ON THE ASSOCIATE AND CONJUGATE SPACE FOR
THE DIRECT PRODUCT OF BANACH SPACES

BY
NELSON DUNFORD AND ROBERT SCHATTEN(Y)

The direct product E;® yE; of two Banach spaces E;, E; has been defined
before [5](2) as the closure of the normed linear set Ax(E;, Es) (that is, linear
set A(E:, Es) of expressions ) g1fi®¢;, in which N is a norm) [5, p. 200,
Definition 1.3] and [6, p. 499, b].

Let N denote a crossnorm whose associate N’ is also a crossnorm [5,
p. 208]. Then, the cross-space E;® yE: determines uniquely a “conjugate
space” (E;®nE;)’ and an “associate space” E{ @ y-E{ . It is shown [5, p. 205]
that E{ @ x-Es is alwaysincluded in (E;® yE;)’. While there are many known
examples of cross-spaces for which the associate space coincides with the con-
jugate space—for example, the cross-space generated by the self-associate
crossnorm constructed for Hilbert spaces by F. J. Murray and John von
Neumann [3, p. 128] and [5, pp. 212-214 ]—it is not without interest to con-
struct a cross-space for which the associate space forms a proper subset of
the conjugate space (§§1-2).

For reflexive Banach spaces E;, E; (that is, such that E!’ =E,), and a
reflexive crossnorm N [6, p. 500], the reflexivity of Ei®yE: implies
(E;®@nE:)’=E{ ®x-E{ [6, p. 505]. Thus, the finding of the exact conditions
imposed upon reflexive Banach spaces and a reflexive crossnorm for which the
resulting cross-space is reflexive is closely connected with the above-men-
tioned problem.

In §1, we show that for a “natural crossnorm” N, L'®nyL’ is a proper
subset of (L®xL)’. In §2 we prove that for a “natural crossnorm” N, I’ @ y-l’
is a proper subset of ((®xI)’. In §3 we show that for any p >1, [, ®nl, is not
reflexive, provided 1/p+1/¢=1 and N denotes the least crossnorm whose as-
sociate is also a crossnorm [5, p. 208]. The last one is reflexive [6, p. 501].

1. Let Lgy and L) denote the Banach spaces of all functions integrable
in the sense of Lebesgue on the interval 0 =s=<1, and on the square 0=y,
t <1 respectively. Similarly, let M ay and M @) denote the Banach spaces of all
functions Lebesgue measurable and essentially bounded on the interval
0<s=<1 and the square 0 <s, t=1 respectively [1, pp. 10, 12]. We recall that
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for ) ELay |G| = fo | 765)| ds;

1 1
for f(s,) €Ly, |f(s, 8| = fo fo | (s, &) | dsdt;
for F(s) € My, ||FG)|| = ess. Lub. | F(s)|;
0=s=1
for F(s, §) € M3, ”F(s, t)“ = ess. L.u.b. |F(s, ) ]

(ess. L.u.b. stands for “essential least upper bound?”).

For fi(s)ELqy, ¢:(t) ELq, let the expression Y _r,fi(s) ®¢:(¢) denote the
function Z?_,f;(s):b;(t)_. The last function naturally belongs to L. For an
expression Z{‘_lf;(s) ®¢:(t) in A(L ay, Lay) we define

LeMMA 1.1. N is a crossnorm in A(Lay, Lay) [S, p. 205].

> F)ult) | dsat.

i=1

Proof. The proof is elementary. In particular, the invariance of the norm
under equivalence can be readily verified, since the equivalence of two expres-

sions Y 1 fi(s) ®i(t), Dmm1gi(s) @Y;(¢) implies D1 fi(s)pi(t) =D m1gi(s)¥:(2)

for almost every s and almost every ¢.
LeEMMaA 1.2, L(1)®NL(1) =L(2).

Proof. Obviously, Ax(Lay, Lay) CL ). Since L, is complete, the closure
of Ay(Lay, Lay), that is, Lay®nLqyCLg). On the other hand, it is well
known that functions in L) can always be approximated in norm by a se-
quence of expressions { 2%, (s):™(£)}, where fi™(s)ELq), ¢z (2)
€L ). This completes the proof.

LemMmA 1.3. L(;‘)’ =M(.') fori= 1, 2.

Proof. The proof may be found in [1, p. 65].

LemMMA 1.4, (Lg)®nLwy)' =Mea).

Proof. This is a consequence of Lemmas 1.2 and 1.3.

THEOREM 1. Luy ®n'Lay is a proper subset of (Lay®nLq)y)’.

Proof. Clearly, Lq) ®x-Lay C(Lay®~xLw)’ [5, p. 205]. Due to Lemmas
1.3 and 1.4, the last statement may be expressed as M q) @ x' M 1y C M 2y. We
shall prove our theorem by showing that not every function in M, can be
approximated in norm by a sequence of functions {Zf"F,—‘”)(s)@;(")(t) } where
F;™(s), ®;("(¢) belong to M qy. We shall show in particular that the func-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



432 NELSON DUNFORD AND ROBERT SCHATTEN [May

tion K(s, #) defined for 0=<s, t<1 as follows: K(s, t)=1 if s=<¢, otherwise
K(s, t)=0,.cannot be approximated in norm by such a sequence of expres-
sions. Suppose to the contrary, that

Pn
lim ess. Lub.| Y FiV ()& (t) — K(s, §) | = 0.
- 0Ss1S1 =1
Put

Kuls, ) = S FV (0870 — KGs, ).

