Let <3?i, «¡?2, 4?3, • • • and <j>i, <j>2, <f>3, ■ • ■ denote the sequence of

elements (1, 0, 0, • • • ), (0, 1, 0, • • • ), (0, 0, 1, • • • ) in lp and lq respec-

tively. Clearly, <l?,(ç/>,-) =0 if * y^j, and $<(*<) = 1 ; i,/ = 1, 2, • • • . With a fixed
sequence of real numbers {X¿} converging towards 0, consider the sequence

of expressions

2 3

Xi$i ® <t>i,     Z a<*< ® </>.-.     Z *<*< ® <*>.->••• •
<-i «-i

First we prove, if n >m, N(£Z„m\i$i®<f>i) =maxmg,s„|X,|. By definition [5,

p. 208], iV(Z?-mX,*,®c/>,)=sup|Z?_mX,*<(0)i>((!!),)| where sup, that is, the
least upper bound, is taken for all «ÊGZp, <¡f>G¿«, such that H^ILHMI ■"*•
Substituting in the last equation $,• for $ and <j>i for <p, we obtain

2V(¿r-.Ai*<®*í) è I X.-l. Thus,

A^( Z X,-4>, ® 4>i)  ^   max   | X.-1.

On the other hand, if $>GZp and í> = Xií>i+x2f>2+ • • • , then ||#j| =1 if, and

only if, Z<" il*»'! p — l- Similarly, if 0G/4 and c/> = yic/>i+y202+ • • • , then
||*||=1 if, and only if, Z«Li|y<|«-l. -Furthermore, A^Z?-».*.^®*.)
= sup|Z"-m^«;ii:t3'<| where sup is taken over the set of all sequence? of real

numbers {x,}, {y,}, for which Zt-il*«! p=l anQl Z<-i|y«'|q= !• Holder's
inequality gives:

n(¿ X<*< ® <j>l) !¿ snpí( max   |X<|V ¿I *t \p)  Y Z I V<\ç)    }
\i-m / (A mS*Sn /   \,_m /        \ i-m /       )

where sup is as stated in the previous equation. Since

tl^N Zl*.|p = i,      ¿1*1«- Ë|y«l«-i.

n( ¿ XiQi ® <h)  ^  max   |x<|.

Since X,—»0, the sequence of expressions Xi$i ®4>u Z^-i^«*» ® *•> Zí-iX«*.- ®4>i,

• • •   is fundamental. Therefore, it may be considered as an element of

lp®Nlq. Its norm is obviously [5, p. 205]
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sup   | Xf |.
iáf<«

Thus, the well known non-reflexive space Co [l, p. 181 ] (co" =l' = m [l,

pp. 66-67]) of all converging towards 0 sequences of real numbers may be

considered a subspace of lp®Nlq. Since a subspace of a reflexive space is also

reflexive [4, p. 423], lj,®Nlq is not reflexive. This completes the proof.
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