ON THE ASSOCIATE AND CONJUGATE SPACE FOR THE DIRECT PRODUCT OF BANACH SPACES

RV

NELSON DUNFORD AND ROBERT SCHATTEN(1)

The direct product $E_1 \otimes_N E_2$ of two Banach spaces E_1 , E_2 has been defined before $[5](^2)$ as the closure of the normed linear set $\mathfrak{A}_N(E_1, E_2)$ (that is, linear set $\mathfrak{A}(E_1, E_2)$ of expressions $\sum_{i=1}^n f_i \otimes \phi_i$, in which N is a norm) [5, p. 200, Definition 1.3] and [6, p. 499, b].

Let N denote a crossnorm whose associate N' is also a crossnorm [5, p. 208]. Then, the cross-space $E_1 \otimes_N E_2$ determines uniquely a "conjugate space" $(E_1 \otimes_N E_2)'$ and an "associate space" $E_1' \otimes_{N'} E_2'$. It is shown [5, p. 205] that $E_1' \otimes_{N'} E_2'$ is always included in $(E_1 \otimes_N E_2)'$. While there are many known examples of cross-spaces for which the associate space coincides with the conjugate space—for example, the cross-space generated by the self-associate crossnorm constructed for Hilbert spaces by F. J. Murray and John von Neumann [3, p. 128] and [5, pp. 212–214]—it is not without interest to construct a cross-space for which the associate space forms a proper subset of the conjugate space (§§1–2).

For reflexive Banach spaces E_1 , E_2 (that is, such that $E_1'' = E_i$), and a reflexive crossnorm N [6, p. 500], the reflexivity of $E_1 \otimes_N E_2$ implies $(E_1 \otimes_N E_2)' = E_1' \otimes_{N'} E_2'$ [6, p. 505]. Thus, the finding of the exact conditions imposed upon reflexive Banach spaces and a reflexive crossnorm for which the resulting cross-space is reflexive is closely connected with the above-mentioned problem.

In §1, we show that for a "natural crossnorm" N, $L' \otimes_N L'$ is a proper subset of $(L \otimes_N L)'$. In §2 we prove that for a "natural crossnorm" N, $l' \otimes_{N'} l'$ is a proper subset of $(l \otimes_N l)'$. In §3 we show that for any p > 1, $l_p \otimes_N l_q$ is not reflexive, provided 1/p+1/q=1 and N denotes the least crossnorm whose associate is also a crossnorm [5, p. 208]. The last one is reflexive [6, p. 501].

1. Let $L_{(1)}$ and $L_{(2)}$ denote the Banach spaces of all functions integrable in the sense of Lebesgue on the interval $0 \le s \le 1$, and on the square $0 \le s$, $t \le 1$ respectively. Similarly, let $M_{(1)}$ and $M_{(2)}$ denote the Banach spaces of all functions Lebesgue measurable and essentially bounded on the interval $0 \le s \le 1$ and the square $0 \le s$, $t \le 1$ respectively [1, pp. 10, 12]. We recall that

Presented to the Society, September 17, 1945; received by the editors September 24, 1945.

⁽¹⁾ National Research Fellow.

⁽²⁾ Numerals in square brackets refer to bibliography at the end of the paper. We shall use the notation of [6].

for
$$f(s) \in L_{(1)}$$
, $||f(s)|| = \int_0^1 |f(s)| ds$;
for $f(s, t) \in L_{(2)}$, $||f(s, t)|| = \int_0^1 \int_0^1 |f(s, t)| ds dt$;
for $F(s) \in M_{(1)}$, $||F(s)|| = \text{ess. l.u.b. } |F(s)|$;
for $F(s, t) \in M_{(2)}$, $||F(s, t)|| = \text{ess. l.u.b. } |F(s, t)|$

(ess. l.u.b. stands for "essential least upper bound").