Thus, there exists a set E, of points (s, #) in the square 0<s, =<1, and a
sequence {e.} of positive numbers such that:

(a) mE,= 0;

(b) &0,

(c) IK,.(s, t)I S e, for (s, t) EE,.
Let H(s, t) denote the characteristic function of E,. Its Lebesgue integral over
the square 0 <s, £ =1 is 0. Fubini’s theorem [7, p. 77] gives

fol (fol H(s, ’)d‘) ds = 0.

Therefore, there exists a linear set S of measure 1 in the interval 0 Ss <1 such
that, for every soES,

L .
f H(so, H)dt = 0.
0

The last statement implies for each sE€S the existence of a linear set T, of
measure 1 in the interval 0 £¢<1 such that s€S and ¢& T, implies H(s, ) =0,
consequently (s, £) & E,, and therefore IK,.(s, t)! <e,forn=1,2,---.This
proves the existence of a linear set S in 0 =s=1, of measure 1, such that, for
every soES,

. X (1) (n)
1) lim ess. Lub.| 2 F; (so)®; (£) — K(so, 8) | = O.

n—w 0sts1 Fay

Let M denote the closed linear manifold determined by all &;(f);
n=1,2,3,---;i=1,2,- -, p, Clearly, M is separable, and a subset of
M ). For a fixed point soE€.S, D_I*, Fi("(s0) ®;¢(¢) is a function of one varia-
ble ¢, 0 £t =<1, and obviously belongs to M. Since M is closed, K (so, £) EM by
virtue of (1). Furthermore, for s¢ES, s1E.S, and so #53,

ess. Lu.b. | K(so, ) — K(s1, 8)| = 1.
0sts1

Thus, 9% contains a “continuum number” of elements K(so, ) whose “dis-
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tance” from each other is 1. The last implication contradicts the separability
of M [2, p. 126]. This completes the proof.

2. Let I denote the space of all sequences of real numbers {x;} for which
Z{’.,l x.-] < =, and m the space of all bounded sequences of real numbers [1,
pp.11-12]. Let adenote the Banach space of all infinite matrices (a,;) for which
> lz,”.ll a;,f| < «,and b the Banach space of all bounded matrices (b;,;). We
recall that

for (m, 2 ---)E€L |(zm, 22| = 2|2l
(20

for (ah a'h"')em) ”(al’ 012,"‘)” = su Ia"l;
1S5i< o

for (a:,7)) E q, @l = 2 2| aasl;
il jeul

for (.9 €0, @ = sup | 8:;].
154,<»

Obviously I is equivalent to a [1, p. 180]. Similarly, b is equivalent
to m. For (1%, x.®, . ..) &€1l, (m®, 9®,...) &, the expression
Z’,‘_l(xl"“), 2P - Y@ (NP, ™ . ..) will mean the infinite matrix
(a:.;) of rank not greater than #, where a;,j=_p.1%:®y;®. Clearly, two ex-
pressions Z’i-l(xx"‘), 22®), . - )@ (M®), g8, - . )’Eg_‘(&(k), £®) .. )
® (71, 53, - . . ) are equivalent [5, p. 196] if and only if Y p_,x;®y;®

=> 1 &®5;® fori,j=1,2,--- [5,p. 202, Theorem 2.1]. Let
L () * (R . L I )
N(Z a8 0 %)) = S| w
ksl X faml juml | k=l

=3 3 ol

=1 el
LemMA 2.1. N is a crossnorm in %(l, 1) [5, p. 205].

Proof. The proof is elementary. In particular, the previous remark shows
that the norm is invariant under equivalence.

LEMMA 2.2. I®@nl=a.

Proof. Clearly, every matrix with a finite number of rows in @, and every
infinite matrix (@;,;)€a is the limit of the sequence of finite rowed square
matrices (a;,;)}.‘.}ﬁ;::::,’:; n=1, 2, .- -. Thus, aCI®xyI. On the other hand,
every element of ¥(l, I) belongs to a. Since a is complete, ! ® yJCa. This com-

pletes the proof.
LemMA 2.3. (IQnl)'=a’=b.
Proof. The proof is analogous to the case I’=m [1, p. 97].
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For (a1®, aa®, .- - )Em, (B1®, B2, .. .)YEm, let the expression
Dr(ea®, a®, - YR (W), By, - - - ) in A(m, m) denote the infinite
bounded matrix (b;,;) of rank not greater than # where b;,j= . 0;®3;®,

LEMMA 2.4. (IRND)' DV Qnl =mQym.
Proof. This is a consequence of [1, p. 97] and [5, p. 205].
THEOREM 2. ' @nl' is a proper subset of IQx1)’.

