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1. Introduction. This paper supplements the conclusions of the classical

Phragmen-Lindelöf principle as formulated for a half-plane (l) in such a man-

ner that a question raised by Ahlfors(2) concerning this principle is settled.

The basic facts concerning the Phragmen-Lindelöf principle for the half-plane

are these : Let f(z) denote a function which is defined and analytic for Rz > 0

and which possesses the property that

(1.1) lim sup |/(«) | g 1
s—*irj

for all t] which are finite and real and for i?z>0. The following notation is

introduced :
M(r) = l.u.b.  | /(re«) |,

where r and 6 are the customary polar coordinates of a point z of Rz>0;

log M(r)                               log M(r)
a = lim inf-;        ß = lim sup-•

r—»+» r r—*+« T

Positively and negatively infinite values will be admitted for a and ß. Under

the hypotheses imposed upon f(z) it is concluded, and this is<essentially the

usual statement of the conclusions of the classical Phragmen-Lindelöf prin-

ciple, that:

1. lfa=—<x>,thenß=—°oandf=0;

2. If -co <a^0, thenß^Oand |/| ^ifor Rz>Ù;
3. If ß = + », then a = + oo ;

4. // 0<a<+oo, then ß^4a/ir and in fact [log M(r)]/r^4a/ir for all

positive r.

The question raised by Ahlfors (loc. cit.) is whether or not a =ß in all cases.

We shall see that for all functions f(z) admitted by the hypotheses of the theorem

log M(r)
lim   -

r->+« r

Presented to the Society, August 23, 1946; received by the editors January 8, 1946.

(') Cf. R. Nevanlinna, Eindeutige analytische Funktionen, Berlin, 1936.

(2) Lars Ahlfors, On Phragmen-Lindelöf s principle, Trans. Amer. Math. Soc. vol. 41 (1937)

pp. 1-8. See in particular p. 6.
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exists (as a finite or infinite limit). Further we shall see that a can never be

finite and negative. Hence if f(z) is of modulus not exceeding one for 7?z>0

and is not identically zero, then

log M(r)
lim   -= 0.

T->+"> r

It is clear that our attention may be confined to the cases (one of which

will turn out to be vacuous) where a is finite and either strictly positive or

strictly negative. The proof is based upon the representation of f(z)

(1.2) f(z) m ««""*(«),

where (p(z)(f^0) is of modulus not exceeding one for 7?z>0, this representation

following from the proof of the classical Phragmen-Lindelöf principle as given

for example by R. Nevanlinna (loc. cit.). The basic idea which is used

throughout this paper is embodied in a lemma established in §2 concerning

the measure of the set on [\z\ =const.,|'ö| <7r/2] where \<p\ <exp{ — e\z\ },

6 being a given positive constant.

In addition to establishing the above results a brief proof of Ahlfors'

formulation of the Phragmén-Lindelof-Nevanlinna principle will be given.

This proof is based upon the principle of the harmonic majorant, the Poisson

integral for the circle, and the symmetry properties of the Poisson kernel(3).

A comparison is then made with the aid of the lemma of §2 between

limr..+00[log M(r)]/r and the analogous limiting value of the Phragmen-

Lindelöf-Nevanlinna-Ahlfors principle.

It should be remarked that many of the results of the present paper could

be obtained with the aid of the Poisson-Stieltjes integral. In fact, the present

results are intimately connected with the behavior of the distribution func-

tion appearing in the Poisson-Stieltjes representation. The proofs given here

are more "elementary" in character since they involve only the classical

Poisson integral and the most primitive properties of harmonic functions.

The author plans to consider related questions in another paper.

2. A lemma. As in §1, we shall use <p(z) to denote a function which is

analytic, not identically zero, and of modulus not exceeding unity for 7?0>O.

Let E(r, e) denote the set of points, 8, of the interval | fl| <7r/2 for which

(2.1) log | *(«*) | < - «r,

for r ( > 0) fixed and e a given positive number. The lemma is :

(') Cf. A. Dinghas, lieber das Phragmen-Lindelöf sehe Prinzip und den Julia-Carathêodory-

schen Satz, Preuss. Akad. Wiss. Sitzungsber. (1938) pp. 32-48. The proof of Dinghas makes

use of the Poisson integral for a semicircle. By using the Poisson integral for the circle and the

symmetry properties of the associated kernel practically all computational details are elimi-

nated.
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Lemma 2.1(4). // lim supr„+00[meas. E(r, e)] >0, then there exists a positive

constant k such that

(2.2) log \4>(z)\ á - kRz

for Rz>0.