For $f_i(s) \in L_{(1)}$, $\phi_i(t) \in L_{(1)}$ let the expression $\sum_{i=1}^n f_i(s) \otimes \phi_i(t)$ denote the function $\sum_{i=1}^n f_i(s)\phi_i(t)$. The last function naturally belongs to $L_{(2)}$. For an expression $\sum_{i=1}^n f_i(s) \otimes \phi_i(t)$ in $\mathfrak{A}(L_{(1)}, L_{(1)})$ we define

$$N\left(\sum_{i=1}^n f_i(s) \otimes \phi_i(t)\right) = \int_0^1 \int_0^1 \left|\sum_{i=1}^n f_i(s)\phi_i(t)\right| ds dt.$$

LEMMA 1.1. N is a crossnorm in $\mathfrak{A}(L_{(1)}, L_{(1)})$ [5, p. 205].

Proof. The proof is elementary. In particular, the invariance of the norm under equivalence can be readily verified, since the equivalence of two expressions $\sum_{i=1}^{n} f_i(s) \otimes \phi_i(t)$, $\sum_{j=1}^{m} g_j(s) \otimes \psi_j(t)$ implies $\sum_{i=1}^{n} f_i(s) \phi_i(t) = \sum_{j=1}^{m} g_j(s) \psi_j(t)$ for almost every s and almost every t.

LEMMA 1.2. $L_{(1)} \otimes_N L_{(1)} = L_{(2)}$.

Proof. Obviously, $\mathfrak{A}_N(L_{(1)}, L_{(1)}) \subset L_{(2)}$. Since $L_{(2)}$ is complete, the closure of $\mathfrak{A}_N(L_{(1)}, L_{(1)})$, that is, $L_{(1)} \otimes_N L_{(1)} \subset L_{(2)}$. On the other hand, it is well known that functions in $L_{(2)}$ can always be approximated in norm by a sequence of expressions $\left\{\sum_{k=1}^{p_n} f_k^{(n)}(s)\phi_k^{(n)}(t)\right\}$, where $f_k^{(n)}(s) \in L_{(1)}$, $\phi_k^{(n)}(t) \in L_{(1)}$. This completes the proof.

LEMMA 1.3. $L_{(i)}' = M_{(i)}$ for i = 1, 2.

Proof. The proof may be found in [1, p. 65].

LEMMA 1.4. $(L_{(1)} \otimes_N L_{(1)})' = M_{(2)}$.

Proof. This is a consequence of Lemmas 1.2 and 1.3.

THEOREM 1. $L_{(1)}' \otimes_{N'} L_{(1)}'$ is a proper subset of $(L_{(1)} \otimes_N L_{(1)})'$.

Proof. Clearly, $L_{(1)}' \otimes_{N'} L_{(1)}' \subset (L_{(1)} \otimes_N L_{(1)})'$ [5, p. 205]. Due to Lemmas 1.3 and 1.4, the last statement may be expressed as $M_{(1)} \otimes_{N'} M_{(1)} \subset M_{(2)}$. We shall prove our theorem by showing that not every function in $M_{(2)}$ can be approximated in norm by a sequence of functions $\{\sum_{i=1}^{p_n} F_i^{(n)}(s) \Phi_i^{(n)}(t)\}$ where $F_i^{(n)}(s), \Phi_i^{(n)}(t)$ belong to $M_{(1)}$. We shall show in particular that the func-

tion K(s, t) defined for $0 \le s$, $t \le 1$ as follows: K(s, t) = 1 if $s \le t$, otherwise K(s, t) = 0, cannot be approximated in norm by such a sequence of expressions. Suppose to the contrary, that

$$\lim_{n \to \infty} \text{ ess. l.u.b. } \left| \sum_{i=1}^{p_n} F_i^{(n)}(s) \Phi_i^{(n)}(t) - K(s, t) \right| = 0.$$

Put

$$K_n(s, t) = \sum_{i=1}^{p_n} F_i^{(n)}(s) \Phi_i^{(n)}(t) - K(s, t).$$

Thus, there exists a set E_0 of points (s, t) in the square $0 \le s$, $t \le 1$, and a sequence $\{\epsilon_n\}$ of positive numbers such that:

- (a) $mE_0 = 0$,
- (b) $\epsilon_n \rightarrow 0$,
- (c) $|K_n(s,t)| \leq \epsilon_n$ for $(s,t) \notin E_0$.