Proof. It is sufficient to show that m ® x-m is a proper subset of b (Lemmas
2.3, 2.4), or that not every bounded matrix can be approximated by a se-
quence of matrices of finite rank. We shall show that the bounded infinite
matrix (d:,;), where (8;,;) =1 if, and only if, =7, otherwise §;,;=0, cannot
be approximated by a sequence of bounded matrices of finite rank, that is,
does not belong to m ® ym. To see that, we notice first that every bounded
matrix (b;,;) represents a linear transformation T from ! into m. Let
(hylay -+ - )ELPut Ty ba, - - - ) =(my, ma, - - - ) where m;=2 ;2 1b;,i. We
prove

Il || = sup | 8,5 (l ||l denotes the bound of T).
¥

By definition

NTll= sup || TG,
IGuL %, -- )=t

The last number may be written as

2 bi il

=1

> b.»,,-l,l.
1

o

sup sup
jlz .- l=1 ¢ -

= sup sup
4 10l )l=1

For a fixed 4, 3_;=1b:,J; denotes a linear functional on 7 [1, p. 97]; the bound
of this linear functional is

0

sup bs, ib;
1GLe, .. )I=1 | jm1

= sup | b,y
)

Substituting the last number in the previous equation, we get
Il 71l = sup sup | &is] = sup | basl,
¢ 4

or the norm of the bounded matrix (bs,;) is equal to the bound of the linear
transformation T it represents.

It is easy to see that if the matrix is of finite rank, the corresponding linear
transformation T is finite-dimensional. The linear transformation T corre-
sponding to the matrix (8;,;) is obviously not completely continuous, there-
fore it can not be considered a limit of linear transformations whose ranges
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are finite-dimensional [1, p. 96]. Therefore, (8;,,) is not a limit of bounded
matrices of finite rank. This completes the proof.

3. THEOREM 3. Let N denote the least crossnorm whose associate is also a
crossnorm [5, p. 208]. If p>1,1/p+1/g=1 and 1, denotes the Banach space of
all sequences of real numbers {x;} for which Y o, |x:|?< @ [1, p. 12], then
1, @ nl, s not reflexive.

Proof. Let &;, $,, &3, - - - and ¢y, @2, ¢s, - - - denote the sequence of
elements (1,0,0,---),(,1,0,--:),(,0,1,---)in I, and }, respec-
tively. Clearly, ®.(¢;) =0 if ¢ #j, and ®:(¢p:) =1;4,7=1,2, - - - . With a fixed
sequence of real numbers {)\;} converging towards 0, consider the sequence
of expressions

2 3
AMd ® ¢y, Z Aid: ® ¢, Z Nidi @ iy - - -

$em]l =]
First we prove, if 7 >m, NQ_r\:®:®¢;) =max,,.s.~s,.|)\.-| . By definition [5,
p. 208], N(Z}‘_,,,)\¢<I>;®¢.-)=sup|2§'.,,.7\,-<l>.~(¢)<1>(¢;)l where sup, that is, the
least upper bound, is taken for all ®&/,, ¢ El,, such that “<I>”,=”¢>” =1,
Substituting in the last equation ®; for & and ¢; for ¢, we obtain
N(Z}'_m)\;é.-@q&.-) = I)\.l . Thus,

N(E)\,“I’.‘@ 4),) = max I)\.I
S msisn

On the other hand, if #€1, and ®=x,8,+2,®P2+ - - -, then ||| =1 if, and
only if, Z“Lllxgll’:l. Similarly, if ¢ €I, and ¢ =y1p1+y22+ - - -, then
”¢” =1 if, and only if, Z:.lly.-l ¢=1, .Furthermore, N(O_t-.\:®;®¢;)
=sup|_i-mA\ix;¥:| where sup is taken over the set of all sequences of real
numbers {x:}, {y:}, for which S 2,|x:|?=1 and > ,|y:| ¢=1. Hélder's
inequality gives:

n . n 1/ n 1/
N(E)‘iq>€®¢i>§sup{ max l)x;l)(ZIx.-IP) p(Zlyilq) "}
fmm mSisn Sem f=m

where sup is as stated in the previous equation. Since

Slal s Zlalr=1,  Zlyles Zlywle=1,

S =l i1
N(Z)\;@.’@ qb.) =< max IR.-|.
[ msisn

Since \;—0, the sequence of expressions \;®; @1, 2=\ i®; @ s, D _omihi®P; D s,
is fundamental. Therefore, it may be considered as an element of
1,®nl,. Its norm is obviously [5, p. 205]
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sup | A I .
13¢<w

Thus, the well known non-reflexive space ¢, [1, p. 181] (¢¢' =V'=m [1,

pp. 66-67]) of all converging towards 0 sequences of real numbers may be
considered a subspace of I, ® xl,. Since a subspace of a reflexive space is also
reflexive [4, p. 423], I, ® v}, is not reflexive. This completes the proof.
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