Proof. Let X(6; r, e) denote the characteristic function of the set E(r, e)

for 161 <tt/2 and let X be defined for other values of 6 by

x(^;,,e)-x(--L;r.«)-0,
(2.3)

X(6; r, t) = - X(w - 6; r, e) for ir/2 < 6 < 3t/2,

and by the requirement that X shall be periodic in 6 with period 27r. Further

let K(r, 6; p, \p) denote the Poisson kernel

2 2

(2.4) K(r, 6;P,t)= "  ~'- (r < P).
p2 + r2 — 2pr cos (\[> — 6)

It follows from the principle of the harmonic majorant and the nature of X

that

*)#(2.5) log | *(re") | g - ^ f'xty; P. ¿)K(r, 6; p,

for |ö| <7r/2 if r<p. Use will be made of the following local representation

of K for r/p small :

(2.6) K=i+—cos(yP-6)+oï(—\~\.

Note that

(2.7) J   XW<; p, e)# = J   X(i-, p, £) sin *# = 0.

In order to obtain an upper bound for log \<p(reie) \ in terms of meas. E(p, «) it

will be convenient to obtain a lower bound for

(2.8) j   X(*;p,t)cosW*.

To this end note that (2.8) is twice

(4) It may be shown that limrH+«, meas E{r, «) exists (the measure of a null-set being zero

by convention). Also if this limit is positive and if «o denotes the largest positive value of k

for which (2.2) is true throughout Rz>0, then limr_+„ meas E{r, e) =2 arc cos (e/xo) for «£«o-

These results will not be needed in this paper.
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X(iP;p,e)cosW*
-t/2

and that (2.9) in turn is not less than

X(p, e) T fmeas. E(p, e)
(2.10) ^=2   1-cos   -T^^M(6)

r                (meas. E(p, e)) 1
[l-cosj-|j(

This appraisal is readily deduced by comparing (2.9) with the integral ob-

tained by replacing X(xp; p, e) in (2.9) by the characteristic function of the set

[ir      meas. E(p, e)      .    .       ir"1

7-— iW<7J.
It follows from (2.5), (2.6), (2.7), and (2.10) that

(2.11) log | <b(re<°) I = - ^ «P^-9- X(P, «) + O [(-) ]| .

The lemma is an immediate consequence of (2.11), since lim supp„+00{meas.

E(p, e)} >0 implies that lim supp^+00 X(p, e) >0.

3. The existence of lim,._+00 [log M(r) ]/r.

Case I. 0<o!<+oo. In this case it is immediate from (1.2) that ß^4a/w.

To proceed let k equal the largest non-negative number for which

(3.1) log \<t>(z)\ g - kRz

holds throughout Rz>0. Such a number k clearly exists since <f>^0. Set

(3.2) <b(z) = e~"Hz)

defining <£(z) thereby. Clearly $ is analytic, is of modulus not exceeding unity

for 7?z>0, and is not subject to a domination of the type (3.1) for a strictly

positive k. From the definition of k and (1.2), we have

(3.3) ß ^ 4a/V - k.

Ha<ß, then Aa/ir — K>a. From the definition of a it follows that there would

exist a positive number e such that

a + é < 4a/ir — *c,

and a monotone strictly increasing sequence of positive numbers {rk\ with

lim*..,, rt=+oo, such that for all k (k = l, 2, • • • )

log M(rk) < (a + e)rk.

Hence if a<ß, there would exist a positive number 5 less than ir/2 and a

positive number y ( — y may be taken as (a+ e) — (4a/7r — k) cos 5 if 5 is chosen

(') Defining X(p, t).
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sufficiently small) such that for all k and for 16\ ̂  ¿5,

(3.4) log | $(r*e»)| Û -in.

The contradiction follows from Lemma 2.1. Hence a =ß. Further a = 4q/ir — k.

Hence

(3.5) f(z) Es««*(a).

To sum up, we have:

Theorem 3.1. // 0<a<+oo, then a=ß. Further

(3.6) -S a
r

for all positive r. If equality is attained in (3.6) for any finite positive value of r,

then equality prevails for all positive r andf(z) = ce"", where eis a constant of mod-

ulus one.

Case II. —oo <a<0. In this case we may assume that/^O and we obtain

a contradiction as follows. Let k denote the largest positive number such that

(3.7) log |/(2)| :£ -k-Rz

holds throughout 2?z>0. That such a number k exists follows from (1.2).