Let H(s, t) denote the characteristic function of E_0 . Its Lebesgue integral over the square $0 \le s$, $t \le 1$ is 0. Fubini's theorem [7, p. 77] gives

$$\int_0^1 \left(\int_0^1 H(s, t) dt \right) ds = 0.$$

Therefore, there exists a linear set S of measure 1 in the interval $0 \le s \le 1$ such that, for every $s_0 \in S$,

$$\int_0^1 H(s_0, t)dt = 0.$$

The last statement implies for each $s \in S$ the existence of a linear set T_{\bullet} of measure 1 in the interval $0 \le t \le 1$ such that $s \in S$ and $t \in T_{\bullet}$ implies H(s, t) = 0, consequently $(s, t) \notin E_0$, and therefore $|K_n(s, t)| \le \epsilon_n$ for $n = 1, 2, \cdots$. This proves the existence of a linear set S in $0 \le s \le 1$, of measure 1, such that, for every $s_0 \in S$,

(1)
$$\lim_{n\to\infty} \text{ ess. l.u.b. } \left| \sum_{i=1}^{p_n} F_i^{(n)}(s_0) \Phi_i^{(n)}(t) - K(s_0, t) \right| = 0.$$

Let \mathfrak{M} denote the closed linear manifold determined by all $\Phi_i^{(n)}(t)$; $n=1, 2, 3, \cdots$; $i=1, 2, \cdots$, p_n . Clearly, \mathfrak{M} is separable, and a subset of $M_{(1)}$. For a fixed point $s_0 \in S$, $\sum_{t=1}^{p_n} F_i^{(n)}(s_0) \Phi_i^{(n)}(t)$ is a function of one variable t, $0 \le t \le 1$, and obviously belongs to \mathfrak{M} . Since \mathfrak{M} is closed, $K(s_0, t) \in \mathfrak{M}$ by virtue of (1). Furthermore, for $s_0 \in S$, $s_1 \in S$, and $s_0 \ne s_1$,

ess. l.u.b.
$$|K(s_0, t) - K(s_1, t)| = 1$$
.

Thus, \mathfrak{M} contains a "continuum number" of elements $K(s_0, t)$ whose "dis-

tance" from each other is 1. The last implication contradicts the separability of \mathfrak{M} [2, p. 126]. This completes the proof.

2. Let l denote the space of all sequences of real numbers $\{x_i\}$ for which $\sum_{i=1}^{\infty} |x_i| < \infty$, and m the space of all bounded sequences of real numbers [1, pp.11-12]. Let \mathfrak{a} denote the Banach space of all infinite matrices $(a_{i,j})$ for which $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{i,j}| < \infty$, and \mathfrak{b} the Banach space of all bounded matrices $(b_{i,j})$. We recall that

for
$$(x_1, x_2, \dots) \in l$$
, $\|(x_1, x_2, \dots)\| = \sum_{i=1}^{\infty} |x_i|$;
for $(\alpha_1, \alpha_2, \dots) \in m$, $\|(\alpha_1, \alpha_2, \dots)\| = \sup_{1 \le i < \infty} |\alpha_i|$;
for $(a_{i,j}) \in \mathfrak{a}$, $\|(a_{i,j})\| = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{i,j}|$;
for $(b_{i,j}) \in \mathfrak{b}$, $\|(b_{i,j})\| = \sup_{1 \le i,j < \infty} |b_{i,j}|$.

