Contributions to the theory of surfaces in a 4-space of constant curvature
Author:
Yung-Chow Wong
Journal:
Trans. Amer. Math. Soc. 59 (1946), 467-507
MSC:
Primary 53.0X
DOI:
https://doi.org/10.1090/S0002-9947-1946-0016231-0
Erratum:
Trans. Amer. Math. Soc. 60 (1946), 550.
MathSciNet review:
0016231
Full-text PDF Free Access
References | Similar Articles | Additional Information
-
M. Bôcher, Introduction to higher algebra, New York, 1908.
O. Borůvka, Sur une classe de surfaces minima plongées dans un espace à quatre dimensions à courboure constante, Bulletin international Česká akademie véd a umĕní v Praze vol. 29 (1928) pp. 256-277.
R. Calapso, Sulle reti di Voss di uno spazio lineare quadri dimensionale, Rendiconti Seminario matematico Roma (4) vol. 2 (1938) pp. 276-311.
---, Sulle deformazione delle reti di Voss di un ${S_4}$ euclideo, Atti Accademia nazionale dei Lincei (4) vol. 28 (1939) pp. 231-236.
- Nathaniel Coburn, Surfaces in four-space of constant curvature, Duke Math. J. 5 (1939), no. 1, 30–38. MR 1546103, DOI https://doi.org/10.1215/S0012-7094-39-00504-1
- Luther Pfahler Eisenhart, Minimal Surfaces in Euclidean Four-Space, Amer. J. Math. 34 (1912), no. 3, 215–236. MR 1506152, DOI https://doi.org/10.2307/2370220 ---, Differential geometry, New York, 1909. ---, Riemannian geometry, Princeton, 1926.
- W. C. Graustein, Invariant methods in classical differential geometry, Bull. Amer. Math. Soc. 36 (1930), no. 8, 489–521. MR 1561985, DOI https://doi.org/10.1090/S0002-9904-1930-04979-4 J. Knoblauch, Grundlagen der Differentialgeometrie, Leipzig, 1913.
- Karl Kommerell, Riemannsche Flächen im ebenen Raum von vier Dimensionen, Math. Ann. 60 (1905), no. 4, 548–596 (German). MR 1511325, DOI https://doi.org/10.1007/BF01561096 S. Kwietniewski, Über Flächen des vierdimensionalen Raumes, deren sämtliche Tangentialebenen untereinander gleichwinklig sind, und ihre Beziehung zu den ebenen Kurven, Dissertation, Zürich. C. L. E. Moore, and E. B. Wilson, Differential geometry of two-dimensional surfaces in hyperspace, Proceedings of the American Academy of Arts and Sciences vol. 52 (1916) pp. 267-368. G. Ricci, Lezioni sulla teoria della superficie, Verona and Padova, Druker, 1898. J. A. Schouten, and D. J. Struik, Einführung in die neueren Methoden der Differential-geometrie II, Batavia, 1938.
- C. Tompkins, Isometric embedding of flat manifolds in Euclidean space, Duke Math. J. 5 (1939), no. 1, 58–61. MR 1546106, DOI https://doi.org/10.1215/S0012-7094-39-00507-7 C. Zitto, Reti di Voss a curvatura nulla di un ${S_4}$ euclideo, Atti Acad. Pelororitana vol. 41 (1939) pp. 44-47.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 53.0X
Retrieve articles in all journals with MSC: 53.0X
Additional Information
Article copyright:
© Copyright 1946
American Mathematical Society