Hence/(z) admits the representation

(3.8) f(z) m e~"F(z)

where F(z) is analytic and of modulus not exceeding unity for i?z>0, and

in addition is not subject to a domination of the type (3.7) for a strictly posi-

tive k. The remainder of the argument is similar to that of Case I save that

here the 0-interval, |#| ^ 5, is to be replaced by the intervals ir/2— S*g |ô|

<7r/2 for some appropriate positive 5*. The lemma is then immediately ap-

plicable and we infer the following theorem.

Theorem 3.2. The case — oo <a<0 never occurs.

4. The Ahlfors formulation of the Phragmen-Lindelöf-Nevanlinna prin-

ciple. In the form given to the Phragmen-Lindelöf principle by F. and

R. Nevanlinna the same class of function/(z) admitted in §1 is considered,

but instead of treating log M(r), the integral

/Tli log+ I /(re«) | cos Odd
-x/i

is studied. Here

log+ | /(re«) | = max {log | /(re«) |, 0}.
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The theorem of Ahlfors states: The function m(r)/r is a non-decreasing func-

tion of r. Ahlfors' theorem appears as a corollary of a more general result

which he obtained with the aid of a certain differential inequality. The proof

given below depends upon the Poisson integral for the circle. The procedure

followed here is related to that used in §2. We define the function ¿(p, xp)

for positive p and all real xp by the requirements

(i) L(p, P) m log+l/G»*) | for |P\ < x/2,

(ü) ¿(p, tt/2) =¿(p, -tt/2)=0,

(iii) L(p, \p) = - L(p, t - xp) for -ir/2 <p < 3tt/2.

For other values of xp, L is defined by the requirement that ¿ shall be periodic

in xp with the period 27r. It is to be observed that the condition (1.1) implies

that ¿(p, xp) is continuous in xp for all xp. As in §2, we see that for r<p and

|e| <ir/2

log+ | /(re«) | S — f ' L(p, P)K(r, 8; p, xO)dp
2ir J _r

= — f     log+ | foe**) | [K(r, 6;p,xb)-K(r,ir-8;p,P)]dp.
2ir J _t/2

(4.2)

Note that

;.

x/2

cos 8[K(r, 8; p, P) - K(r, ir-8;p,P)_
x/2

(4.3) =   f   cos 8K(r, 8; p, xl)d8 =   f   cos 8K(r, xl; p, 8)d8

r
= 2ir — COS \b

P

by virtue of the symmetry properties of K. Hence

1   r*'2 . . r
(4.4) m(r) ^ — I        log+ | /(pe1'*) [ ■ 2tt — cos xl/dp

2ir J _x/2 P

or
m(r)      m(p)

r P

The theorem of Ahlfors follows.

5. limr^+00 (log M(r)/r) vs. limr..+00 (m(r)/r). In this section we shall be

concerned with determining the relation between the two indicated limits.

The case where either of the two limits is zero is readily dismissed. It follows
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from §3 and the definition of m(r) that, if one of the limits is zero, then so is

the other(6). On the other hand the relation

(5.1) log M(r) ^ m(r)/2

which prevails when log M(r)>0, implies that, if

m(r)
(5.2) lim   -^ = + »,

!-.+»     r

then

log M(r)
(5.3) lim   -= + oo.

Conversely, it may be shown that if (5.3) holds, then so does (5.2). The de-

tails follow from the proof of the Phragmen-Lindelöf-Nevanlinna principled).

There remains the case where both limits are finite and positive. Recall

the representation (3.5) that prevails in this case. Here

log M(r)
lim   - = a.

r—*+• r

From (3.5) it follows that

,(5.4) ar cos 6 + log | <E>(re«) | ^ log+ | /(re«) | g ar cos 6.

Given €>0, it follows from the nature of <ï> and Lemma 2.1 that for r

sufficiently large
log | 4>(re«) I à - «r

except for a set E(r, e) of arbitrarily small measure. Hence

X (ar cos 6 — er) cos 6d6 ^ m(r) ^ ar-
«(,,!) 2

and by virtue of the arbitrariness of e, we have

m(r)       ir
lim   -= — a.

r-.+«     r 2

Brown University,

Providence, R. I.

(•) Except if /sO. This trivial case will be omitted from the discussion of this section.

(7) Cf. L. Bieberbach, Lehrbuch der Funktionentheorie, vol. 2, Leipzig, 1931, pp. 132-134.