Obviously l is equivalent to a [1, p. 180]. Similarly, b is equivalent to m. For $(x_1^{(k)}, x_2^{(k)}, \cdots) \in l$, $(y_1^{(k)}, y_2^{(k)}, \cdots) \in l$, the expression $\sum_{k=1}^{n} (x_1^{(k)}, x_2^{(k)}, \cdots) \otimes (y_1^{(k)}, y_2^{(k)}, \cdots)$ will mean the infinite matrix $(a_{i,j})$ of rank not greater than n, where $a_{i,j} = \sum_{k=1}^{n} x_i^{(k)} y_j^{(k)}$. Clearly, two expressions $\sum_{k=1}^{n} (x_1^{(k)}, x_2^{(k)}, \cdots) \otimes (y_1^{(k)}, y_2^{(k)}, \cdots)$, $\sum_{k=1}^{m} (\bar{x}_1^{(k)}, \bar{x}_2^{(k)}, \cdots) \otimes (\bar{y}_1^{(k)}, \bar{y}_2^{(k)}, \cdots)$ are equivalent [5, p. 196] if and only if $\sum_{k=1}^{n} x_i^{(k)} y_j^{(k)}$ = $\sum_{k=1}^{m} \bar{x}_i^{(k)} \bar{y}_j^{(k)}$, for $i, j = 1, 2, \cdots$ [5, p. 202, Theorem 2.1]. Let

$$N\left(\sum_{k=1}^{n} (x_{1}^{(k)}, x_{2}^{(k)}, \cdots) \otimes (y_{1}^{(k)}, y_{2}^{(k)}, \cdots)\right) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \left|\sum_{k=1}^{n} x_{i}^{(k)} y_{j}^{(k)}\right|$$
$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \left|a_{i,j}\right|.$$

LEMMA 2.1. N is a crossnorm in $\mathfrak{A}(l, l)$ [5, p. 205].

Proof. The proof is elementary. In particular, the previous remark shows that the norm is invariant under equivalence.

LEMMA 2.2. $l \otimes_N l = a$.

Proof. Clearly, every matrix with a finite number of rows in \mathfrak{a} , and every infinite matrix $(a_{i,j}) \in \mathfrak{a}$ is the limit of the sequence of finite rowed square matrices $(a_{i,j})_{j-1,2,\ldots,n}^{i-1,2,\ldots,n}$; $n=1, 2, \cdots$. Thus, $\mathfrak{a} \subset l \otimes_N l$. On the other hand, every element of $\mathfrak{A}(l,l)$ belongs to \mathfrak{a} . Since \mathfrak{a} is complete, $l \otimes_N l \subset \mathfrak{a}$. This completes the proof.

LEMMA 2.3. $(l \otimes_N l)' = \mathfrak{a}' = \mathfrak{b}$.

Proof. The proof is analogous to the case l'=m [1, p. 97].

For $(\alpha_1^{(k)}, \alpha_2^{(k)}, \cdots) \in m$, $(\beta_1^{(k)}, \beta_2^{(k)}, \cdots) \in m$, let the expression $\sum_{k=1}^{n} (\alpha_1^{(k)}, \alpha_2^{(k)}, \cdots) \otimes (\beta_1^{(k)}, \beta_2^{(k)}, \cdots)$ in $\mathfrak{A}(m, m)$ denote the infinite bounded matrix $(b_{i,j})$ of rank not greater than n where $b_{i,j} = \sum_{k=1}^{n} \alpha_i^{(k)} \beta_i^{(k)}$.

LEMMA 2.4. $(l \otimes_N l)' \supset l' \otimes_{N'} l' = m \otimes_{N'} m$.

Proof. This is a consequence of [1, p. 97] and [5, p. 205].

THEOREM 2. $l' \otimes_{N'} l'$ is a proper subset of $(l \otimes_{N} l)'$.

Proof. It is sufficient to show that $m \otimes_{N'} m$ is a proper subset of \mathfrak{b} (Lemmas 2.3, 2.4), or that not every bounded matrix can be approximated by a sequence of matrices of finite rank. We shall show that the bounded infinite matrix $(\delta_{i,j})$, where $(\delta_{i,j})=1$ if, and only if, i=j, otherwise $\delta_{i,j}=0$, cannot be approximated by a sequence of bounded matrices of finite rank, that is, does not belong to $m \otimes_{N'} m$. To see that, we notice first that every bounded matrix $(b_{i,j})$ represents a linear transformation T from l into m. Let $(l_1, l_2, \cdots) \in l$. Put $T(l_1, l_2, \cdots) = (m_1, m_2, \cdots)$ where $m_i = \sum_{j=1}^{\infty} b_{i,j} l_j$. We prove

$$|||T||| = \sup_{i,j} |b_{i,j}|$$
 (||| T ||| denotes the bound of T).

