Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Contributions to the theory of surfaces in a 4-space of constant curvature


Author: Yung-Chow Wong
Journal: Trans. Amer. Math. Soc. 59 (1946), 467-507
MSC: Primary 53.0X
DOI: https://doi.org/10.1090/S0002-9947-1946-0016231-0
Erratum: Trans. Amer. Math. Soc. 60 (1946), 550.
MathSciNet review: 0016231
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

    M. Bôcher, Introduction to higher algebra, New York, 1908. O. Borůvka, Sur une classe de surfaces minima plongées dans un espace à quatre dimensions à courboure constante, Bulletin international Česká akademie véd a umĕní v Praze vol. 29 (1928) pp. 256-277. R. Calapso, Sulle reti di Voss di uno spazio lineare quadri dimensionale, Rendiconti Seminario matematico Roma (4) vol. 2 (1938) pp. 276-311. ---, Sulle deformazione delle reti di Voss di un ${S_4}$ euclideo, Atti Accademia nazionale dei Lincei (4) vol. 28 (1939) pp. 231-236.
  • Nathaniel Coburn, Surfaces in four-space of constant curvature, Duke Math. J. 5 (1939), no. 1, 30–38. MR 1546103, DOI https://doi.org/10.1215/S0012-7094-39-00504-1
  • Luther Pfahler Eisenhart, Minimal Surfaces in Euclidean Four-Space, Amer. J. Math. 34 (1912), no. 3, 215–236. MR 1506152, DOI https://doi.org/10.2307/2370220
  • ---, Differential geometry, New York, 1909. ---, Riemannian geometry, Princeton, 1926.
  • W. C. Graustein, Invariant methods in classical differential geometry, Bull. Amer. Math. Soc. 36 (1930), no. 8, 489–521. MR 1561985, DOI https://doi.org/10.1090/S0002-9904-1930-04979-4
  • J. Knoblauch, Grundlagen der Differentialgeometrie, Leipzig, 1913.
  • Karl Kommerell, Riemannsche Flächen im ebenen Raum von vier Dimensionen, Math. Ann. 60 (1905), no. 4, 548–596 (German). MR 1511325, DOI https://doi.org/10.1007/BF01561096
  • S. Kwietniewski, Über Flächen des vierdimensionalen Raumes, deren sämtliche Tangentialebenen untereinander gleichwinklig sind, und ihre Beziehung zu den ebenen Kurven, Dissertation, Zürich. C. L. E. Moore, and E. B. Wilson, Differential geometry of two-dimensional surfaces in hyperspace, Proceedings of the American Academy of Arts and Sciences vol. 52 (1916) pp. 267-368. G. Ricci, Lezioni sulla teoria della superficie, Verona and Padova, Druker, 1898. J. A. Schouten, and D. J. Struik, Einführung in die neueren Methoden der Differential-geometrie II, Batavia, 1938.
  • C. Tompkins, Isometric embedding of flat manifolds in Euclidean space, Duke Math. J. 5 (1939), no. 1, 58–61. MR 1546106, DOI https://doi.org/10.1215/S0012-7094-39-00507-7
  • C. Zitto, Reti di Voss a curvatura nulla di un ${S_4}$ euclideo, Atti Acad. Pelororitana vol. 41 (1939) pp. 44-47.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53.0X

Retrieve articles in all journals with MSC: 53.0X


Additional Information

Article copyright: © Copyright 1946 American Mathematical Society