By definition

$$|||T||| = \sup_{\|(l_1, l_2, \dots)\|=1} ||T(l_1, l_2, \dots)||.$$

The last number may be written as

$$\sup_{\|(l_1,l_2,\cdots)\|=1}\sup_{\mathfrak{l}}\left|\sum_{j=1}^{\infty}b_{i,j}l_j\right|=\sup_{\mathfrak{l}}\sup_{\|(l_1,l_2,\cdots)\|=1}\left|\sum_{j=1}^{\infty}b_{i,j}l_j\right|.$$

For a fixed $i, \sum_{j=1}^{\infty} b_{i,j} l_j$ denotes a linear functional on l [1, p. 97]; the bound of this linear functional is

$$\sup_{\|(l_1,l_2,\ldots)\|-1} \left| \sum_{j=1}^{\infty} b_{i,j} l_j \right| = \sup_{j} \left| b_{i,j} \right|.$$

Substituting the last number in the previous equation, we get

$$|||T||| = \sup_{i} \sup_{j} |b_{i,j}| = \sup_{i,j} |b_{i,j}|,$$

or the norm of the bounded matrix $(b_{i,j})$ is equal to the bound of the linear transformation T it represents.

It is easy to see that if the matrix is of finite rank, the corresponding linear transformation T is finite-dimensional. The linear transformation T_{δ} corresponding to the matrix $(\delta_{i,j})$ is obviously not completely continuous, therefore it can not be considered a limit of linear transformations whose ranges

are finite-dimensional [1, p. 96]. Therefore, $(\delta_{i,j})$ is not a limit of bounded matrices of finite rank. This completes the proof.

3. THEOREM 3. Let N denote the least crossnorm whose associate is also a crossnorm [5, p. 208]. If p > 1, 1/p + 1/q = 1 and l_p denotes the Banach space of all sequences of real numbers $\{x_i\}$ for which $\sum_{i=1}^{\infty} |x_i|^p < \infty$ [1, p. 12], then $l_p \otimes_N l_q$ is not reflexive.

Proof. Let Φ_1 , Φ_2 , Φ_3 , \cdots and ϕ_1 , ϕ_2 , ϕ_3 , \cdots denote the sequence of elements $(1, 0, 0, \cdots)$, $(0, 1, 0, \cdots)$, $(0, 0, 1, \cdots)$ in l_p and l_q respectively. Clearly, $\Phi_i(\phi_i) = 0$ if $i \neq j$, and $\Phi_i(\phi_i) = 1$; $i, j = 1, 2, \cdots$. With a fixed sequence of real numbers $\{\lambda_i\}$ converging towards 0, consider the sequence of expressions

$$\lambda_1\Phi_1\otimes\phi_1, \qquad \sum_{i=1}^2\lambda_i\Phi_i\otimes\phi_i, \qquad \sum_{i=1}^3\lambda_i\Phi_i\otimes\phi_i, \cdots.$$

First we prove, if n > m, $N(\sum_{i=m}^{n} \lambda_i \Phi_i \otimes \phi_i) = \max_{m \le i \le n} |\lambda_i|$. By definition [5, p. 208], $N(\sum_{i=m}^{n} \lambda_i \Phi_i \otimes \phi_i) = \sup |\sum_{i=m}^{n} \lambda_i \Phi_i(\phi) \Phi(\phi_i)|$ where sup, that is, the least upper bound, is taken for all $\Phi \in l_p$, $\phi \in l_q$, such that $\|\Phi\| = \|\phi\| = 1$. Substituting in the last equation Φ_i for Φ and ϕ_i for ϕ , we obtain $N(\sum_{i=m}^{n} \lambda_i \Phi_i \otimes \phi_i) \ge |\lambda_i|$. Thus,

$$N\left(\sum_{i,m}^{n} \lambda_{i} \Phi_{i} \otimes \phi_{i}\right) \geq \max_{m \leq i \leq n} |\lambda_{i}|.$$

On the other hand, if $\Phi \in l_p$ and $\Phi = x_1\Phi_1 + x_2\Phi_2 + \cdots$, then $\|\Phi\| = 1$ if, and only if, $\sum_{i=1}^{\infty} |x_i|^p = 1$. Similarly, if $\phi \in l_q$ and $\phi = y_1\phi_1 + y_2\phi_2 + \cdots$, then $\|\phi\| = 1$ if, and only if, $\sum_{i=1}^{\infty} |y_i|^q = 1$. Furthermore, $N(\sum_{i=m}^n \lambda_i \Phi_i \otimes \phi_i) = \sup \left|\sum_{i=m}^n \lambda_i x_i y_i\right|$ where sup is taken over the set of all sequences of real numbers $\{x_i\}$, $\{y_i\}$, for which $\sum_{i=1}^{\infty} |x_i|^p = 1$ and $\sum_{i=1}^{\infty} |y_i|^q = 1$. Hölder's inequality gives:

$$N\left(\sum_{i=m}^{n}\lambda_{i}\Phi_{i}\otimes\phi_{i}\right)\leq\sup\left\{\left(\max_{m\leq i\leq n}\left|\lambda_{i}\right|\right)\left(\sum_{i=m}^{n}\left|x_{i}\right|^{p}\right)^{1/p}\left(\sum_{i=m}^{n}\left|y_{i}\right|^{q}\right)^{1/q}\right\}$$

where sup is as stated in the previous equation. Since

$$\sum_{i=m}^{n} |x_{i}|^{p} \leq \sum_{i=1}^{\infty} |x_{i}|^{p} = 1, \qquad \sum_{i=m}^{n} |y_{i}|^{q} \leq \sum_{i=1}^{\infty} |y_{i}|^{q} = 1,$$

$$N\left(\sum_{i=m}^{n} \lambda_{i} \Phi_{i} \otimes \phi_{i}\right) \leq \max_{m \leq i \leq n} |\lambda_{i}|.$$

Since $\lambda_i \rightarrow 0$, the sequence of expressions $\lambda_1 \Phi_1 \otimes \phi_1, \sum_{i=1}^2 \lambda_i \Phi_i \otimes \phi_i, \sum_{i=1}^3 \lambda_i \Phi_i \otimes \phi_i, \dots$ is fundamental. Therefore, it may be considered as an element of $l_p \otimes_N l_q$. Its norm is obviously [5, p. 205]

$$\sup_{1\leq i<\infty} |\lambda_i|.$$

Thus, the well known non-reflexive space c_0 [1, p. 181] $(c_0^{\prime\prime} = l' = m$ [1, pp. 66-67]) of all converging towards 0 sequences of real numbers may be considered a subspace of $l_p \otimes_N l_q$. Since a subspace of a reflexive space is also reflexive [4, p. 423], $l_p \otimes_N l_q$ is not reflexive. This completes the proof.

REFERENCES

- 1. S. Banach. Théorie des opérations linéaires, Warsaw, 1932.
- 2. F. Hausdorff, Mengenlehre, Göschen, Berlin, 1935.
- 3. F. J. Murray and John von Neumann, On rings of operators, Ann. of Math. vol. 37 (1936) pp. 116-229.
- 4. B. J. Pettis, A note on regular Banach spaces, Bull. Amer. Math. Soc. vol. 44 (1938) pp. 420-428.
- 5. R. Schatten, On the direct product of Banach spaces, Trans. Amer. Math. Soc. vol. 53 (1943) pp. 195-217.
- 6. ——, On reflexive norms for the direct product of Banach spaces, Trans. Amer. Math. Soc. vol. 54 (1943) pp. 498-506.
 - 7. S. Saks, Theory of the integral, Warsaw, New York, 1937.

YALE UNIVERSITY,

NEW HAVEN, CONN.